JOURNAL OF MEDICAL INTERNET RESEARCH Wolff et a

Original Paper

Characteristic Changes of the Stance-Phase Plantar Pressure
Curve When Walking Uphill and Downhill: Cross-Sectional Study

Christian Wolff!, MSc; Patrick Steinheimer?, MSc; Elke Warmerdam®, M Sc, PhD; Tim Dahmen', MSc, PhD; Philipp
Slusallek!, MSc, PhD; Christian Schlinkmann®, MSc; Fei Chen', MSc; Marcel Orth?, MD, PhD; Tim Pohlemann?,
MD, PhD; Bergita Ganse**, MD, PhD

1German Research Center for Artificial Intelligence (DFKI), Saarbriicken, Germany

2Department of Trauma, Hand and Reconstructive Surgery, Departments and Institutes of Surgery, Saarland University, Homburg/Saar, Germany
3Innovative Implant Development (Fracture Healing), Departments and Institutes of Surgery, Saarland University, Homburg/Saar, Germany

Corresponding Author:

Bergita Ganse, MD, PhD

Innovative Implant Development (Fracture Healing)
Departments and I nstitutes of Surgery
Saarland University

Kirrberger Straf3e 1

Building 57

Homburg/Saar, 66421

Germany

Phone: 49 684116 ext 31570

Email: bergita.ganse@uks.eu

Abstract

Background: Monitoring of gait patterns by insoles is popular to study behavior and activity in the daily life of people and
throughout the rehabilitation process of patients. Live dataanalyses may improve personalized prevention and treatment regimens,
as well as rehabilitation. The M-shaped plantar pressure curve during the stance phase is mainly defined by the loading and
unloading slope, 2 maxima, 1 minimum, aswell asthe force during defined periods. When monitoring gait continuously, walking
uphill or downhill could affect this curve in characteristic ways.

Objective: For walking on aslope, typical changes in the stance phase curve measured by insoles were hypothesized.

Methods: Intotal, 40 healthy participants of both sexes were fitted with individually calibrated insoles with 16 pressure sensors
each and a recording frequency of 100 Hz. Participants walked on a treadmill at 4 km/h for 1 minute in each of the following
dopes. —20%, —15%, —10%, —5%, 0%, 5%, 10%, 15%, and 20%. Raw data were exported for analyses. A custom-devel oped
data platform was used for data processing and parameter calculation, including step detection, data transformation, and
normalization for time by natural cubic spline interpolation and force (proportion of body weight). To identify the time-axis
positions of the desired maxima and minimum among the available extremum candidates in each step, a Gaussian filter was
applied (0=3, kernel size 7). Inconclusive extremum candidates were further processed by screening for time plausibility, maximum
or minimum pooal filtering, and monotony. Several parameters that describe the curve trajectory were computed for each step.
The normal distribution of datawas tested by the Kolmogorov-Smirnov and Shapiro-Wilk tests.

Results: Datawere normally distributed. An analysis of variance with the gait parameters as dependent and slope as independent
variables revealed significant changes related to the slope for the following parameters of the stance phase curve: the mean force
during loading and unloading, the 2 maxima and the minimum, as well as the loading and unloading slope (all P<.001). A
simultaneous increase in the loading slope, the first maximum and the mean loading force combined with a decrease in the mean
unloading force, the second maximum, and the unloading slope is characteristic for downhill walking. The opposite represents
uphill walking. The minimum had its peak at horizontal walking and values dropped when walking uphill and downhill alike. It
is therefore not a suitable parameter to distinguish between uphill and downhill walking.

Conclusions:  While patient-related factors, such as anthropometrics, injury, or disease shape the stance phase curve on a
longer-term scale, walking on slopes leads to temporary and characteristic short-term changes in the curve trajectory.
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Introduction

Long-term monitoring of gait patterns and plantar-pressure
distributions viainsoles are increasingly popular waysto study
behavior and activity in the field and in the everyday lives of
people and patients, including healing, personalized prevention,
and treatment or disease progression [1-3]. In recent years, the
usability of instrumented insolesfor gait analyses hasincreased.
Several technical issues could beresolved, including calibration,
hysteresis and drift, durability, usability, limited energy supply
and battery life, data storage capacity, and the restriction to low
sample frequencies associated with higher error rates, that is,
when force peaksare missed [3-5]. Theusability of instrumented
insolesis currently still limited by difficulties in data analysis.
Advanced agorithms and tools are needed and currently
developed to be able to draw meaningful conclusionsfrom such
insole gait data[6,7]. When analyzing long-term field data and
developing smart health care innovations, automated data
annotation is desirable to determine and quantify the activities
a person has conducted. Ideally, the activity type can be
determined algorithmically from the plantar pressure dataalone.

Characteristic gait changes have been reported for walking on
slopes, such as changes in the contribution of the ankle joint to
leg work [8]. In addition, uphill walking on atreadmill increases
hip and knee flexion angles during the stance phase, as well as
the forward tilt of the thorax [9]. Furthermore, a decrease in
dorsiflexion was observed during downhill walking at initial
contact, in midstance, and during the second half of the swing
phase [9]. During uphill walking with increasing inclination,
more positive joint work was identified for the ankle and hip
joint, while negative joint work increased during downhill
walking [10]. Older individuals were shown to have a
disproportionate recruitment of hip muscles and smaller
increases in activity of the medial gastrocnemius muscle with
steeper uphill slopesthan younger adults, resulting in difficulty
walking on steep slopes[11].

The M-shaped curve of ground reaction forces or plantar
pressure during the stance phaseis mainly defined by the loading
and unloading dope, 2 maxima, 1 minimum, aswell astheforce
during defined periods[12]. When monitoring gait continuously
viainsoles, walking uphill or downhill on a slope could affect
the gait cycle curve in characteristic ways. If these typical
changes were known, one could correct for such confounders
when analyzing insole data. We hypothesized that walking on
aslope generatestypical changesin the plantar pressure stance
phase curve that vary between uphill and downhill walking.

Methods

Study Design
This study is part of the project Smart Implants
2.0—Weight-bearing and Gait Observation for Early Monitoring

https://www.jmir.org/2024/1/e44948

of Fracture Healing and Individualized Therapy after Trauma,
funded by the Werner Siemens Foundation. It was registered
in the German Clinical Trials Register (DRKS00025108).

Ethical Consider ations

Ethical approval was obtained from the Institutional Review
Board of Saarland Medical Board (Arztekammer des Saarlandes,
30/21).

Data Collection

Inclusion criteria were the ability to walk on a treadmill, and
aged 18 years and older. Exclusion criteriawere aged under 18
years, use of walking aids, inability to give consent, pregnancy,
immobility, and previousinjury of thelower legsor pelvis. The
aim was to collect data from healthy volunteers.

The healthy participants of both sexes (none of them identified
as diverse) were fitted with individually calibrated OpenGO
insoles (Moticon GmbH) with 16 pressure sensorsin each insole
to be used in regular running shoes. Calibration to theindividual
body weight was conducted using the Moticon OpenGO app
by letting the participants walk and shift their body weight in
a standardized way. The insole size was selected to fit the
individual participant’s shoe size. Measurementswere conducted
with arecording frequency of 100 Hz in the record mode of the
device. Raw data were exported for analyses. The participants
walked on a treadmill at 4 km/h (Mercury, HP Cosmos) for 1
minute while insole data were collected with 3-minute breaks
for recovery. Recordings were obtained for slopes of —20%,
-15%, -10%, —5%, 0%, 5%, 10%, 15%, and 20%. The
participants were asked to walk for 1 minute straight, and
recording was only commenced when the walking was already
in progress to avoid bias by including altered steps upon gait
initiation.

Data Processing

The pressure readings of the force sensors in the insole device
yield a weighted sum as a total vertical ground reaction force
reading. To compute the force, every summand is weighted by
its sensor area and a respective scaling factor accounting for
the sensor’s surrounding area, as well as gaps between sensors
that depend on theinsole size. This processis conducted by the
Moticon software as an automated processing step before file
export. Insole data were exported as described previously
[13,14]. A custom-devel oped data platform was then used for
further processing and parameter calculation, in which step
detection was conducted as follows. The stance phases were
identified and extracted from the time series data by considering
any activity with consecutive force readings above 30 N. A
tolerance of up to 3 missing valueswasimplemented to account
for possible recording issues. Any activity with a duration of
less than 300 milliseconds or more than 2000 milliseconds was
discarded. Both theforce and time axeswere normalized. Force
readings were transformed from Newton to a proportion of the
body weight of the respective participant. Of note, as plantar
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pressure was measured instead of weight, due to acceleration,
valuesregularly exceeded the body weight for peak |oad-bearing
instances. Normalizing the time axis was more complex, asthe
lack of afixed cadenceresulted in varying step lengths and thus
differing numbers of true measurement points for each step.
Therefore, a natural cubic spline interpolation was conducted
on the original raw data. Based on the resulting curve for each
stance phase, 100 equidistant samples were taken, resulting in
an interpolated force measurement point for every 1% of the
overal stance phase length. This approach accounted for the
lower recording frequency and higher sensor noise inherent to
the insoles when compared with other gait measuring devices,
such as sensor-equipped treadmills or force plates. Parameters
that describethetrajectory of the stance phase curve are usually
based on or derived from the characteristic local extrema, that
is, the first and second force peak and the local minimum
in-between force peaks. These maxima and the minimum are
used as parameters themselves to describe the curve trajectory
[13]. Sensor jitter may lead to the existence of multiple
ambiguous candidates for the named extrema. As a solution to
this, a Gaussian filter was applied to the original raw datain a
repetition of the normalization process. The applied filtering
strategy (0=3, kernel size 7) was chosen to prioritize the
elimination of extrema ambiguity at the expense of signal
precision. Thiscan result in overcorrection in areaswith higher
signal volatility, mostly at the start and end of the stance phase.
Hence, to avoid loss of high-frequency detail, the filtered and
normalized curve was not used for parameter analysis, but only
to determine unambiguous time-axis positions (indices) for the
extremum candidates. These indices were then reapplied to the
nonfiltered, normalized data to identify the corresponding
plantar pressure measurement closest to the original raw data.
In case the use of the filtered data still led to inconclusive
extremum candidates, the following additional detection
strategieswere applied in the named order: (1) time plausibility:
extremum candidates occurring within thefirst or last 10 indices
(first/last 10% of overall time span) were eliminated; (2)
maximum or minimum-pool filtering: should multiple extremum
candidates occur within a pool size of 5 indices (equals to 5%
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of overall time span), the candidate with the highest or lowest
force value was chosen; (3) monotony-check: in case of multiple
remaining extremum candidates, candidates where the curve
did not display astrict monotonous decrease or increasein both
directions within 5 indices each were eliminated; and (4)
monotony grace: in case the monotony check had eliminated
too many candidates (less than 2 maximum candidates or less
than 1 minimum candidate remaining), the eliminated candidates
were reinstated in descending order of their highest achieved
monotony distance until the target number of candidates was
reached.

After applying these strategies, every stance activity that
remained with an irregular amount of unambiguous extremum
candidates was removed from the data set. In total, 585
load-bearing events were excluded as not fitting the strict
parameter definitions.

Parameters

For each participant, across the minute of walking all stance
phase curves were extracted. The parametersillustrated in Figure
1 were calculated for each stance phase and used to analyze
changes in the trajectory of the stance phase curve. To do so,
datafrom both feet were pooled. The curveis mainly described
by 2 maximaand a minimum in between the maxima, Fz2 (the
first maximum), Fz3 (the minimum), and Fz4 (the second
maximum). The mean force over the entire stance phase is
referred to as Fmeang,... The mean force between the start of
theloading phase and Fz2 is Fmean, 4. The mean force between
Fz2 and Fz4 is Fmean,,;4. The mean force between Fz4 and the
end of the unloading phase is Fmean, q.q- All these parameters
have the unit percent body weight. In addition, the loading and
unloading slope have the units percent body weight or percent
stance phase duration. The loading slope was computed as the
dope of the line defined by the start of the loading phase and
thefirst force reading equal to or higher than 80% of Fz2. The
unloading slope was cal culated as the slope of the line defined
by the first force reading in the unloading phase below 80% of
Fz4 and the end of the stance phase event.
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Figure 1. Depiction of the analyzed parameters of the stance phase. %BW: percent body weight; Fmean|qoy: the mean force between the start of
loading-phase and Fz2; Fmeany,iq: the mean force between Fz2 and Fz4; Fmeangance: the mean force over the entire stance phase; Fmeannjoag: the
mean force between Fz4 and the end of the unloading-phase; Fz2: the first maximum; Fz3: the minimum; Fz4: the second maximum.
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Statistical Analyses

Statistical testswere executed with SPSS Statistics (version 29;
IBM Corp). Significance was defined as P<.05. The normal
distribution of datawastested by the Kolmogorov-Smirnov and
Shapiro-Wilk tests. A linear regression analysis of variance was
conducted for each of the gait parameters as the dependent
variable, with the slope (-20% to 20%) as the independent
variable. Mean values and SD are reported. Linear regression
dopesarereported for comparability and to allow for correction,
even though for some of the parameters other but differing

regression types yielded higher R? values. The sample size of

Table 1. Participant characteristics.

100

40 was an estimate based on what is common in the field, and
taking into account the aim to measure a very diverse group of
volunteers. An a priori sample size calculation was not
conducted due to alack of comparable data.

Results

Measurements were taken from 40 healthy participants (19
women and 21 men) with an average age of 43.90 (SD 17.30,
range 18-87) years. Participant characteristics are summarized
in Table 1. Data were successfully recorded for all of the
participants and slope levels, resulting in a complete data set
(Multimedia Appendix 1).

Total (N=40) Women (n=19) Men (n=21)
Age (years), mean (SD) 43.90 (17.30) 39.05 (14.65) 48.29 (18.64)
Height (cm), mean (SD) 174.43 (11.24) 165.79 (6.05) 182.24 (8.85)
Weight (kg), mean (SD) 80.40 (26.85) 66.22 (16.15) 93.24 (28.40)
BMI (kg/m?), mean (SD) 23.04 (6.83) 20.15 (5.06) 25.65 (7.28)

Data were normally distributed. Figure 2 visualizes the
differences between the analyzed slope values on the stance
phase curve. Figure 3 shows the normalized changes in the
analyzed parameterswith the slope of thetreadmill. Theanalysis
of variance revealed significant changes with the slope for
Fmean, o, FMean ,0aas FZ2, FZ3, Fz4, loading and unloading
slope (all P<.001). There was no significant correlation of the
slope with Fmeang,.. (P=.98) and Fmean,,4 (P=.13). Other
than the other parameters with significant changes related to
dope, Fz3 had its peak at horizontal walking and valuesdropped
when walking uphill and downhill aike. Thus, a simultaneous

https://www.jmir.org/2024/1/e44948
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and short-termincreasein loading slope and Fmean,,y combined
with a decrease in Fmean 0. FZ2, Fz4, and the unloading
dope indicates downhill walking, while the opposite indicates
uphill walking. Fz3 is not a suitable parameter to distinguish
between uphill and downhill walking, as its value decreases
both when walking uphill aswell as downhill. Mean valuesand
the SD of the analyzed parametersfor each treadmill slopelevel
in absolute values are displayed in Table 2. Table 3 indicates

the linear regression slopes and R>-val ues for each of the curves
shown in Figure 3.
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Figure2. (A) The mean tragjectories of the stance phase curvefor each of the analyzed slope levels. (B) The mean trajectories and the 95% ClI for —20%,
0%, and 20%. %BW: percent body weight.
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Figure3. For each slopelevel, the mean value of each parameter isshown in the percent of horizontal walking (all values averaged over all participants).
Fmean,y44: the mean force between the start of loading-phase and Fz2; Fmeanyy;4: the mean force between Fz2 and Fz4; Fmeangance: the mean force

over the entire stance phase; Fmean,oag: the mean force between Fz4 and the end of the unloading-phase; Fz2: the first maximum; Fz3: the minimum;

Fz4: the second maximum.
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Table 2. Mean vaues and SD of the analyzed parameters for each slope level (absolute values).
-20% -15% -10% -5% 0% 5% 10% 15% 20%
Fmeangance™ (% body 0.88(0.21) 0.90(0.21) 0.90(0.21) 0.91(0.21) 0.90(0.21) 0.90(0.21) 0.90(0.21) 0.89(0.20) 0.89(0.20)
weight)
Fmean, adb (% body 1.06 (0.30) 1.04(0.28) 0.98(0.26) 0.91(0.23) 0.86(0.21) 0.81(0.20) 0.80(0.20) 0.78(0.19) 0.77(0.18)
weight)
Fmeanyy© (% body 0.97(0.24) 0.99(0.23) 0.99(0.23) 1.01(0.23) 1.03(0.25) 1.04(0.25 1.03(0.25) 1.02(0.25) 1.01(0.24)
weight)
Fmeanunloadd (% body 0.55(0.14) 0.61(0.14) 0.65(0.16) 0.71(0.16) 0.72(0.17) 0.76(0.18) 0.77(0.18) 0.78(0.18) 0.79(0.18)
weight)
Fz2° (% body weight) 1.50(0.39) 1.48(0.38) 1.39(0.36) 1.29(0.33) 1.20(0.30) 1.14(0.29) 1.12(0.29) 1.12(0.29) 1.11(0.29)
Fz3f (% body weight) 0.70 (0.20) 0.74(0.19) 0.77(0.18) 0.83(0.19) 0.88(0.22) 0.88(0.21) 0.86(0.21) 0.84(0.22) 0.81(0.19)
Fz49 (% body weight) 0.88(0.24) 0.96 (0.24) 1.02(0.26) 1.11(0.28) 1.16(0.32) 1.22(0.33) 1.25(0.33) 1.26(0.34) 1.29(0.35)
Loading slope (% body 11.00(458) 1035(401) 9.23(3.58) 7.79(2.99) 7.10(291) 592(2.11) 5.63(2.07) 543(1.85 5.71(2.07)
weight/% stance phase du-
ration)
Unloading slope (% body -5.30 -5.89 -6.26 -6.91 -7.31 -7.41 -7.65 -7.75 -8.02
weight/% stance phasedu- (1.66) (1.87) (2.10) (2.34) (2.71) (2.64) (2.79) (2.92) (3.02)

ration)

3Fmeangnce: the mean force over the entire stance phase.

meean|oad: the mean force between the start of the loading phase and Fz2.

“Fmeanyyig: the mean force between Fz2 and Fz4.

dFmeanum oad: the mean force between Fz4 and the end of the unloading phase.

€Fz2: the first maximum.
fE23: the minimum.
9Fz4: the second maximum.
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Table 3. Linear regression slopes and R2 values for each of the curves shown in Figure 3.

Linear regression slope (%) R?
Fmeangance: (% body weight) -0.002 0.001
Fmean oadb (% body weight) 0.930 0.943
Fmeany;iq° (% body weight) 0.116 0.527
Fmean nicadt (% body weight) 0.807 0.909
Fz2° (% body weight) -0.926 0.907
Fz3 (% body weight) 0.367 0.483
Fz49 (% body weight) 0.894 0.952
Loading slope (% body weight/% stance phase duration) -2.109 0.910
Unloading slope (% body weight/% stance phase duration) 0.900 0.935

3Fmeangance: the mean force over the entire stance phase.
meean|oad: the mean force between the start of the loading phase and Fz2.

®Fmeanpq: the mean force between Fz2 and Fz4.

dFmeanumoad: the mean force between Fz4 and the end of the unloading phase.

€Fz2: the first maximum.
fE23: the minimum.
9Fz4: the second maximum.

Discussion

Principal Results

This study identified characteristic changes when walking with
an uphill or downhill slope in insole plantar pressure data of
healthy participants. The most pronounced changes with
treadmill slope were found in the loading slope of the curve. A
typical combination of changes in several parameters was
reported that defines uphill and downhill walking and may be
used for annotation and correction when analyzing such data.
These changesin thetrajectory of theforce curve with different
surface slopes relative to the force vector of Earth’s gravity are
related to changes in plantar load distribution. When walking
downhill, Fz2 wasfound to be higher compared to when walking
uphill, which is caused by the more pronounced force transfer
through the heel of the foot, followed by a lower second
maximum due to the even lower surface at push-off.

While patient-related factors, such as curve characteristics
related to body size, muscle power, degenerative disease, etc,
would remain constant throughout an insole measurement,
fatigue-related changes [15] may increasingly appear and then
stay toward the later stages of a recording of a walking bout.
Additionally, age, body height, body weight, BMI, and handgrip
strength were shown to cause characteristic changes in the
plantar pressureforce curve, that would usually only change on
along-term scale[16]. In contrast, as shown in the present data
set, walking on slopes leads to temporary and characteristic
changes in specific properties of the stance-phase curve.
Changes over time in the identified parameters should thus be
considered and correctly interpreted when studying long-term
field gait data collected via insoles. To analyze the healing
process, that is, after an injury, slow changes in parameters

https://www.jmir.org/2024/1/e44948

would be expected, and a trend toward what is considered
normal over several weeks [17]. Short-term changes over
minutes or hours would thus not be explainable by the healing
progress and should have a different cause. In addition, the
asymmetry between thelegs should slowly decrease throughout
healing [18]. When walking on a slope, asymmetry could also
be affected, if the injury causes increasing problems such as
pain when walking uphill or downhill. It isa so recommendable
to identify the characteristics of walking with walking aids,
such as crutches, to be ableto classify the nature of the observed
changes and the treatment stage better.

Limitations

Effects of walking speed were not analyzed in this study, even
though it isknown that lower extremity joint loading is affected
by varying step length and cadence during graded uphill and
downhill walking [19]. These parameters, however, do not seem
to be necessary to successfully annotate gait data obtained by
insoles. For participant or patient convenience, it would be
desirable if insoles did not need to be combined with further
devices or wearables. The present data suggest that at least the
identification of walking on slopes does not require further
sensors. It is aso known that kinematic, kinetic, and
electromyographic parameters differ between treadmill walking
and overground gait, while spatiotemporal, kinematic, kinetic,
electromyographic, and energy consumption outcome measures
arelargely comparable[20]. Another limitation of thisstudy is
that the parameters analyzed here can only be used when a
regular gait curveispresent. If thisisnot the case, other methods
need to be applied, that is, machine learning for step detection
and segmentation or the analysis of further parameters, possibly
slopes and averages, or differences between individual sensors
[21]. Differences between the 16 sensors embedded in each
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insole were not analyzed in this study and could be assessed in
the future, for example, to distinguish between ground types
(gravel, sand, etc). Another limitation is that the present
characteristic changesthat were assessed in healthy participants
may differ for patients with gait disorders, depending on their
disease or injury type. It will therefore be important to collect
longitudinal data on different slopes from patients with defined
diseases and injuries throughout the healing process or
throughout different disease stages. These studies would serve
to identify if the reported findings are valid also for patients,
and for which patient groups thisistrue.

Use of Wearablesin Patients

The insole technology and present data may be valuable in
real-world settings when investigating changes in mechanical
properties during walking, that is, in occupational health
research, sport and exercise science, for urban planning, and to
plan inclusive architecture. For instance, the global average
slope of urban areas is about 3.70° [22]. Wearables such as
pressure insoles are increasingly used to study gait and
movement, as well as for fall detection, fall classification, and
fall risk assessment inthedaily life of patients, and furthermore
for lifestyle and health monitoring [1,3,23-27]. Long-term
monitoring, especially if combined with additional sensors, may
produce large amounts of data that require advanced strategies
for analyses. Apart from regression statistics, among the options
isthe use of machinelearning algorithmstrained with annotated
datafor pattern recognition [24,26]. For longer-term monitoring
of patients, it would be desirableif such algorithmsweretrained
toidentify variouskey activities of daily lifethat might indicate
the level of healing progress. For example, when a patient with
atibial fracture is capable of cycling again, this is likely an
indication for advancesin the healing process. It would a so be
of interest to identify risky behavior, possibly leading to
excessiveforces, and to warn the patient by giving, for example,
an audible or haptic warning signal. To guarantee meaningful
data interpretation, machine learning may be combined with
conventional regression-based analyses, such as the ones
proposed in this paper to best tackle data complexity.
Furthermore, prediction algorithms could be implemented for
fals and diseases that enable more refined individual
recommendations. Ideally, such interventions would be based

Wolff et &

on live data analyses. Limitations in the computing power of
small wearable devices can increasingly be mitigated by both
algorithmic optimization techniques in machine learning, such
as dimensionality reduction, reservoir computing, and network
pruning, as well as hardware innovations [27,28]. In the near
future, such advanceswill likely allow real-time feedback based
on data from various sources combined [29,30]. Alternatively,
extracting decision-making systems (symbolic artificial
intelligence), such as threshold-based methods, might offer an
immediate route to real-time feedback.

Sensorsin Orthosesand I mplants

Apart from insoles, very similar data might be collected from
mechanical sensorsembedded in orthoses[31] or implants[32].
Potentially, walking on a slope in these recordings changes the
data in similar ways as described here. It would be highly
desirableif patients did not need to use separate wearables such
as insoles anymore, but if orthoses and implants had sensors
embedded, not only to monitor healing progress but also to
identify healing problems or complications and the need for
surgical revision [33]. If similar load data could be collected
by sensorsin artificial hip or kneejoints, or potentially even by
plates or nails that stabilize bone fractures, recovery regimen
could be monitored continuously and advice given ontime[34].
Alarms could go off if forces exceeded certain thresholds or if
live pattern analyses revealed unfavorable patterns known to
be associated with exceeding forces or problems. As these
developments seem to have a high potential with regard to
rehabilitation and postoperative treatment, data analyses of
insole data should be further studied and ideally, details such
as agorithms and characteristics should be published to enable
for the further development and widespread application of the
named interventions.

Conclusions

Characteristic changesin the plantar-pressure stance phase curve
were identified, which reflect uphill and downhill walking.
Automated annotation and continuous analyses of gait datavia
wearables could enable improved rehabilitation and feedback
systems for prevention and treatment. A combination of
traditional regression statistics embedded in heuristics combined
with artificial intelligence methods may yield the best results.
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