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Abstract

Background: Diabetic kidney disease (DKD) and diabetic retinopathy (DR) are major diabetic microvascular complications,
contributing significantly to morbidity, disability, and mortality worldwide. The kidney and the eye, having similar microvascular
structures and physiological and pathogenic features, may experience similar metabolic changes in diabetes.

Objective: This study aimed to use machine learning (ML) methods integrated with metabolic data to identify biomarkers
associated with DKD and DR in a multiethnic Asian population with diabetes, as well as to improve the performance of DKD
and DR detection models beyond traditional risk factors.

Methods: We used ML algorithms (logistic regression [LR] with Least Absolute Shrinkage and Selection Operator and
gradient-boosting decision tree) to analyze 2772 adults with diabetes from the Singapore Epidemiology of Eye Diseases study,
a population-based cross-sectional study conducted in Singapore (2004-2011). From 220 circulating metabolites and 19 risk
factors, we selected the most important variables associated with DKD (defined as an estimated glomerular filtration rate <60

mL/min/1.73 m2) and DR (defined as an Early Treatment Diabetic Retinopathy Study severity level ≥20). DKD and DR detection
models were developed based on the variable selection results and externally validated on a sample of 5843 participants with
diabetes from the UK biobank (2007-2010). Machine-learned model performance (area under the receiver operating characteristic
curve [AUC] with 95% CI, sensitivity, and specificity) was compared to that of traditional LR adjusted for age, sex, diabetes
duration, hemoglobin A1c, systolic blood pressure, and BMI.

Results: Singapore Epidemiology of Eye Diseases participants had a median age of 61.7 (IQR 53.5-69.4) years, with 49.1%
(1361/2772) being women, 20.2% (555/2753) having DKD, and 25.4% (685/2693) having DR. UK biobank participants had a
median age of 61.0 (IQR 55.0-65.0) years, with 35.8% (2090/5843) being women, 6.7% (374/5570) having DKD, and 6.1%
(355/5843) having DR. The ML algorithms identified diabetes duration, insulin usage, age, and tyrosine as the most important
factors of both DKD and DR. DKD was additionally associated with cardiovascular disease history, antihypertensive medication
use, and 3 metabolites (lactate, citrate, and cholesterol esters to total lipids ratio in intermediate-density lipoprotein), while DR
was additionally associated with hemoglobin A1c, blood glucose, pulse pressure, and alanine. Machine-learned models for DKD
and DR detection outperformed traditional LR models in both internal (AUC 0.838 vs 0.743 for DKD and 0.790 vs 0.764 for
DR) and external validation (AUC 0.791 vs 0.691 for DKD and 0.778 vs 0.760 for DR).
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Conclusions: This study highlighted diabetes duration, insulin usage, age, and circulating tyrosine as important factors in
detecting DKD and DR. The integration of ML with biomedical big data enables biomarker discovery and improves disease
detection beyond traditional risk factors.

(J Med Internet Res 2024;26:e41065) doi: 10.2196/41065
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Introduction

Diabetes is a complex metabolic disorder and a major global
health problem of our time. In 2021, it affected 536.6 million
adults worldwide, with a projected surge to 783.2 million by
2045 [1]. With the rapidly growing population with diabetes
and the greater longevity over time, the burden of associated
complications is expected to increase in parallel [2]. Among
these, diabetic kidney disease (DKD) was estimated to develop
in around 40% of the population with diabetes [3], while diabetic
retinopathy (DR) would manifest in approximately 35% [4].
Left undetected and untreated, these microvascular
complications could substantially elevate the risk of
cardiovascular disease (CVD), end-stage renal disease, and
permanent vision loss, resulting in compromised quality of life
and shortened life expectancy [2,5,6]. Yet, timely and accurate
diagnosis of DKD and DR remains a challenge because of their
asymptomatic progression in the early stages [7]. Although
factors such as age, sex, diabetes duration, hemoglobin A1c

(HbA1c) %, systolic blood pressure (SBP), and BMI have been
identified as the risk contributors for DKD and DR, they offer
only partial insights into the variability of risk among
individuals.

To enable risk prediction and exploration of the underlying
metabolic pathways, metabolomics has been increasingly used
for biomarker discovery in diabetes and its complications [7-10].
Abnormalities in amino acids and lipids metabolism have been
linked to both DKD and DR [7]. Given the similar microvascular
structure, physiology, and pathogenic features of the kidney
and the eye, these common metabolic traits may indicate
biochemical pathways shared by the 2 complications, or both
being manifestations of a latent systematic condition [11].
However, to the best of our knowledge, investigations into the
commonalities and differences between DKD and DR in terms
of their metabolic basis have been somewhat scarce [7,12].
Moreover, prior research was often limited by inadequate sample
sizes, lack of replication, and restricted data analysis methods
[13].

In this study, we aimed to fill these gaps by analyzing 220
circulating metabolites and 19 established risk factors as
predictors of prevalent DKD and DR in a retrospective Asian
adult population with diabetes. We used 2 machine learning
(ML) algorithms, logistic regression (LR) with Least Absolute
Shrinkage and Selection Operator (LASSO [14]), and a
gradient-boosting decision tree (GBDT [15]). Compared with
traditional statistical methods, these ML algorithms excel in
handling high-dimensional data with complex relationships and
can quantify the relative contribution of individual variables

through variable importance scores. Based on these scores, we
selected the top variables to develop ML models for DKD and
DR detection and validated them externally in UK biobank
(UKBB [16]) data. Additionally, we developed reference models
using LR adjusted for traditional risk factors. All models were
evaluated using the area under the receiver operating
characteristic curve (AUC) with 95% CI, sensitivity, and
specificity. Finally, we discussed the potential role of the
selected metabolites in DKD and DR with reference to previous
studies.

Methods

Data Sets
We derived this study’s data from the Singapore Epidemiology
of Eye Diseases study (SEED [17]), a population-based
cross-sectional study conducted in Singapore from 2004 to 2011.
Detailed methodology has been reported elsewhere [17]. In
brief, we recruited 10,033 adults aged 40-80 years using
age-stratified random sampling. Participants completed
interviewer-administered questionnaires, underwent ocular
examinations, and provided samples for biochemical laboratory
tests. The cohort included 3280 Malay (2004-2006, response
rate 78.7%), 3400 Indian (2007-2009, response rate 75.6%),
and 3353 Chinese (2009-2011, response rate 72.8%) individuals.

For external validation, we used data from UKBB, an
open-access resource of prospective data set collected in the
UK from 2007 to 2010, with over 500,000 participants recruited
between the ages of 40 to 69 [16].

Ethical Considerations
Both SEED and UKBB studies were conducted per the
Declaration of Helsinki. Ethical approval was obtained from
the SingHealth Institutional Review Board for SEED
(2018/2717, 2018/2921, 2018/2006, 2018/2594, 2018/2570,
2015/2279, and 2012/487/A) and from North West Multi-centre
Research Ethics Committee for UKBB (21/NW/0157). Written
informed consent was provided by all participants during the
primary data collection. Due to the retrospective nature of our
study and the use of deidentified health information, the
SingHealth Institutional Review Board approved this study
without requiring additional patient consent.

Definition of Outcome and Variables
In SEED, diabetes was defined as meeting any of the following
criteria: HbA1c% >6.5, random blood glucose >11.1 mmol/L,
self-reported physician-diagnosed diabetes, or the use of
antidiabetic medication including insulin. In UKBB, we applied
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the same definition but additionally included individuals with
DR if the aforementioned variables were missing.

DKD was defined as an estimated glomerular filtration rate

(eGFR) <60 mL/min/1.73m2 in people with diabetes. The eGFR
values were calculated from blood creatinine concentrations
using the chronic kidney disease epidemiology collaboration
equation [18].

For SEED participants with diabetes, DR severity in each eye
was graded from fundus photographs by certified ophthalmic
graders according to the standard protocol of Early Treatment
Diabetic Retinopathy Study (ETDRS) [2,19] with 6 stages: no
DR (level 10-20), minimal (level 20), mild (level 35), moderate
(levels 43 to 47), severe (level 53), and proliferative DR (levels
>60). We defined the DR outcome as having an ETDRS level
≥20 in at least one eye (ie, any DR). In UKBB, DR severity was
not graded. Therefore, we identified DR cases based on the
International Classification of Diseases, Tenth Revision
(ICD-10) code “H36.0” in their health-related outcomes (UKBB
Data-Field: 41270) [16]. Supplementary analysis in SEED also
considered moderate or worse DR (level >43 in at least one eye)
as an additional outcome.

We considered a total of 239 variables for biomarker selection
(Multimedia Appendix 1). Among these, 19 variables were
identified through a literature review, comprising 6 traditional
risk factors (age, sex, duration of diabetes, HbA1c%, SBP, and
BMI), and 13 extended risk factors related to lifestyle (alcohol
consumption and smoking), medication use (insulin,
anticholesterol, and antihypertensive medication), clinic or
biochemistry (diastolic blood pressure [DBP], pulse pressure

[PP], random blood glucose, total cholesterol, high-density
lipoprotein [HDL] cholesterol, and low-density lipoprotein
cholesterol), and comorbidity conditions (hypertension and
history of CVD). Hypertension in both cohorts was defined as
self-reported physician-diagnosed hypertension, SBP >140 mm
Hg, DBP >80 mm Hg, or the use of antihypertensive medication.

Using nuclear magnetic resonance techniques (Nightingale
Health), we quantified the concentration of 228 circulating
metabolites from patients’ blood samples. Of these, glycerol,
pyruvate, and glutamine were not available for Malay
individuals, creatinine was used in eGFR calculation and DKD
outcome definition, while 4 metabolites (total, HDL, low-density
lipoprotein cholesterols, and random blood glucose) were
duplicated with those measured in biochemistry tests. Therefore,
these variables were excluded from the analysis, leaving us with
220 metabolites from 15 categories (amino acids,
apolipoproteins, cholesterol, cholesterol esters, fatty acids, fluid
balance, free cholesterols, glycolysis-related metabolites,
inflammation, ketone bodies, triglycerides, lipoprotein particle
sizes, lipoprotein subclasses, lipoprotein lipid ratios, and other
lipids).

Statistical Analysis

Inclusion and Exclusion Criteria
From the initial SEED data set of 10,033 participants, we
excluded those free of diabetes (n=7069), missing metabolomics
profiles (n=179), or missing more than 10% (n=13) of the data,
to obtain a final study population of 2772 individuals. Similarly,
we identified 5843 UKBB participants eligible for external
validation after data cleaning (Figure 1).
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Figure 1. Exclusion criteria and machine learning workflow. AUC: area under the receiver operating characteristic curve; DKD: diabetic kidney disease;
DR: diabetic retinopathy; eGFR: estimated glomerular filtration rate; LASSO: Least Absolute Shrinkage and Selection Operator; ROC: receiver operating
characteristic.

Descriptive Statistics
We categorized SEED participants into 4 groups based on their
DKD and DR status, and summarized group characteristics as
number (%), mean (SD), or median (IQR) as appropriate for
each variable. Differences among groups were assessed using

2-sided P values derived from Pearson χ2 tests or Fisher exact
test for categorical variables, and Kruskal-Wallis rank sum tests
for numeric variables. We also evaluated the interpopulation

differences between SEED and UKBB using Pearson χ2 tests
and Mann-Whitney U tests as appropriate for each variable.
Some subcategories may not add up due to the presence of
missing data.

ML Algorithms
We used LASSO [14] and GBDT [15] to identify the key
biomarkers and develop disease detection models for DR and
DKD. LASSO is an extension of traditional LR that does not
require the independence of variables. Therefore, LASSO is

suitable for high-dimensional data sets where issues such as
multicollinearity often arise. During parameter optimization,
LASSO automatically shrinks the coefficients of the
less-important variables to zero, while retaining nonzero
coefficients for the important ones to achieve biomarker
selection. Its strengths include relatively straightforward
computation and parameter tuning compared to other ML
algorithms. However, its scope is limited to examining only the
linear associations between continuous variables and the
log-odds. To account for possible nonlinear effects and variable
interactions, we additionally implemented the GBDT algorithm,
which constructs a sequence of interdependent decision trees
to collectively make a decision. During the process, the
algorithm assesses each variable’s contribution to minimizing
prediction errors, returning a score for its relative influence. We
then applied a predefined threshold to select the most influential
variables for disease detection based on their scores in each
selection round. GBDT is known for its adaptability to various
data distributions with generally strong performances, yet its
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hyper-parameter tuning and computation can be rather
time-consuming, with a higher chance of overfitting, and less
transparency compared to LASSO.

Model Development and Validation
In SEED, we handled missing data by excluding variables and
participants with high levels of missing information, yielding
a final data set with each variable containing less than 6%
(161/2772) missing data and a participant-level missing data
percentage of 10% or less (23/239, Multimedia Appendix 2).
Following this, missing data imputation was carried out by using
mean values for numeric variables, and modes for categorical
variables as appropriate. To mitigate selection bias arising from
data division into training and validation sets, we averaged the
results over 200 random repeats of 5-fold cross-validation. In
each repeat, the imputed SEED data set was randomly divided
into 5 subsets (ie, folds) of equal sample size by stratified
sampling to ensure consistent case rates. Each fold (553/2772,
20% of data) took its turn as the validation set, while the
remaining 4 folds (2219/2772, 80% of data) were used for model
training and variable selection. From 200 replicates we generated
1000 sets of variable selection results, based on which we
quantified each variable’s contribution to the model’s
performance by calculating a variable importance score, as the
variable’s selection frequency during the repeated
cross-validation process.

Next, we arranged the variables in descending order of their
selection frequencies and included only those selected 990 times
or more (ie, selection frequency 0.990) in the final model. To
evaluate the performance of these new models, we performed
another 200 random repeats of 5-fold cross-validation but used
only the complete cases (ie, no missing data imputation). The
final machine-learned models were compared with the
multivariate LR models adjusted for the 6 established risk factors
including age, sex, diabetes duration, HbA1c%, SBP, and BMI.
The performance of these models was evaluated in internal and
external validation using AUC with 95% CI, sensitivity, and
specificity. We reported sensitivity and specificity at the optimal
threshold, where sensitivity equals specificity. Additionally, in
the context of DR and DKD detection, where the cost of false
negatives is generally higher than that of false positives, we
prioritized higher sensitivity over higher specificity by setting
the probability threshold at 0.8 sensitivity to compare the
specificity. The AUC difference between machine-learned
models and the traditional model was evaluated using the test
by DeLong et al [20]. For the supplementary analysis, we
examined the importance of the top machine-learned variables
within nested models, to check for any marginal increase in
AUC with additional variables. We also calculated the AUC
for ML models with all the variables.

Metabolites Selection
Finally, we focused on the metabolites that were consistently
selected by both ML algorithms. We quantified their associations
with DKD and DR respectively, using odds ratios (OR) per SD
increment with 95% CI, and P values from multivariate LR

models adjusted for age, sex, diabetes duration, insulin use,
HbA1c%, PP, BMI, cholesterol, and HDL cholesterol.

We conducted all the analyses in R version 4.0.2. (R Foundation)
and defined statistical significance as P<.05.

Results

Population Characteristics
Figure 1 illustrates the data cleaning and analysis workflow. In
the SEED population with diabetes, 2674 people had information
on both disease outcomes (Multimedia Appendix 3). Of these,
1657 (62%) had neither DKD nor DR, 338 (12.6%) had DKD
but not DR, 496 (18.5%) had DR but not DKD, and 183 (6.8%)
had both DKD and DR. People with DKD, regardless of their
DR status, tended to be older, with higher PP, higher SBP, and
lower DBP. They also had higher levels of HDL cholesterol,
more history of hypertension and CVD, and were more likely
to have used anticholesterol medication and antihypertensive
medication. However, they had a lower smoking rate and
reported less alcohol consumption than those without DKD.
People with DR, regardless of their DKD status, tended to have
a longer duration of diabetes, with the use of antidiabetic
medication and insulin, higher HbA1c%, and random blood
glucose levels. They also had a lower BMI and lower total
cholesterol levels. For people with both complications, the
abovementioned characteristics further differed from those with
neither complication. However, in terms of sex distribution, no
significant difference was observed (P=.09).

We also found differences between SEED and UKBB in terms
of demographics, lifestyle factors, biochemical laboratory
results, and medical history (Multimedia Appendix 4). In
particular, UKBB participants had a lower prevalence of both
DKD (374/5570, 6.7%) and DR (355/5843, 6.1%) as compared
to SEED (DKD prevalence: 555/2753, 20.2%, and DR
prevalence: 685/2693, 25.4%), with only 0.7% (41/5570) having
both complications. SEED had a median age of 61.7 (IQR
53.5-69.4) years and 49.1% (1361/2772) women, whereas
UKBB had a median age of 61.0 (IQR 55.0-65.0) years and
35.8% (2090/5843) women. SEED was a multiethnic sample
based in Singapore with 36.8% (1020/2772) Malay, 45.5%
(1262/2772) Indian, and 17.7% (490/2772) Chinese individuals.
In contrast, over 81.8% (4778/5843) of the UKBB participants
were British, with the rest being Indian (217/5843, 3.7%), Irish
(132/5843, 2.3%), Caribbean (93/5843, 1.6%), African (85/5843,
1.5%), or other ethnicities (538/5843, 9.2%).

Model Development and Validation
Figure 2 shows the top 50 variables arranged in descending
orders of their variable importance. For DKD detection, LASSO
identified 15 variables with a frequency exceeding the cutoff,
while GBDT identified 13, so we used the top 15 for deriving
the corresponding DKD models; then for DR, LASSO identified
10 variables, while GBDT identified 6, so we used the top 10
for DR.
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Figure 2. Top 50 machine-learned variables for DKD and DR. %: metabolites to total lipids ratio; anti-HTN: antihypertensive medication use; ApoA1:
apolipoprotein A1; C: cholesterol; CE: cholesterol esters; CVD: cardiovascular disease; DBP: diastolic blood pressure; DKD: diabetic kidney disease;
DHA: docosahexaenoic acid; DHAFA: antihypertensive medication use; DR: diabetic retinopathy; FC: free cholesterol; GBDT: gradient-boosting
decision tree; HDL: high-density lipoprotein; HDL3: high-density lipoprotein 3; IDL: intermediate-density lipoprotein; L: large; LA: linoleic acid;
LASSO: Least Absolute Shrinkage and Selection Operator; LDL: low-density lipoprotein; M: medium; MUFA: monounsaturated fatty acids; P: particles;
PL: phospholipids; PUFA: polyunsaturated fatty acids; S: small; SBP: systolic blood pressure; SFA: saturated fatty acids; TG: triglycerides; VLDL:
very-low-density lipoprotein; XL: very large; XS: very small; XXL: extremely large.

In the internal validation, GBDT models performed the best
with an AUC of 0.838 for DKD and 0.790 for DR, followed by
LASSO with AUC values of 0.832 and 0.779, respectively. In
contrast, LR only achieved AUC scores of 0.743 for DKD, and

0.764 for DR. In the external validation using UKBB data,
LASSO models exhibited the best performance with AUC values
of 0.791 for DKD, and 0.778 for DR. GBDT models achieved
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AUC scores of 0.738 and 0.778, respectively, while LR resulted in AUC values of 0.691 and 0.760 (Figure 3).

Figure 3. Receiver operating characteristic curves showing the model performances. AUC: area under the receiver operating characteristic curve; DKD:
diabetic kidney disease; DR: diabetic retinopathy; GBDT: gradient-boosting decision tree; LASSO: Least Absolute Shrinkage and Selection Operator;
LR: logistic regression; SEED: Singapore Epidemiology of Eye Diseases; UKBB: UK biobank.

Further tests confirmed that the AUC scores of ML models were
significantly higher than those obtained using traditional LR
(2-sided P<.001). In terms of sensitivity and specificity at the
optimal threshold (where sensitivity=specificity), LASSO and
GBDT achieved comparable performance in internal validation
(for DKD, 0.757 by LASSO vs 0.751 by GBDT; for DR, 0.708

by LASSO vs 0.709 by GBDT), and both were superior to LR
(0.674 for DKD and 0.696 for DR). In external validation,
LASSO performed the best, with 0.723 for DKD and 0.716 for
DR. At 0.8 sensitivity, LASSO achieved 0.636 specificity for
DKD detection in UKBB, and 0.617 for DR, outperforming the
other 2 models (Table 1).
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Table 1. Performance evaluation of machine-learned models.

Cases, n (%)Sample

size, nd
SP at SN=0.8Optimal

SNb/SPc
AUCa (95% CI)AlgorithmDisease and data set

DKDe

517 (19.5)26530.540.6740.743 (0.698-0.787)LRgSEEDf

532 (20)26660.7030.7570.832 (0.794-0.871)LASSOhSEED

529 (19.8)26680.7090.7510.838 (0.801-0.874)GBDTiSEED

345 (6.6)52360.4720.6350.691 (0.683-0.699)LRUKBBj

333 (6.5)50900.6360.7230.791 (0.784-0.797)LASSOUKBB

366 (6.6)55430.5350.6660.738 (0.719-0.756)GBDTUKBB

DRk

653 (25.1)25970.5940.6960.764 (0.722-0.806)LRSEED

628 (25)25140.5960.7080.779 (0.736-0.822)LASSOSEED

655 (25.2)25980.6160.7090.790 (0.748-0.831)GBDTSEED

336 (6.1)54920.5710.7070.760 (0.755-0.765)LRUKBB

280 (6)46780.6170.7160.778 (0.773-0.782)LASSOUKBB

296 (6.1)48330.6040.7150.778 (0.769-0.786)GBDTUKBB

aAUC: area under the receiver operating characteristic curve.
bSN: sensitivity.
cSP: specificity.
dFinal sample size after variable selection and missing data removal.
eDKD: diabetic kidney disease.
fSEED: Singapore Epidemiology of Eye Diseases.
gLR: logistic regression.
hLASSO: Least Absolute Shrinkage and Selection Operator.
iGBDT: gradient-boosting decision tree.
jUKBB: UK biobank.
kDR: diabetic retinopathy.

In the sensitivity analysis, we evaluated the potential
improvement in AUC by introducing additional variables in
nested models (Multimedia Appendix 5). The results supported
the effectiveness of using the top 10 variables for detecting DR
in SEED. In line with this, using all 239 variables did not
improve beyond what was achieved with the top 10 in both
internal validation (LASSO 0.776 and GBDT 0.783) and
external validation (LASSO 0.754 and GBDT 0.774). Yet for
DKD, incorporating additional variables beyond the top 15
resulted in improved AUC in SEED. Specifically, using all 239
variables yielded higher AUC values of 0.859 for LASSO and
0.842 for GBDT. However, this increase may be attributed to
overfitting, as a similar pattern was not observed in external
validation. Further, using all available variables resulted in
lower AUC values for both LASSO (0.694) and GBDT (0.721)
in the UKBB cohort. Consequently, we decided to maintain the
DKD model with the top 15 variables for its simplicity and
effectiveness.

Metabolites Selection
For DKD, both LASSO and GBDT selected 5 risk factors
(duration of diabetes, history of CVD, antihypertensive

medication use, age, and insulin use) and 4 metabolites (tyrosine,
lactate, cholesterol esters to total lipid ratio in
intermediate-density lipoprotein particles [IDL-CE%], and
citrate). For any DR, both algorithms identified 6 risk factors
(insulin use, HbA1c%, duration of diabetes, random blood
glucose, age, and PP) and 2 metabolites (tyrosine and alanine).
In the supplementary analysis, tyrosine was again selected for
moderate or worse DR detection (Multimedia Appendix 6).

Table 2 shows the association of the machine-learned
metabolites with DKD and DR in multivariable LR models. We
found tyrosine to be negatively associated with both DKD (OR
0.65, 95% CI 0.58-0.73; P<.001) and DR (OR 0.90, 95% CI
0.81-1.00; P=.047). High levels of alanine were associated with
increased DR prevalence (OR 1.31, 95% CI 1.18-1.45; P<.001),
but with decreased DKD prevalence (OR 0.72, 95% CI
0.64-0.80; P<.001). Similarly, a high level of lactate was linked
to higher DR prevalence (OR 1.16, 95% CI 1.05-1.28; P=.004)
but with lower DKD prevalence (OR 0.71, 95% CI 0.63-0.80;
P<.001). Finally, a high level of citrate was associated with
increased DKD prevalence (OR 1.90, 95% CI 1.70-2.12;
P<.001), while high IDL-CE% was linked to decreased DKD
prevalence (OR 0.46, 95% CI 0.40-0.53; P<.001).
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Table 2. Association of selected metabolites with DKDa and DRb.

DR detectionDKD detectionMetabolite

P valueOR (95% CI)P valueORc (95% CI)

<.0011.31 (1.18-1.45)<.0010.72 (0.64-0.80)Alanine

.0470.90 (0.81-1.00)<.0010.65 (0.58-0.73)Tyrosine

.20.93 (0.84-1.03)<.0011.90 (1.70-2.12)Citrate

.10.89 (0.79-1.01)<.0010.46 (0.40-0.53)IDL-CE%d

.0041.16 (1.05-1.28)<.0010.71 (0.63-0.80)Lactate

aDKD: diabetic kidney disease.
bDR: diabetic retinopathy.
cOR: odds ratio.
dIDL-CE%: cholesterol esters to total lipid ratio in intermediate-density lipoprotein particles.

Discussion

Principal Findings
ML selected age, use of insulin, duration of diabetes, and
circulating tyrosine as the most important markers for DKD
and DR detection in the SEED population with diabetes.
Additionally, DKD was associated with the use of
antihypertensive medications, CVD history, and 3 metabolites
(lactate, citrate, and IDL-CE%), whereas DR was additionally
linked to HbA1c, random blood glucose, PP, and alanine.

The ML models developed in the SEED cohort with diabetes
were externally validated using UKBB data. In both cohorts,
ML models outperformed the traditional LR in terms of AUC,
sensitivity, and specificity, demonstrating their potential to
discover novel biomarkers and enable disease screening when
integrated with health care and metabolite data.

Comparison With Prior Work
Our main data set included a comprehensive set of 19 risk
factors and 220 circulating metabolites measured in 2772
individuals. The detailed patient profiling with a robust sample
size allowed an opportunity to identify the markers most relevant
to DKD and DR, offering insights into the systematic alteration
of metabolism and underlying pathways.

In line with the previous literature [4,13], ML consistently
identified 3 key factors—diabetes duration, age, and the use of
insulin—as the top risk factors for both DKD and DR. However,
ML also revealed novel aspects concerning some established
risk factors for these conditions. For instance, our ML models
exhibited a notable preference for PP over SBP and DBP in DR
detection, supporting the study by Yamamoto et al [21] that PP,
as a surrogate marker of arterial stiffness, reflected both the
SBP elevation and DBP reduction, thereby carrying more
predictive information for DR than other blood pressure metrics.
Another example was assessing the relative importance of
glycemia control indicators, where HbA1c% consistently
received a higher selection frequency in our ML models
compared to random blood glucose levels. This was probably
because HbA1c% was averaged to reflect a mean shift with much
less random noise, while random blood glucose data might carry

more noise from life cycle changes and interindividual
variability [22]. Interestingly, some well-established risk factors
usually included such as sex did not appear in the top-ranking
lists by ML, although this variable had been selected by
traditional LR models on the same population in previous studies
[23]. This could be because sex is an intrinsic component of
other phenotypes. For instance, male sex was associated with
CVD [24], a condition well-known to be linked to DKD and
DR [2].

We noted high levels of tyrosine, an aromatic amino acid, to be
negatively associated with the prevalence of DKD and DR,
supporting the ADVANCE trial where increased tyrosine
concentration was linked to a decreased risk of diabetic
microvascular events (hazard ratio 0.78, 95% CI 0.67-0.91)
[12]. Tyrosine is mainly synthesized from phenylalanine
hydroxylation in the liver and kidney; impaired kidney function
is therefore associated with reduced phenylalanine hydroxylase
activity characterized by low blood tyrosine levels [12].
Additionally, tyrosine serves as a precursor to catecholamine
neurotransmitters (dopamine, norepinephrine, and epinephrine),
and plays a pivotal role in central nervous system functions and
activities [25]. In metabolic disorders such as diabetes, reduced
blood tyrosine can affect its uptake into the brain and also the
synthesis and release of transmitters, thereby altering hormonal
function, affective state, and blood pressure [25], potentially
linked to higher microvascular risks.

Another amino acid selected by ML was alanine, and its higher
concentration in blood was associated with higher DR
prevalence, but lower DKD prevalence. In the ADVANCE trial,
a negative association was reported between circulating alanine
and an aggregated microvascular outcome, defined as new or
worsening nephropathy or retinopathy (hazard ratio 0.86, 95%
CI 0.76-0.98) [12]. In other research, high levels of blood amino
acids such as alanine have been linked to inhibited insulin
signaling to glucose transport, phosphorylation, and glycogen
synthesis, causing insulin resistance, which impairs hepatic
mitochondrial function in patients with diabetes and contributes
to diabetes microvascular complications such as DR [26,27].

Among the ML-selected metabolites for DKD, high levels of
lactate were found to be associated with lower DKD prevalence.
However, another study conducted in the DKD population
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suggested an accumulation of acid due to abnormal lactate
metabolism causing fibrosis and mitochondrial abnormalities,
leading to further kidney damage [28]. Nevertheless, further
investigations are required to understand the complex association
between circulating lactate and DKD. Another metabolite
identified was citrate, which showed a positive association with
DKD in SEED. In people with DKD, an elevated plasma citrate
level has been linked to reduced organic anion transport and
dysregulated mitochondrial functions of the kidney tissues [8].
Our study also highlighted the significance of IDL-CE% in
diabetic microvascular complications, revealing its inverse
association with prevalent DKD in the SEED population with
diabetes. Aberrations in lipoprotein composition have been
reported to be indicative of insulin resistance and impaired
glucose tolerance in the general population, known to cause
future diabetes [9,27]. In people with type 1 DKD, abnormality
in lipoproteins clearance was further linked to impaired kidney
function [29].

For biomarker discovery, traditional studies often relied on LR
models to examine metabolites one by one separately [12,30],
with stringent model assumptions and multiple testing
corrections [9,31]. Herein, our ML approach was more efficient
in the sense that it simultaneously examines all variables for
potential associations. While LASSO was limited to detecting
linear associations, we implemented GBDT as a complementary
model to additionally assess nonlinear terms and high-order
interactions. As was shown in Figure 2, DR-related variables
in GBDT had higher selection frequencies than in LASSO,
suggesting the existence of such complex associations. Still,
LASSO models achieved superior performance in external
validation, indicating a prominent contribution of linear
associations to DKD and DR detection. Another highlight of
our methodology was the repeated cross-validation, which
reduced the influence of potential outliers and ensured the
randomness of sampling, thereby generating results more robust
than those relying on a fixed training set. This approach also
allowed us to quantify individual contributions of variables
based on their selection frequencies. However, alternative
definitions of variable importance scores [32] may be considered
in a future study to potentially refine the variable selection
process.

Globally, three-quarters of those with diabetes live in low- and
middle-income countries, particularly India and China [33].
While the risk profile of Asian patients with diabetes differs
from that in high-income “Western” societies in terms of age,
BMI, lifestyle, diet, and many other aspects [33], there has been
limited discussion on Asian populations with diabetes. Our
study, conducted in Asian populations (Malay, Indian, and
Chinese), may contribute to the topic by allowing an opportunity
to identify the commonalities and differences between DKD

and DR in terms of circulating metabolic traits, offering insights
into the systematic alteration of metabolism in diabetes.

Limitations
In total, 1 limitation of this study was that we did not separate
study subjects by diabetes type. Since around 95% of the SEED
population with diabetes had type 2 diabetes, our results would
mainly reflect the variable associations with type 2 diabetes.
While these associations hold potential for hypothesis generation
and disease detection, the cross-sectional nature of our study
highlights the need for caution in drawing causal inferences.
Future longitudinal studies are warranted to establish temporal
associations based on our current findings.

Another issue was data availability—albuminuria, an important
indicator of kidney disease [13], and 3 metabolites (pyruvate,
glycerol, and glutamine) were missing in Malay individuals of
the SEED population. Hence, these variables were excluded
from the analysis. Certain diabetic medications were reported
to potentially interfere with circulating metabolite levels
[12,34,35]. However, we could only account for the use of
insulin due to limited data availability on UKBB medication
profiles. Furthermore, we noted a difference in defining DR
between our development data set (SEED), which used the
standard ETDRS classification system, and the external test set
(UKBB), where DR cases were identified using ICD-10 codes.
This variance in outcome definition might have introduced some
degree of misclassification in UKBB. Additionally, due to the
absence of ETDRS-based severity scores in UKBB, validation
of the supplementary model for moderate or worse DR in
supplementary analysis was not feasible. Nevertheless, it was
noteworthy that the features identified in SEED remained
relevant for enhancing DR detection in the UKBB data set.
However, we acknowledge that the discrepancy in DR definition
underscores the need for caution when interpreting results,
particularly in the context of clinical or practical applications.
Future research may benefit from adopting a uniform approach
to DR classification to minimize such limitations and enhance
result validity.

Conclusions
In conclusion, current ML models developed using the SEED
population with diabetes and subsequently validated in UKBB
showed superior performance compared to traditional LR for
DKD and DR detection. ML highlighted age, use of insulin,
diabetes duration, and tyrosine as the most influential factors
in DKD and DR. Additionally, DKD was associated with high
levels of citrate, low levels of lactate, and low IDL-CE%; while
DR was linked to higher levels of alanine. The integration of
ML with health care data and metabolomics could facilitate
biomarker selection and enable disease screening.
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