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Abstract

Background: As global populations age and become susceptible to neurodegenerative illnesses, new therapies for Alzheimer
disease (AD) are urgently needed. Existing data resources for drug discovery and repurposing fail to capture relationships central
to the disease’s etiology and response to drugs.

Objective: We designed the Alzheimer’s Knowledge Base (AlzKB) to alleviate this need by providing a comprehensive
knowledge representation of AD etiology and candidate therapeutics.

Methods: We designed the AlzKB as a large, heterogeneous graph knowledge base assembled using 22 diverse external data
sources describing biological and pharmaceutical entities at different levels of organization (eg, chemicals, genes, anatomy, and
diseases). AlzKB uses a Web Ontology Language 2 ontology to enforce semantic consistency and allow for ontological inference.
We provide a public version of AlzKB and allow users to run and modify local versions of the knowledge base.

Results: AlzKB is freely available on the web and currently contains 118,902 entities with 1,309,527 relationships between
those entities. To demonstrate its value, we used graph data science and machine learning to (1) propose new therapeutic targets
based on similarities of AD to Parkinson disease and (2) repurpose existing drugs that may treat AD. For each use case, AlzKB
recovers known therapeutic associations while proposing biologically plausible new ones.

Conclusions: AlzKB is a new, publicly available knowledge resource that enables researchers to discover complex translational
associations for AD drug discovery. Through 2 use cases, we show that it is a valuable tool for proposing novel therapeutic
hypotheses based on public biomedical knowledge.

(J Med Internet Res 2024;26:e46777) doi: 10.2196/46777
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Introduction

Background
Alzheimer disease (AD) is a progressive, neurodegenerative
disease affecting an estimated 6.5 million Americans aged ≥65
years and represents a significant clinical, economic, and
emotional burden worldwide [1]. AD is often cited as one of
the greatest health care problems of the 21st century, particularly
in high-income nations with an increasing proportion of older
adults. Despite its societal impact, effective pharmaceutical
treatments for AD remain notoriously elusive. The US Food
and Drug Administration has approved 5 drugs for the treatment
of AD, 4 of which (donepezil, rivastigmine, galantamine, and
memantine) only temporarily treat symptoms but do not alter
the overall progression of the disease [2], whereas the fifth
(aducanumab) is highly controversial in terms of evidence of
effectiveness and its safety profile [3]. AD researchers have
prioritized the discovery and approval of new therapies for the
disease both in terms of newly discovered compounds and by
repurposing drugs that are already approved to treat other
(non-AD) human diseases.

AD is associated with substantial changes in pathology,
including the presence of neuritic plaques associated with the
amyloid-β protein, extracellular deposition of amyloid-β, and
neurofibrillary tangles. Previous research has shown that these
neuropathological changes begin to occur years before clinical
symptoms are apparent [4,5]. Despite decades of research, why
this pathology begins to develop remains largely unknown [6].
Current consensus is that AD risk is multifactorial. The most
well-established risk factors include age; family history; and
certain genetic factors, especially the presence of the σ4 allele
of the apolipoprotein E gene, which is involved in fat
metabolism and cholesterol transport. However, the exact
mechanism through which these factors—including APOE-σ4
presence—cause or contribute to AD risk is unknown [7].

Of the many techniques used in AD therapeutics research, there
is a wealth of computer-aided approaches that leverage recent
advances in bioinformatics, epidemiology, artificial intelligence
(AI), and machine learning (ML). For example, Rodriguez et
al [8] developed an ML framework to assess gene lists
constructed by differential gene expression data in response to
drug treatment to determine whether those drugs would be
candidates for repurposing in AD. Tsuji et al [9] used an
autoencoder neural network to perform dimensionality reduction
of a high-density protein interaction network to identify new
possible drug targets and then found drugs associated with those
targets. Genome-wide association studies have long been used
for the identification of genes that confer AD risk, particularly
for rare genes or genes with small (but statistically significant)
contributions to disease risk [10].

In this paper, we describe the design and deployment of a major
new knowledge resource for computational AD
research—named The Alzheimer’s Knowledge Base (AlzKB)
[11]—with a particular focus on drug discovery and drug
repurposing. The overall structure and contents of AlzKB are
summarized in Figure 1. At its core, AlzKB consists of a large,
heterogeneous graph database describing entities related to AD
at multiple levels of biological organization, with rich semantic
relationships describing how those entities are linked to one
another. To demonstrate its value, we present two data-driven
analyses involving ML on AlzKB’s knowledge graph: (1)
predicting Parkinson disease (PD) genes that may also be
associated with AD and (2) generating and explaining drug
repurposing hypotheses for treating AD, both of which replicate
existing knowledge while proposing entirely novel directions
for future experimental validation. AlzKB is free, open source,
and publicly available [11] and consists entirely of publicly
sourced knowledge integrated from 22 diverse web-based
biomedical databases. We hypothesized that the relationships
and entities in AlzKB contain valuable knowledge that cannot
be effectively captured in existing data resources, with the
additional advantage of improving the explainability of new
predictions.
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Figure 1. Schematic overview of the Alzheimer’s Knowledge Base (AlzKB).

Existing Graph-Based Approaches to AD Research
Due to the increased popularity and success of analyses using
integrated knowledge, previous efforts have used knowledge
graphs in AD research for a variety of purposes, including drug
repurposing [12-14] and gene identification [15] and as general
informational resources [16]. Similar to AlzKB, these bodies
of work draw from a variety of sources to construct the
underlying knowledge graphs, including scientific literature
and formally structured biomedical databases. Some, including
the Alzheimer Disease Knowledge Graph [14] and the
Heterogeneous network-based data set for AD [16], have been
released as publicly accessible resources similar to AlzKB.
Other studies have used existing resources not specifically
intended for AD research (such as the Semantic MEDLINE
Database [13]) to answer questions related to AD. To our
knowledge, AlzKB is the largest graph-based knowledge
representation that focuses solely on AD and draws from the
greatest number of source databases. For comparison, the next
largest AD-specific knowledge graph that we are aware of is
AD-KG, which contains 30,729 nodes and 398,544 edges
(compared to AlzKB’s 118,902 nodes and 1,309,527 edges).
Our emphasis on merging similar nodes or edges and cleaning
the graph structure using an underlying biomedical ontology
reduces the amount of noise that tends to be associated with
many different node or edge types in a single graph, enabling
more robust inference about relationships in AD, especially
when used with emerging graph ML algorithms. Furthermore,
AlzKB offers a public, web interface that allows for easy access
and application to new research questions, whereas existing
resources have either restricted access or are entirely unavailable
for reuse. Given the challenge of identifying new or repurposed

drugs for etiologically complex diseases such as AD, AlzKB
represents a major step forward by improving both quantitatively
and structurally on existing resources.

Methods

AlzKB Ontology
Graph databases are renowned for their flexibility in
representing data that do not conform to a rigid, tabular
structure, but this comes at the expense of implicitly enforcing
consistency and semantic standardization [17]. To mitigate this
issue, we designed a Web Ontology Language (OWL) 2
ontology—describing the types of entities relevant to AD and
treatment of AD, as well as the types of relationships that link
those entities—that serves as a template for nodes and edges in
the knowledge graph. Ontologies (including OWL 2 ontologies)
are formal representations of knowledge that are frequently used
in biomedicine to computationally structure, retrieve, and make
inferences about knowledge within a domain of interest [18].
Briefly, as many of the components of a graph database have a
1-to-1 correspondence with components of an OWL 2 ontology
(eg, OWL 2 classes are equivalent to graph database node labels,
and OWL 2 object properties are equivalent to edge types in a
graph database), it is possible to populate the ontology using
biomedical knowledge and translate the contents of the
populated ontology into an equivalent graph database. Therefore,
enforcing consistency in the ontology becomes equivalent to
enforcing consistency in the graph database.

We constructed the ontology manually using the Protégé
ontology editor (version 5.5.0; Stanford Center for Biomedical
Informatics Research) [19] following an iterative process guided
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by expert domain knowledge. First, we prototyped a class
hierarchy containing the types of nodes (eg, gene, disease,
pathway, and drug) desired in the knowledge base. We then
annotated these classes with data properties (eg, drugs can be
assigned a property value corresponding to molecular weight)
and object properties (relationship types that link 2 entities,
such as “drug treats disease”). A thorough description of the
components of OWL 2 ontologies is provided by Hitzler et al
[20]. Finally, we placed restrictions on the ontology to reflect
biology and clinical practice. For example, we specified
restrictions stating that all pathways must contain one or more
genes or that all drugs in the knowledge base must have a valid
DrugBank ID. We repeated these steps several times, making
revisions on previous iterations until several domain experts
agreed that the semantic contents of the ontology were consistent
with current AD knowledge and systems biology processes
involved in AD etiology. After collecting the data sources used
to populate the ontology (see the following section), we included
additional data properties corresponding to identifiers in those
source databases, enabling data provenance and facilitating both
interoperability and validation. The final ontology structure
consists of entity types involved in AD etiology (modeled as
OWL 2 classes), types of semantic relationships that can link
those entity types (modeled as OWL 2 object properties), and
properties that can be annotated onto entities of specific types
(modeled as OWL 2 data properties). Both before and after
populating the ontology with individuals (see the Implementing
AlzKB section), we validated its contents and structure by
running FaCT++—an ontology inference engine that identifies
errors by evaluating all assertions in the ontology against the
ontology’s class or property hierarchy and other restrictions
[21].

Collecting and Assembling Third-Party Data Sources
Using the AlzKB ontology’s class hierarchy as a starting point,
we determined a set of the most important entity types to include
in the first release of the knowledge base. For example, we
prioritized inclusion of entities representing diseases
(specifically AD and its various subtypes), genes, and drugs,
among others. Similarly, we identified important relationship
types  (eg ,  “DRUG_BINDS_GENE” or
“GENE_ASSOCIATED_WITH_DISEASE”) to include in the
knowledge base. For each of these entity and relationship types,
we identified a third-party, public data source that would serve
as a collection of “ground truth knowledge” for that entity or
relationship type. In the assembled knowledge base, there is
roughly a 1-to-1 correspondence between a data record in the
original “ground truth” data source and its corresponding entity
or relationship in AlzKB, with some important exceptions. For
example, we made the decision to only include neurological

diseases in AlzKB rather than all diseases described in the
“ground truth” data source (in this case, the Disease Ontology).
We also identified instances in which properties from additional
data sources could be used to augment the “ground truth”
entities. For example, while DrugBank is used to specify the
drugs described in AlzKB, we also used fields from Distributed
Structure-Searchable Toxicity and PubChem to augment the
properties annotated onto drugs (such as molecular weight,
chemical fingerprint, and synonyms).

Implementing AlzKB
We populated the ontology by sequentially carrying out the
following steps:

1. Import distinct entities from each data source corresponding
to the corresponding ontology class and define those entities
as ontology individuals (ie, instances of that class). For
example, the drug memantine is defined as an instance of
the ontology class Drug.

2. Populate data properties for all instances of each ontology
class using data from relevant sources. For example,
memantine is annotated with the Chemical Abstracts Service
Registry number 19982-08-2.

3. Populate object properties as the semantic relationships
linking pairs of entities using the appropriate data source.
For example, an object property of type
“DRUG_TREATS_DISEASE” links memantine to the
instance of Disease named Alzheimer’s Disease.

After populating the AlzKB ontology with entities, relationships,
and data properties, we serialized the ontology into the Resource
Description Framework (RDF) or XML graph data format,
which is compatible with modern graph database software as
an input format. A complete list of the data sources used in
AlzKB at the time of writing is provided in Table 1. We then
populated a Neo4j graph database (version 4.4.5; Neo4j, Inc)
[22] with the contents of the RDF or XML file using the
neosemantics library [23], which parses the RDF data, inserting
semantic triples into the graph database corresponding to each
entity or relationship. Finally, we stripped the newly populated
graph database of unnecessary artifacts that are components of
the OWL 2 standard, leaving only nodes, relationships, and
properties defined within the hierarchy. For the publicly hosted
version of AlzKB, we created a web server that hosts both the
static AlzKB website (containing information, documentation,
and use details) and the Neo4j graph database, which is available
by navigating to a subdomain [24] of the main website [11].
For reproducibility, this entire pipeline (including mappings to
source databases) is provided as a single Python script available
on GitHub (the most recent version) [25] or Zenodo (an archived
version of the code at the time of publication) [26].
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Table 1. Third-party public data sources used in the Alzheimer’s Knowledge Base (AlzKB), which data elements were used from them, and total size

of the data source (counts of entities of relevant data types only)a.

Size (number of entities)Use in AlzKBData source

1,207,456Adverse outcome pathways and chemical-gene associationsAOP-DBb [27]

9,093,494Tissue-specific gene expression data; only human gene expression data
were used in AlzKB

Bgeec [28]

8043Human diseases—only ADd, subtypes of AD, and related neurodegen-
erative diseases were included in AlzKB

Disease Ontologyc [29]

51,841Diseases, genes, and disease-gene associations with scores representing
levels of evidence; only AD and related neurodegenerative terms were
used for diseases

DisGeNET [30]

15,550On-market and experimental pharmaceutical drugsDrugBank [31]

1,200,059Chemical toxicity data—filtered in AlzKB to drugs contained in
DrugBank

EPAe DSSToxf [32]

504,871Chemical toxicity data—filtered in AlzKB to drugs contained in
DrugBank

EPA ACToRg [33]

42,950Biological processes, molecular functions, and cellular componentsGene Ontologyc [34,35]

60,071Gene-disease associationsGWASh Catalogc [36]

47,031Graph modeling and entity resolution (for data sources marked with
footnote indicator “c”)

Hetionet [37]

9094Human protein-protein interactions (modeled as gene-gene interactions)Human Reference Protein Interactome Map-

ping Projectc [38]

7467 genesHuman differential gene expression dataLINCSi L1000c [39]

Approximately 27,000Clinical and biomedical concepts (annotated to various node types)NCBIj MeSHk [40]

62,407Human genes and gene synonymsNCBI Entrez Gene [41]

223Pathways and gene-pathway membershipPathway Interaction Databasec [42]

698Drug indications for human diseasesPharmacotherapyDBc [43]

115,067,800Chemical structures and identifiers—only chemicals in DrugBank were
included in AlzKB

PubChem [44]

1341Pathways and gene-pathway membershipReactome pathway databasec [45]

5868Drug side effects (modeled as diseases)SIDERc,l [46]

—mTissue-specific gene expression dataTISSUESc [47]

402Human anatomical structuresUberonc [48]

298Pathways and gene-pathway membershipWikiPathwaysc [49]

aAs source data elements do not correspond in a 1-to-1 manner with entities in the graph (eg, entities may be merged, filtered, or used as edges rather
than nodes), actual counts for entities in AlzKB stratified by source are not available. The sizes are the best available estimates at the time of publication.
Table 2 and Table S1 in Multimedia Appendix 1 [50-56] provide actual node and edge type counts in AlzKB.
bAOP-DB: Adverse Outcome Pathway Database.
cThe derived data are structured in part using Hetionet.
dAD: Alzheimer disease.
eEPA: Environmental Protection Agency.
fDSSTox: Distributed Structure-Searchable Toxicity.
gACToR: Aggregated Computational Toxicology Resource.
hGWAS: genome-wide association studies.
iLINCS: Library of Integrated Network-Based Cellular Signatures.
jNCBI: National Center for Biotechnology Information.
kMeSH: Medical Subject Headings.
lSIDER: Side Effect Resource.
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mCounts not applicable (TISSUES associations map to edges rather than nodes in the graph).

Table 2. Node types and counts in the Alzheimer’s Knowledge Base listed in descending order by prevalence. Additional node types will be added
over time, and counts will increase as new data sources are incorporated or existing sources are updated to newer versions.

Total nodes, NNode label

62,407Gene

35,063Drug

11,381BiologicalProcess

4570Pathway

2884MolecularFunction

1391CellularComponent

438Symptom

402BodyPart

345DrugClass

20Disease

Validating AlzKB Using Real-World Use Cases
After building AlzKB’s knowledge graph, we designed two
ML-based use cases that resemble real-world tasks for which
AlzKB was originally designed: (1) proposing genetic targets
for new drugs based on disease similarity and topological graph
features and (2) predicting new edges in the knowledge graph
linking AD to repurposed drugs via a graph completion model.
These 2 use cases are intended to assess the external validity of
AlzKB—for the ML models to perform well on tasks defined
using real-world evaluation end points (eg, effective drugs or
etiologically important genes), the informative patterns and
phenomena underlying those end points need to be adequately
captured in the knowledge graph.

In the first use case (identifying genetic targets via graph
topology measures), we trained a random forest (RF) classifier
(implemented in the scikit-learn library [Python Software
Foundation] for the Python programming language) using the
following topological graph features, which are computed for
every node pair in the graph (regardless of whether an edge
does or does not exist between them): common neighbors, total
neighbors, preferential attachment, Adamic-Adar, and resource
allocation [57-60]. Each feature gives a different measure of
network “relatedness” for a pair of nodes, which are then used
as predictive features in the RF model. For a given node pair
(n1, n2), these metrics are defined as follows:

where N(n1) is the set of neighbor (adjacent) nodes of node i.
Our training procedure for the RF model included 3-fold grid
search cross-validation to optimize hyperparameters, an
80%/20% train/test split, and repeating the procedure 10 times
with random sampling.

To accomplish the second use case (drug repurposing via graph
completion models), we implemented and compared the
performance of 5 graph completion algorithms applied to the
entire AlzKB knowledge graph. These models learn
low-dimensional representations of graph nodes as vector
embeddings. The embeddings are then combined to propose all
possible triples in the graph (source node, edge, and target node),
and scores are generated to indicate the plausibility of the triple.
The 5 models we evaluated are TransE, RotatE, DistMult,
ComplEx, and ConvE [60].

We implemented the 5 models using PyKEEN—a Python library
for knowledge graph embeddings [50]. We randomly split the
data set of all triples into 80/10/10 training/validation/testing
sets and used grid search to empirically set embedding
dimensions to 256 and the number of epochs to 100 with early
stopping allowed. All remaining hyperparameters were set to
the PyKEEN defaults. We trained the models on Google Colab
using a single Tesla T4 graphics processing unit and evaluated
the results using the rank-based evaluation metrics hits@k (k=1,
3, and 10) and mean reciprocal rank (MRR) [61]. Ranking-based
evaluation sorts the scores of triples in descending order and
sets their rank as the index in the sorted list. In the case of
multiple “true” triples having an equal score, we used the
average of the most optimistic (best) and pessimistic (worst)
ranks across the metrics. Briefly, hits@k is the ratio of true
triples in the test set that have been ranked within the top k
predictions of the model. Higher values indicate better
performance. The MRR, also known as inverse harmonic mean
rank, is the arithmetic mean of the inverse rank of the true
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triples. We performed evaluation on both left- and right-side
predictions (ie, how well they can predict missing entities in
partial triples without either the head [source] or tail [target]
entities).

Ethical Considerations
No human participants were involved in this research. All data
used to build and evaluate AlzKB were derived from publicly
available biomedical knowledge retrieved from open access
databases. None of the data included were derived from
individual human participants. Similarly, AlzKB is entirely
open source and publicly available and complies with the
licensing terms of all 22 source databases used to build the
knowledge base.

Results

Knowledge Base Description
The first release of AlzKB (version 1.0) [26] contains 118,902
distinct nodes (representing biomedical entities) and 1,309,527
relationships linking those nodes. A full summary of node and
relationship types with counts, respectively, is provided in Table
2 and Table S1 in Multimedia Appendix 1. Users can interact
with AlzKB in their web browser using the built-in Neo4j
interface or programmatically by connecting to the graph
database over the internet. We also provide instructions for
installing a local copy of the graph database as well as how to
build the database from its original data sources.

Proposing New Therapeutic Targets for AD
As a proof of concept, we performed an analysis to predict
whether known PD genes are also linked to AD etiology. PD

is a chronic, progressive neurological disorder characterized by
uncontrollable movements and possible mental and behavioral
changes. Similar to AD, the precise etiology of PD is not fully
understood, but the disease is characterized by the death or
dysfunction of basal ganglia neurons. A growing body of work
has established physiological and genetic similarities between
PD and AD [62], and it has been proposed that drugs targeting
PD genes could potentially treat AD as well. To approach this
hypothesis computationally, we defined a binary classification
task to predict whether gene nodes in the AlzKB knowledge
graph are or are not AD genes [63]. To assemble the data set,
we considered all gene nodes adjacent to AD as positive (n=101)
and all gene nodes not adjacent to AD as negative (n=62,306).
The negative samples are assumed to contain a mixture of true
negatives and false negatives; in link prediction tasks, the goal
is to recover the false negatives. We further filtered the negative
nodes to omit PD genes (n=73) and orphan gene nodes
(n=43,032) and down sampled the remaining genes to 303 (ie,
3 times the number of positive samples). To evaluate the
performance, we used accuracy, balanced accuracy, precision,
recall, F1-score, area under the receiver operating characteristic
curve, and area under the precision-recall curve, as shown in
Figure 2.

The RF model predicted gene-disease relationships with an
average balanced accuracy of 96.2% (precision=0.88;
recall=0.98). We applied the trained models to predict PD genes
that are likely to also be AD genes. Of the 73 PD genes in
AlzKB, 8 (11%; FYN, DCTN1, SNCA, SYNJ1, RSP12, ATXN2,
KCNIP3, and CHRNB1; described in Table 3) were predicted
to be AD genes. A total of 10% (7/73) of the genes were
predicted to be AD genes in all 10 models, whereas CHRNB1
was predicted in 7 of the 10 models.
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Figure 2. Random forest classifier performance (over 10 independent training runs) on the task of predicting whether Parkinson disease genes are also
Alzheimer disease genes based on patterns of graph connectivity in the Alzheimer’s Knowledge Base’s heterogeneous knowledge graph. Across all
metrics, a score of 1.00 represents the best possible performance. AUCPR: area under the precision-recall curve; AUROC: area under the receiver
operating characteristic curve.

Table 3. Parkinson disease genes predicted by a graph-augmented random forest model to also be associated with Alzheimer disease.

Notes (from the Entrez Gene summary)Gene nameGene symbol

Modulates endocytosis, ribosomal translation, and mitochondrial function; aberrations are linked
to diverse neurodegenerative diseases, diabetes, and obesity

Ataxin-2ATXN2

Beta subunit of muscle acetylcholine receptor involved in transmitting signals at neuromuscular
junction

Cholinergic receptor nico-
tinic β1 subunit

CHRNB1

Dynactin is a macromolecular complex involved in many cellular functions, including the forma-
tion of neuronal pathways

Dynactin subunit 1DCTN1

Membrane-associated tyrosine kinase involved in control of cell growth; highly expressed in
brain tissue

FYN proto-oncogene, Src
tyrosine kinase family

FYN

Voltage-gated potassium channel–interacting protein that is critical to neuronal excitabilityPotassium voltage-gated
channel interacting protein
3

KCNIP3

Drug Repurposing via Graph Data Science
As a second use case, we considered the task of repurposing
existing drugs—currently used to treat other diseases—based
on patterns in the knowledge graph that suggest that they may
also treat AD. To do this, we trained 5 state-of-the-art
knowledge graph completion methods (TransE, RotatE,
DistMult, ComplEx, and ConvE) [51] on AlzKB and selected
the highest-performing one to predict links between drugs and

AD. Additional details about the differences between these
methods are provided in Multimedia Appendix 1.

The performance of the 5 different knowledge graph completion
models is shown in Table 4. Among them, RotatE performed
best, with the highest MRR and hits@k values. Therefore, we
used RotateE to make predictions on the test set to obtain
missing head entities with the template ([drug],
DRUG_TREATS_DISEASE, AD). The top 10 predicted drugs
are listed in Table 5 along with their current approved use and
relevant clinical trial status pertaining to AD efficacy. Of the
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top 10 predictions, 3 (30%) have been investigated in clinical
trials to treat symptoms of AD. To further explore these
predictions, we generated visualizations of a minimum spanning
tree linking the 10 drugs to AD in AlzKB’s knowledge graph,
as shown in Figure 3. The visualization shows that the shortest
paths between the drugs and AD are mediated by a small set of

AD-associated genes, each of which is associated with one or
more of the proposed drugs. The visualization is suggestive of
interpretable biological mechanisms through which the drugs
could act on AD etiology and provides hypotheses to further
explore their validity.

Table 4. Ranking-based evaluation metrics of 5 embedding-based link prediction models on the Alzheimer’s Knowledge Base knowledge graph.
Metrics are derived from the likelihood of existing (known) links being predicted by the models. Higher scores indicate better performance.

MRRaHits@10Hits@3Hits@1Model name

0.2020.3580.2200.126 bRotatE

0.0970.1980.0970.046TransE

0.0610.1260.0560.027DistMult

0.1360.2630.1420.074ComplEx

0.0060.0130.0050.002ConvE

aMRR: mean reciprocal rank.
bItalicized values indicate maximum scores within a given column.

Table 5. Drug repurposing predictions made by the best-performing topological link prediction model (RotatE). Also shown are current approved
indications and (if available) clinical trials investigating the efficacy of the drug for treating Alzheimer disease (AD).

AD-related clinical trialsApproved indicationsDrug name

—aMigraines and cluster headachesSumatriptan

NCT00018278 (completed)Nicotine withdrawal symptomsNicotine

—Tourette disorderPimozide

NCT00034762 (completed)Schizophrenia, bipolar mania, and psychosisRisperidone

—Osteoarthritis and rheumatoid arthritisFlurbiprofen

NCT00086138 (completed); NCT00009191
(completed)

Depressive disorder and social anxiety disorderSertraline

—SchizophreniaClozapine

—ER+b breast cancerTamoxifen

—Recurrent hemodynamically unstable ventricular tachycardia and recurrent
ventricular fibrillation

Amiodarone

—Nausea, vomiting, preoperative anxiety, schizophrenia, bipolar disorder,
and severe behavioral problems in children

Chlorpromazine

aNo known AD-related clinical trials for the given drug.
bER+: estrogen-receptor positive.
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Figure 3. Spanning tree linking the 10 highest-scoring Alzheimer disease (AD) drug predictions (listed in Table 5) to AD. Blue nodes are drugs, pink
nodes are genes, and the orange node is AD. Genes on the shortest path between a drug and AD can be considered putative mechanistic explanations
for how the drug may act on AD etiology.

Discussion

Principal Findings
AlzKB is a freely available resource for the biomedical research
community, with the primary goal of expanding the repertoire
of therapies for AD via drug repurposing. In the previous
sections, we described the current contents of AlzKB, the
process of constructing it, and 2 specific data-driven use cases
that illustrate how it can be applied to drug repurposing tasks.
These use cases consisted of predicting the shared genetic
architecture of AD and PD (potentially allowing for PD therapies
to be repurposed for AD) and directly proposing drugs to
repurpose for treating AD by predicting new links between drug
and disease nodes in the knowledge graph. In both cases, the
results are both biologically plausible and supported by
quantitative metrics, yielding new hypotheses that merit
experimental validation. AlzKB is a flexible resource that is
not limited to these analyses, and we encourage other research
teams to use it for different and complementary knowledge
discovery tasks.

The Role of AlzKB in Biomedical Knowledge Discovery
AD and other neurodegenerative diseases present one of the
greatest challenges in modern biomedicine. AD is by and large
a disease of old age, and as improvements to health care
continue to increase the overall global life expectancy, we can

expect the number of people with various forms of dementia to
also increase. As the etiology and pathophysiology of AD are
highly multifactorial, there is likely no single “cure” for the
disease. Instead, researchers and public health officials have
shifted much of their focus toward finding therapies that reduce
risk, slow the progression of the disease, or reverse neuronal
damage. In addition, as there are various subtypes of AD with
underlying mechanisms, any therapy might be effective for only
some patients with AD. Therefore, an essential step for reducing
global disease burden is to propose many new therapeutic agents
that target various aspects of AD pathology. This is precisely
the motivating use case for AlzKB. As we have demonstrated,
AlzKB provides a rich representation of existing knowledge
about AD and the biological context in which it acts. The 2
ML-based use cases we presented previously use real-world
end points to demonstrate that the knowledge captured in AlzKB
is meaningful and representative of the biological processes
underlying the disease. AlzKB stands to become a major
resource in the AD research community, where pattern analysis
and integration with observational data can be used to propose
a diverse array of new therapeutic hypotheses along with
interpretable mechanistic explanations of how those therapies
may act in the human body.

Building the initial release of AlzKB was a highly
interdisciplinary effort involving contributions from experts in
translational bioinformatics, data science, and clinical
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informatics as well as medical scientists. Although each of these
domains was essential in delivering a knowledge base that
reflects important biomedical patterns describing AD etiology
and treatment, a key need during the design and implementation
phases was data literacy. To support future work in this and
related areas, we encourage the inclusion of informatics and
data analysis techniques in all types of biomedical curricula.
Beyond AlzKB, our approach for building the knowledge graph
is generalizable to practically any domain and depends on (1)
defining an ontology using expert knowledge that formally
describes the domain of interest and (2) identifying source
databases that provide the entities and relationships described
in the ontology. We are directly involved in the ongoing
development of other knowledge bases using this same
approach, including ComptoxAI—a knowledge base that
supports AI research in toxicology [64]. As both knowledge
bases share many of the same “core” entities (genes, diseases,
pathways, and anatomical structures), the knowledge graphs
are already semantically harmonized and ready for integration
in larger, cross-disciplinary biomedical knowledge applications.

Discovering Putative Therapies Through Graph Data
Science
Of the PD genes predicted to also be AD genes (see the
Proposing New Therapeutic Targets for AD section; Table 3),
some are involved in neuronal signaling and structure, and some
are known to be involved in a wide range of neurological
disorders. FYN has seen recent attention and investigation into
its possible link to AD due to its broad expression in brain tissue
and known interactions with tau proteins [65,66]. Among the
other identified genes, one (CHRNB1) is known to be involved
in acetylcholine signaling [67,68], and another (KCNIP3) codes
a protein that interacts with presenilin, and mutations in
presenilin are causal for hereditary AD [69,70]. Some of these
gene hits (ATXN2 and DCTN1) have limited or no current
research directly linking them to AD but are biologically
plausible. As such, they may represent novel therapeutic targets
or targets for further research and investigation [71]. For
example, DCTN1 encodes the dynactin-1 protein, and deficits
in dynactin are connected to several neurodegenerative diseases;
however, there is limited research linking this gene to AD
[72,73].

Among the drug repurposing predictions (see the Drug
Repurposing via Graph Data Science section; Table 5) are some
agents that have previously been proposed for the treatment of
AD (risperidone and sertraline) or for symptoms associated with
AD (nicotine). Sumatriptan has been the subject of several
studies focused on AD [74] and is connected to a strong
comorbidity of migraine headaches and dementia in women
[75]. Pimozide has been shown to reduce the aggregation of tau
protein in mice [76] and is linked to AD in a number of unrelated
in silico models [77]. The inclusion of nicotine is also
noteworthy as it has seen recent interest among AD researchers
and is the subject of an ongoing clinical trial to improve memory
[78]. Other drugs listed in Table 5 have not yet been identified
as AD treatments and represent novel repurposing candidates.
Each can be considered a testable hypothesis meriting further
investigation, giving credence to the increased detective power
of AlzKB’s knowledge graph approach over existing AD data

resources. It should be noted that this approach can only propose
new indications for existing drugs and is based on existing
knowledge and derived from known biological associations
with those drugs. Other approaches (including emerging
techniques in graph ML) could be used to propose entirely new
drugs that could treat AD.

Future Directions With AlzKB
AlzKB is a growing resource, and we have plans for adding
new features and data types that are in various stages of
implementation. As a central hypothesis of AD pathogenesis
revolves around the atypical accumulation of proteins within
and around brain cells, an important step will be to adequately
distinguish and differentiate genes from the proteins that those
genes code for. Existing data resources available for inclusion
in AlzKB largely fail to make this distinction in a way that is
accepted by the scientific community, so we are currently
evaluating options to use either postprocessing of existing
knowledge sources or synthesis of new knowledge to achieve
a good representation of genes, proteins, and functional or
structural variants that are key to understanding AD.

Current ML models often do not generalize well to
heterogeneous graphs such as the one that constitutes AlzKB’s
knowledge graph. This is largely because traditional models
cannot use the network structure and heterogeneous nature of
different entity types. Several promising algorithms can be used
for prediction on heterogeneous graphs—including GraphSAGE
[79] and metapath2vec [80]—but most fail to scale effectively
when the number of node or edge types increases. As any
effective therapy must be accompanied by a mechanistic
understanding of how it functions, we also need to ensure that
new heterogeneous graph ML models are explainable. With
this in mind, we are using AlzKB as a motivating resource for
designing new, cutting-edge algorithms that produce
interpretable predictions from highly heterogeneous knowledge
graphs. Furthermore, the increasing popularity of large language
models (LLMs; such as GPT-4) presents a wealth of
opportunities for incorporating knowledge graphs such as AlzKB
into diverse AI applications [81]. One application we are
considering is using AlzKB to provide LLMs with formalized
knowledge about AD that allows them to more effectively
produce informative outputs about AD etiology. Currently,
LLMs can perform poorly on technically complex or poorly
understood domains due to a scarcity of relevant content in their
training corpora, and augmenting their performance using
domain-specific knowledge graphs is an emerging strategy for
fixing that issue. As we do so, these will be released alongside
AlzKB with educational resources that facilitate ease of use and
adoptability by various stakeholders.

Knowledge graphs—including AlzKB—come with several
important limitations that will be crucial to address in coming
years. One of these is the subjective nature of determining what
does and does not constitute “knowledge,” implying broad
acceptance by the scientific community (as opposed to “data,”
which consist of individual observations). Currently, we use
expert domain knowledge and careful screening of source
databases to accomplish this, but with the advent of broadly
accessible generative AI tools, there may be emerging strategies
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that minimize sources of human bias [82]. Furthermore, new
predictions made using knowledge graphs still necessitate costly
and time-consuming experimental or observational follow-up
studies to validate those predictions. This is due in part to the
absence of negative samples for training predictive models.
While the presence of an edge between 2 nodes in a knowledge
graph is interpreted as a “positive sample” for model training,
the absence of an edge simply means that we do not know
whether a relationship does or does not exist, and therefore, it
may not in fact be a negative sample. New methods, including
self-supervised contrastive learning, show promise in alleviating
this issue [83], but further work is needed to determine whether
these generalize well to AlzKB and similar highly heterogeneous
biomedical knowledge graphs. Nonetheless, these are active
areas of research in the AI, informatics, and computer science
communities, and in spite of them, our results are still robust
enough to provide compelling evidence demonstrating AlzKB’s
scientific value.

Ultimately, we aim to provide AlzKB as a robust resource that
helps unravel the etiology of AD. It is already a large,
high-quality knowledge base from which graph-based AI or
ML approaches can be developed for drug repurposing and drug
discovery. As we and the rest of the biomedical research
community make these discoveries in the coming years, they
will be included and publicized on the AlzKB website as a
public resource to drive innovation and scientific progress.

Obtaining AlzKB for Local Use and Extending the
Knowledge Graph
As it is a public and open-source resource for scientific
discovery, we provide AlzKB through a variety of interfaces
with distinct advantages for different use cases and user types.
Casual users who wish to browse the knowledge base or perform
simple analyses can do so directly through the Neo4j browser
interface [24]. However, for more advanced use cases (or when
computational needs exceed those available on the public
version of the knowledge base), AlzKB can be either

downloaded and populated locally into a Neo4j installation or
built from the original source data files via the tools included
on the AlzKB GitHub repository [25]. The latter of these options
also allows users to extend the knowledge base to include
additional data sources, entity types, or relationships beyond
those provided in the official knowledge base distribution. We
also encourage users who make modifications to the knowledge
base to submit their changes for review to be included in the
main code distribution. Instructions for how to contribute to
AlzKB are also available on the GitHub repository.

As the data sources included in AlzKB are all, themselves, from
open-source databases, we urge users to ensure that any new
data sources they merge into AlzKB similarly comply with
open-source standards. In brief, AlzKB can only be maintained
under the most restrictive license terms of its included
third-party sources, so restrictive license terms in a database
being considered decrease that database’s suitability for
inclusion. We hope for AlzKB to be recognized as a community
effort for aggregating and democratizing the discovery of new
AD therapeutics and, therefore, encourage public discussion of
new methods and data sources to be included.

Conclusions
In this work, we introduced AlzKB as a free, publicly available
toolkit and data resource for novel discoveries in AD research,
with a particular focus on therapeutic approaches to treating
AD. AlzKB is both new and continually growing, and we aim
to cultivate a community of researchers to collaboratively
increase the impact, speed, and throughput of AD research,
along with rapid dissemination to health care, academia, and
the pharmaceutical industry. In the future, we will develop new
AI and data science methods to continually extract knowledge
from AlzKB, but in this study, we already demonstrate through
graph data science that AlzKB can both replicate existing AD
knowledge and generate entirely new, testable hypotheses to
drive the future of drug repurposing and drug discovery.
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