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Abstract

Background: Accurate and responsive epidemiological simulations of epidemic outbreaks inform decision-making to mitigate
the impact of pandemics. These simulations must be grounded in quantities derived from measurements, among which the
parameters associated with contacts between individuals are notoriously difficult to estimate. Digital contact tracing data, such
as those provided by Bluetooth beaconing or GPS colocating, can provide more precise measures of contact than traditional
methods based on direct observation or self-reporting. Both measurement modalities have shortcomings and are prone to false
positives or negatives, as unmeasured environmental influences bias the data.

Objective: We aim to compare GPS colocated versus Bluetooth beacon–derived proximity contact data for their impacts on
transmission models’ results under community and types of diseases.

Methods: We examined the contact patterns derived from 3 data sets collected in 2016, with participants comprising students
and staff from the University of Saskatchewan in Canada. Each of these 3 data sets used both Bluetooth beaconing and GPS
localization on smartphones running the Ethica Data (Avicenna Research) app to collect sensor data about every 5 minutes over
a month. We compared the structure of contact networks inferred from proximity contact data collected with the modalities of
GPS colocating and Bluetooth beaconing. We assessed the impact of sensing modalities on the simulation results of transmission
models informed by proximate contacts derived from sensing data. Specifically, we compared the incidence number, attack rate,
and individual infection risks across simulation results of agent-based susceptible-exposed-infectious-removed transmission
models of 4 different contagious diseases. We have demonstrated their differences with violin plots, 2-tailed t tests, and
Kullback-Leibler divergence.

Results: Both network structure analyses show visually salient differences in proximity contact data collected between GPS
colocating and Bluetooth beaconing, regardless of the underlying population. Significant differences were found for the estimated
attack rate based on distance threshold, measurement modality, and simulated disease. This finding demonstrates that the sensor
modality used to trace contact can have a significant impact on the expected propagation of a disease through a population. The
violin plots of attack rate and Kullback-Leibler divergence of individual infection risks demonstrated discernible differences for
different sensing modalities, regardless of the underlying population and diseases. The results of the t tests on attack rate between
different sensing modalities were mostly significant (P<.001).

Conclusions: We show that the contact networks generated from these 2 measurement modalities are different and generate
significantly different attack rates across multiple data sets and pathogens. While both modalities offer higher-resolution portraits
of contact behavior than is possible with most traditional contact measures, the differential impact of measurement modality on
the simulation outcome cannot be ignored and must be addressed in studies only using a single measure of contact in the future.
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Introduction

Sensing Modality of Colocation for Disease
Transmission Models
Infectious diseases have imposed a heavy burden on the global
population throughout human history [1,2]. The COVID-19
pandemic has brought the threat of contagious diseases into
sharp focus. With 6.95 million deaths; 769 million confirmed
cases globally as of August 8, 2023 [3]; and an estimated >US
$16 trillion in lost economic activity [4] for the United States
alone, the COVID-19 pandemic has been one of the defining
global crises of the 21st century [5].

Epidemiological models date back over a century [6-8] but have
become more useful through leveraging sophisticated algorithms
[9,10] and increasing computing power [11,12]. Epidemiological
models to predict, plan, and respond to pandemics and outbreaks
can inform decision-making to mitigate the impact of infectious
diseases [6-8]. Epidemiological models require well-grounded
physical and behavioral factors to provide reasonable estimates
of disease spread [13]. Linking a population’s spatial behavior
to infectious events that aids or inhibits the spread of disease is
particularly difficult.

For airborne contagious diseases such as measles [14] or
COVID-19 [5], a key enabler for disease spread is colocation
(being in the same location at the same time). The effective
spatial volume for COVID-19 is determined by aerosol
dynamics and is often approximated at 2 m (6.56 ft) [15].
Measuring colocation can be conducted by self-reporting, as is
commonly used in classic contact tracing and direct observation
and counts [16], or by electronic means [17-19].

A total of 2 primary modalities for determining colocation using
electronic devices exist: measurements based on estimating the
distance from one person to another directly (beaconing) and
measurements based on estimating the location of each person
of interest within a coordinate system and calculating distances
(localizing). Devices can be bespoke, such as the sociometric
badge [20-22], or can leverage existing technologies such as
Bluetooth(BT)–enabled phones, beacons, or dongles [23-26].
Localization techniques use systems such as GPS to place every
user at a specific location at a specific time [27,28] and can be
piggybacked on existing smartphones or mined from some social
media platforms [29-31].

To estimate the probabilities of disease transmission, the total
number of interactions, dwell times, and spatial proximity must
be measured to properly baseline the parameter estimates.
Techniques from companies such as Ethica Data (Avicenna
Research) [32] and other companies made possible by a
Google-Apple partnership [33] can be used to obtain these data
for target populations under transparent and ethical data
acquisition practices. However, the underlying physical
processes and mathematical treatment of beaconing and
localization data are substantially different and have different

failure modes. Previous research had not elucidated the
disparities in the estimated contact patterns for the same
population between techniques. It is simple to hypothesize that
colocating and beaconing will yield different contact patterns,
but it is less apparent how the differences will interact with
disease dynamics and impact the overall simulation outcomes.

In this study, we examine the contact patterns derived from 3
previously collected data sets using both BT beaconing and
GPS localization on smartphones running the Ethica Data app.
We demonstrated that while the underlying contact patterns
generated from colocating and beaconing are broadly similar,
they contain salient differences. For each of the 4 pathogens
marked by different dynamics, we compared the results of an
agent-based simulation of a communicable disease outbreak for
the pathogen parameterized with beaconing- and
localization-derived contact patterns. The results demonstrated
that the method used to estimate contact patterns can result in
significant differences between estimates of the key outbreak
parameters. We showed that GPS-based contact patterns
estimate significantly fewer and less-severe outbreaks than
BT-derived contact patterns for the same participant and device.

Literature Review
Transmission models for communicable diseases are based on
the characterization of natural history of a condition and contact
networks [13]. In addition to traditional population-based
nonspatial approaches, agent-based transmission models can
use individual-level contact records and behaviors to identify
emergent patterns using a bottom-up approach [9].

Real-world proximity tracking has applications in contact
tracing, location-based risk assessment, mobility tracking, and
outbreak detection [34]. Deriving real-world proximity contact
mainly falls into 2 categories: calculating the delta of measured
absolute positions—with, for example, GPS-assisted and Wi-Fi
network–assisted locationing [35,36]—and directly measuring
the relative distance with, for example, BT [19,37] or radio
frequency identification [38].

Exemplars of each of these 2 approaches—GPS and BT—have
been studied for digital contact tracing and transmission
simulation [15,34]. Recent comparisons between GPS- and
BT-inferred proximity contact collection approaches focus on
privacy preservation, adoption, and compliance rates [15]. In
contrast, the accuracy of simulations with GPS- and BT-derived
proximity contacts is yet to be quantified across different
underlying populations and pathogens [37].

Advances in digital contact tracing have also contributed to
disease parameter estimation. For example, at the beginning of
the COVID-19 pandemic, researchers focused on estimating
the basic reproduction number R0 from limited and highly
regionally dependent infection data. As the pandemic spread,
data collection and reporting standards enabled the daily
reporting of incident cases, active cases, and mortality for
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various geographic scales over time, allowing the estimation of
the effective reproduction number Re [39-42].

Background

BT Proximity
BT is a short-range communications protocol incorporated into
most smartphones and is commonly used to pair with devices
such as wireless headsets. By default, BT is configured to be
in a quiescent state, not advertising its presence and only
communicating with devices that have been paired. Before 2020,
it was possible to lock an Android phone into a more active
discovery mode, where a device would beacon approximately
every 8 seconds, advertising its presence to other devices. While
this functionality was intended to provide ease of initial device
pairing, it could be repurposed to detect the proximity of 2
devices by registering when 1 device receives a discovery ping
from another.

Studies [43,44] have investigated the use of BT to estimate the
spatial proximity between devices representing people. The
simplest methodology will be to create a proximity event
between 2 devices if 1 device detects a discovery ping from the
other or vice versa. The distance between the devices is a
relevant parameter for determining a valid proximity event or
contact in many applications. Researchers have typically used
the Received Signal Strength Indicator (RSSI) as a proxy for
distance [44-46], assuming an exponential falloff of signal
strength with distance [47,48]. This approximation is
confounded by reflections or transmissions off or through
objects, meaning that RSSI cannot be strictly interpreted as
distance, except in all but the most controlled conditions. RSSI
values can plausibly be used to filter out contacts that are either
far away or on the other side of a barrier, such as a wall.

The RSSI measures signal strength in decibel-milliwatts (dBm),
where RSSI=0 is defined by a “Golden Receiver Power Range,”
whose lower threshold level corresponds to a received power
between −56 dBm and 6 dB above the actual sensitivity of the
receiver, and whose upper threshold level is 20 dB above the
lower threshold level to an accuracy of 6 dB. Beyond the lower
and upper threshold, any positive RSSI value indicates how
many dB the RSSI is above the upper limit, and any negative
value indicates how many dB the RSSI is below the lower limit.
Usually, a stronger signal strength (higher RSSI) indicates closer
distances between 2 BT devices; however, orientation, barriers,
and interference can attenuate the signal strength beyond what
the distance would suggest [49]. Young [50] and the Android
Beacon Library [51] contributed an RSSI to the distance function
based on the Nexus 4 and Apple’s iBeacon performance, which
is often used as a first approximation for similar location
awareness services on modern smartphones:

Where RSSI0 is the RSSI value at a 1-m (3.3 ft) distance.

GPS and Location Proximity
GPS receivers are standard on smartphones, enabling
location-based services and route finding. Consumer-grade GPS

receivers typically have a nominal accuracy of 10 m (32.8 ft)
but can be subject to substantially larger errors due to
environmental factors. Neither iOS nor Android uses pure GPS
localization in their location estimation services. Both
additionally use initial estimates from cell tower locations
(assisted GPS) as well as fingerprinting-based localization using
databases of detected Wi-Fi routers. As GPS receivers often
take several seconds to obtain a position lock, even with assisted
GPS, smartphone localization services tend to default to
Wi-Fi–based localization initially and then switch to GPS as
better location estimates become available. For simplicity of
presentation, the term GPS refers to location estimation in this
paper, regardless of whether it was obtained through GPS,
assisted GPS, Wi-Fi fingerprinting, or some combination
thereof.

Given location records, a dichotomous notion of proximity can
be defined, in which 2 agents are considered proximate if they
are in the same place at the same time. The precision and
accuracy of the measurements and the context of the definition
of proximity determine how close, in time and space, agents
must be to be considered proximate or in contact. When using
commodity smartphone localization hardware and services,
accuracy below 5 m (16.4 ft) is rare [28], so spatial proximity
has a strong lower resolution limit. Temporal resolution is
substantially better—on the order of seconds—and is more
likely to be limited by the measurement regime or application
requirements. Elevation estimates are even less reliable than
spatial estimates; therefore, commodity GPS receivers are often
projected onto a 2D plane, introducing the potential for
erroneous connections between people at the same location but
on different floors of a building, for example.

While both GPS and BT can provide higher fidelity estimates
of proximity and contact than traditional surveys or diaries, both
are prone to false positives and negatives. Given 2 devices
separated by a mutually proximate wall, ceiling, or floor, BT
can still report contacts because the attenuation of RSSI will be
such that they appear in contact but farther away. GPS is prone
to false positives for detecting the proximity of communicable
pathogens because the distance over which transmission can
occur is smaller than the accuracy threshold for commodity
devices. GPS proximity can only be interpreted as close enough
that contact was possible, given the error in measurement, and
not that contact actually occurred. BT can produce false
negatives if the beaconing and listening cycles of the devices
are misaligned, such that 1 device is beaconing while the other
is asleep. GPS can lose signal or accuracy when indoors, causing
false negative contacts by either having no location reported
for an agent or exhibiting position inaccuracies that render
inaccurate colocation calculations. While the underlying true
contact dynamics for the same devices are identical, the differing
failure modes of GPS and BT mean that data drawn from those
data collection modalities may generate different contact
networks, thereby suggesting different contact dynamics and
ultimately different outbreak dynamics.

J Med Internet Res 2024 | vol. 26 | e38170 | p. 3https://www.jmir.org/2024/1/e38170
(page number not for citation purposes)

Qian et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Agent-Based Susceptible-Exposed-Infectious-Removed
Models
The susceptible-exposed-infectious-removed (SEIR) disease
state model is a classic model used to characterize pathogen
transmission and the natural history of infection across a range
of communicable diseases. Disease state transitions are
unidirectional in the order of susceptible, exposed, infectious,
and removed. The initial state of the model specifies the amount
of population in each disease state, and the rate of transition
between disease states is subject to both disease-characteristic
parameters (such as latent period and infectious period) and the
contact network (such as preferential mixing and average contact
rate). It is common for a specific disease, given surveillance
data, to obtain more detailed models. For example, there are
models of COVID-19 splitting the SEIR states into more states
and rerouting transitions in states [52,53]. As our goal was to
probe the impact of contact measurement modality, in
accordance with the Occam's razor [54], which recommends a
parsimonious model with the fewest assumptions that are
necessary, we chose the simplest SEIR model.

Agent-based models (ABMs) incorporate individual interactions
and track the state and state transitions through which each
individual progresses. Unlike a stock and flow model, which
uses differential equations to model the flow of individuals from
one state to another in aggregate, an ABM knows the state of
every agent individually at any time step of the simulation, and
aggregate statistics, for example, on infections, are queried and
computed during postprocessing. An agent-based SEIR model
captures both individual disease state transitions based on
disease-specific parameters such as the latent period, the
infectious period, R0, as well as some abstraction of the contact
behavior of the population. As the simulation of an infectious
disease can capture emerging patterns in a bottom-up manner
[9] and more faithfully reflect dynamics due to the proximity
contact network than compartmental models, ABMs provide
higher fidelity at the cost of computation when compared to
stock and flow models. As an ABM can directly use a contact
pattern as part of the simulation, it is the logical choice for
examining the sensitivity of simulations to the contact detection
methodology.

Methods

Data Set Description
For this study, we used 3 previously collected data sets, all of
which were collected from the city of Saskatoon, a city in the
midwestern Canadian province of Saskatchewan. In all these
data sets, additional sensor modalities (eg, accelerometer,
gyroscope, and Wi-Fi traces) were also collected, but only the
BT traces, GPS traces, and battery data were used in this study.
Battery data were used to identify gaps in data collection. If the
phone is on and Ethica is running, then battery data were
recorded, providing a more reliable way to assess the continuity
of data collection than is possible with GPS, where signals can
be obscured by the built environment but where the phone is
still actively recording. The Saskatchewan Human Ethology
Datasets (SHEDs) are a collection of pilot projects and technical
trials taking place during the iEpi project—the academic

precursor for the Ethica Data system—and associated
postprocessing and methodological outcomes [55,56]. The
SHEDs were exclusively collected from populations at the
University of Saskatchewan in Saskatoon. The SHED7 data set
was collected between July 11 and August 8, 2016, and included
61 students. The SHED8 data set was collected between
September 25 and October 25, 2016, and included 74 students.
The SHED9 data set was collected between October 28 and
December 9, 2016, and included 88 students. These participants
were part of a social science student study pool that included
both undergraduate and graduate students and was weighted
toward undergraduates.

Ethical Considerations
Data collection and analysis were conducted under written
approval (BEH-14-203) from the University of Saskatchewan
Human Behavioral Ethics Review Board. All data were collected
with the informed consent of the participants and under the
oversight of the University of Saskatchewan Human Behavioral
Ethics Review Board.

No experimental manipulations were conducted during data
collection. The studies did not undertake stratified sampling
according to ethnicity, grade, or gender. The study did not
proscribe participation by those connected with the department
or research laboratories involved, and the study team informed
colleagues in laboratories and the Department of Computer
Science first. The awareness of potential study involvement can
be assumed to have spread across social networks. For each
study, participants joined using their own phones to install the
Ethica app and consented to have sensor data collected over the
study period. Although for all these 3 studies, both Android and
iPhone users were welcome, because BT beaconing did not
work reliably on an iPhone due to security settings, iPhone users
were removed from the analysis, and all participants reported
here are Android users. Each participant receives approximately
a CAD $50 (US $38.6) honorarium at the end of a study, and
the exact amount varies by study length.

All 3 SHED studies stored sensor data anonymously, and the
sensor data associated with a participant were identified by a
device-identity number. Despite measures such as encryptions
being used to protect sensor data, high-velocity GPS data can
allow a skilled practitioner to determine salient information
about participants, such as place of work, residence, and daily
habits. We circumvented this issue by committing to our own
research ethics board and the participants that researchers who
access the data must commit to writing requests subject to the
review and approval of our ethics boards.

Sensor Data Processing

Overview
To evaluate the performance of each sensor in real-world
scenarios, we needed to account for the impact of participant
compliance. We defined the active period of a study with the
start day as the first day when we have ≥80% of the participants’
battery reading and the end day as the first day with all following
days having <80% of the participants’ battery reading. We
retained participants who had at least 50% of the daily battery
data. The descriptive statistics are presented in Table 1.
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Table 1. Sensor data table for the 3 data sets (Saskatchewan Human Ethology Dataset [SHED]7, SHED8, and SHED9). These data sets are collected
in 2016 with participants comprises students and staff of University of Saskatchewan. Each of these data sets is collected with the Ethica Data app with
Bluetooth and GPS sensors with duty cycle about every 5 minutes over a month.

SHED9SHED8SHED7

887461Participants, N

787461Retained participants, n

413135Total days in studies, n

383028Active days in studies, n

20,59734,40037,804Bluetooth-inferred contacts (distance threshold: 8 m), n

506467844338GPS-inferred contacts (distance threshold: 10 m; accuracy: 10 m), n

Ethica’s multisensor sensing requests that the Android operating
system perform sensor scanning and reading periodically. We
call our requested period length, that is, each of the repeated
5-minute time windows, a duty cycle. For the location and BT
contact data used in this study, Ethica records for 1 minute,
starting every 5 minutes.

The BT discovery record from the Android application
programming interface includes the discovered BT device’s
MAC address and RSSI. After linking such discovery records
to participant IDs in the smartphone BT MAC address table
collected after consent and before the experiment started, we
created a table of BT discovery records for eligible participants.
Those RSSI values were filtered to include records associated
with an RSSI stronger than the RSSI values associated with the
desired distance thresholds and then aggregated maximum RSSI
values for unique tuples of discovered participant and duty cycle
(data collection epoch), resulting in the final BT contact record
table. Although BT discovery records are directional, our use
of unique tuples will consider a pair of participants potentially
in contact if at least one’s BT device discovers that of the other.

Starting with raw GPS readings for each participant, we first
discarded GPS readings with an accuracy radius larger than 10
m (32.8 ft) as being too inaccurate to allocate even approximate
colocation estimates. For each participant, we used the median
of their GPS readings within a duty cycle as the estimated
geolocation of that participant. We then mapped the estimated
GPS coordinates of latitude and longitude onto the Universal
Transverse Mercator coordinates as the northing and easting
with units of meters. For the sake of estimating interparticipant
proximity, we used the Euclidean distance between the estimated
geolocation for all pairs of participants within the same duty
cycle as the estimated distance between pairs of participants.
For each duty cycle, participants who lacked GPS readings
within that duty cycle were considered as not being in contact
with any of the other participants for the duration of that cycle.

Agent-Based SEIR Model
An agent-based SEIR simulation model was used to characterize
pathogen transmission and describe the natural history of
infection. The model assumed the following:

• There is no reinfection during the simulation period.
• The population is closed, and no births, deaths, and

migrations occur during the simulation time horizon.
• The latent periods for diseases under consideration are

similar to the incubation periods.
• During the infectious period, an infectious patient will have

a constant hazard rate of transmission to every one of their
currently contacted persons, normalizing passive shedding
from active spread (eg, sneezing) over a contact period.

• There are no behavior changes in participants during the
simulation period, conditional on the contact patterns
measured. For small outbreaks, this is reasonable, but the
COVID-19 pandemic has demonstrated the importance and
magnitude of changes that can occur in hygienic personal
protective behavior (eg, mask use) over the course of a
pandemic.

We made use of a 4-fold duplication and concatenation of both
GPS- and BT-inferred proximity contact data, such as
successively replaying a movie, to allow the outbreak to run its
course without running out of contact data.

All participants who connected to at least 1 other participant
after filtering were included in the simulation (Table 2). Each
simulation starts with 1 initially exposed participant. We
conducted multiple simulations with different random seeds to
account for stochastics. Each simulation began with a single
participant with an infection of the corresponding disease. All
active participants were the initially exposed participants in
turn, for 50 realizations each.

During the initialization of each simulation realization,
incubation period and infectious period were drawn uniformly
from the minimum-maximum range of corresponding
parameters, as presented in Table 3.

All diseases listed in Table 3 are investigated from a historical
perspective, where estimates of the corresponding parameters
are available.
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Table 2. Number of participants with at least 1 contact within the 3 data sets (Saskatchewan Human Ethology Dataset [SHED]7, SHED8, AND SHED9).
Proximity contacts are inferred from sensing data and vary by sensing modality and distance threshold.

SHED9SHED8SHED7

767158BT8a, n

767158BT20, n

666349GPS8, n

747158GPS20, n

aThe sensing modality of Bluetooth and GPS are combined with distance thresholds of 8 m (26.2 ft) and 20 m (65.6 ft) in rows. For example, BT8
stands for proximity contacts inferred from Bluetooth-sensed distance within the threshold of 8 m (26.2 ft).

Table 3. Disease parameter.

Infectious period minimum to maximumIncubation period, minimum to maximumR0

3-7 [57]5.6-7.7 [57]2.2a [57,58]COVID-19 (nonvariant)

3-5 [60]1-4 [60]3b [59]Influenza

2-3 [62]0.5-2 [62]1.75 [61]Norovirus

8-11 [64]10-12 [64]15b [63]Measles

aDerived as midpoint of reported range.
bDerived range from different reports.

Simulation Configuration
For each SHED study, after preprocessing, we obtained GPS-
and BT-inferred proximity contact data with distance-equivalent
RSSI thresholds of −80 dBm (corresponding to approximately
8 m or 26.2 ft) and −90 dBm (approximately 20 m or 65.6 ft).
A group of simulations for each of the 4 diseases—namely,
influenza, COVID-19, measles, and norovirus—was run. Within
each group of simulations sharing the same derived proximity
contact data and disease parameters, we iterated each of the
active participants as the initially exposed patient with 50
realizations, where each realization has a different predetermined
random seed, resulting in 170,400 realizations across all data
sets and conditions.

In our agent-based SEIR model, at any given time during the
simulation, each agent resides in one of the 4 disease states
(susceptible, exposed, infectious, or removed). At the start of
the simulation, all agents, except the initially exposed agent,
are susceptible. The transition from susceptible to exposed has
a probability p when exposed to proximity to an infectious agent.
Such occurrences of exposure are characterized by a Poisson
process with a mean interarrival time of 5 minutes. The value
assumed for p is derived from the disease-specific R0 and the
average empirically observed frequency of population contacts.
The timing, the duration, and the pair of agents involved in each
proximity contact are given by the proximity contact data fed
to the simulation. The transitions of exposed-to-infectious and
infectious-to-removed are timeouts with timers set as the
corresponding latent period and infectious period as initialized
for each individual.

Simulations were run on 2 servers, each with an Intel Xeon
CPU E5-2690 v2 and 503 GB memory. Models were created
in AnyLogic (version 8.1.0; The AnyLogic Company) and

exported to a stand-alone Java application with OpenJDK
(version 1.8.0_252; The OpenJDK Community) as the runtime
environment. Analysis was conducted in R software (version
4.0.2; R Foundation for Statistical Computing) with major
packages, including tidyverse (version 1.3.0), ggprah (version
2.0.5), and igraph (version 1.2.6), and in Python (version 3.8.0;
Python Software Foundation) with major packages, including
pandas (version 1.2.0), numpy (version 1.20.2), and scipy
(version 1.6.1).

Evaluate Impacts on Transmission Models

Overview

We used the attack ratio as the metric to evaluate the impact of
proximate contact data on transmission models. The attack ratio
is the proportion of the total population that gets infected
throughout the simulation. Although the ABM-SEIR can
produce many estimates for different disease parameters given
proximate contact data, the attack rate and individual risk of
infection was chosen for simplicity, accessibility, and to serve
as single summary statistics [65,66].

Attack Rates

The core research question of this study was whether and to
what extent the differences in GPS- and BT-based proximity
detection would alter the contact network and therefore the
implied attack rate. We considered the attack rate θ defined as
in the following equation:

Where I(t) is the number of infectious persons at time t, T is the
end time of the simulation instance, and N is the population
size. The attack rate θ denotes the proportion of the population
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that is infected throughout the simulation instance. As the
response variable (denoted as Θ) to the controlled variables of
the disease or pathogen M, the initial infectious individual ν ∈
V = {v1,v2,...,vn}, n = ‖V‖ and collected proximity contact
data D(ω,ε,V). For the proximity contact data D(ω,ε,V), ω ∈
{BT, GPS} is the sensor type, ε ∈ {8, 20} is the distance
threshold of proximate contacts, and V is the underlying
population. Therefore, with the ABM-SEIR model as P(∙) for
a specific disease M and underlying population V, we can sample
Θ∼P(Θ= θ |ω,ε,M,V) with simulation realizations. While the
initial infectious individual ν has been known to impact the
attack rate Θ, investigation of that impact lies outside the scope
of this paper.

Welch t Test

Assuming disease M and an underlying population V, the choice
of an initial infectious individual ν is independent of the data
collection configuration (sensor type ω and proximate distance
threshold ε). We were interested in the marginal probability,
defined as in the following equation:

Limited by our knowledge of P(ν|M,V), we assumed the initial
infectious individual ν is chosen with uniform probability from
the underlying population V, that is, P(ν|M,V) =1 / ‖V‖.
Consider θ as the sample mean from a sample, Xi ∼ P(Θ|ν =
vi,ω,ε,M,V), i = 1,..., ‖V‖, and we sampled by repeating ‖V‖
simulations iterating every individual of the population V as the
initial infectious individual. According to the central limit
theorem, samples of θ∼P(Θ|ω,ε,M,V) tend to be normally
distributed to suffice the assumption of the Welch t test
(2-tailed).

Pairwise t Test

Without assuming that the initial infectious individual ν is
homogeneous among the underlying population V, that is,
P(ν|M,V)=1/‖V‖, we could construct a pairwise t test by
pairing the samples of attack rate having the same initial
infectious individual μ, given sensor type ω and distance
threshold ε, for each pair of disease M and underlying population
V. In this case, we assumed the pairwise differences in the attack

rate, such as for Θi
BT8-GPS20 = ΘBT8 – ΘGPS20, are normally

distributed, where ΘBT8 ∼ P(Θ|ν = vi,ω = BT,ε= 8,M,V) and

ΘGPS20 ∼ P(Θ|ν = vi,ω = GPS,ε= 20,M,V).

Kullback-Leibler Divergence of Individual Infection Risks

Given the sensor type, proximate distance threshold, disease,
and underlying population, we estimated the individual infection
risk based on the Laplacian-smoothed rate of being infected
across realizations, denoted by ρv∈V(ω,ε,M,V). The likelihood
of being the most likely infected individual for an individual
v∈ V follows P(v|ω,ε,M,V), which can be estimated by
normalizing vector ρ={ρv|v∈V}. The Kullback-Leibler (KL)
divergence was used to summarize the differences between pairs
of sensor type and proximate distance threshold (ω,ε) within
blocks by disease and the underlying population. For disease
M and the underlying population V, we have

between sensing configurations (w1,e1) and (w2,e2), where

Results

While the agent-based simulation uses dynamic contacts, some
insight can be gained by examining the aggregate contact
network of participants in each study. Figure 1 shows the
aggregate contact networks for SHED7, SHED8, and SHED9
using BT and GPS at 8- and 20-m thresholds. If a connection
ever occurred between 2 nodes given the protocol, a
corresponding edge is drawn in the network, with the color of
the edge proportional to the total contact duration over the
course of the experiment between those nodes. Reflecting the
Pareto-like distribution of contact duration, colors move from
blue (weakly connected) to red (strongly connected) on a
logarithmic scale, consistent with other human network
observations [67,68]. As expected, most nodes appear to have
weak connections compared to the highly connected dyads and
triads in the network. The BT networks are denser and more
highly connected than their GPS counterparts, implying a greater
potential for disease spread. There is a greater preponderance
of weak edges in the BT data sets than in their corresponding
GPS counterparts. There is a modest increase in the number of
edges between the 8- and 20-m thresholds for each data set.
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Figure 1. Stress layout of aggregated weighted contact network by underlying population and data source, with edges colored in log scale by weights.
BT: Bluetooth; SHED: Saskatchewan Human Ethology Dataset.

Contact frequency (the rate at which contacts occur) and
intercontact time (the time between contacts) are common
aggregate distributions used to characterize contact data sets.
Similar to many other data sets, both the BT and GPS
demonstrate power law decay for the probability of contact
duration and intercontact time (Figure 2). GPS-based contact
detection tends to infer more and shorter-duration contacts but
exhibits truncated tails. In SHED7 and SHED9, the tail

truncation leads to fewer long-duration contacts (>600 min)
than BT. The intercontact times are similar for all data sets, but
the BT distributions are skewed more heavily toward longer
intercontact times than in the case of GPS. In contrast, for
SHED8 and SHED9, BT tracking detects notably fewer
moderately long contacts (those in the range of 50 min to 600
min). This may be due to localization noise–induced false
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positives in the GPS data set skewing the apparent contact durations higher.

Figure 2. Empirical complementary cumulative distribution function of contact duration and intercontact time with different sources and distance
thresholds. BT: Bluetooth; SHED: Saskatchewan Human Ethology Dataset.

After filtering the connections for the appropriate distance
threshold (8 m and 20 m or approximately 26.2 ft and 65.6 ft),
the agent-based simulation was run according to the protocol
described in simulation configuration. Many runs do not produce
an outbreak, with the initially exogenously infected individual
being the only member of the network infected. This results in
a zero-heavy bimodal distribution of cumulative infection counts

per realization, with a Poisson spike at 0 cumulative endogenous
infections (1 exogenous infection) and a second distribution
describing the probability of an outbreak of a given size
conditional on outbreak occurrence (ie, the probability of at
least one endogenous infection). A stacked bar plot showing
the ratio of runs in which further incidences beyond the initial
infectious individual did or did not occur is shown in Figure 3.
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The figure clearly shows a higher likelihood of an outbreak
occurring with the BT data, as expected from the aggregate
network diagrams and aggregate contact duration and frequency
plots. The consistent difference in the probability of outbreak
occurrence between the 2 conditions is our first substantial
indication that the two means of measuring contact are not

equivalent. To determine the impact of each dynamic contact
pattern on the outbreaks themselves, the trials in which no
endogenous infection occurred were removed, and statistical
analysis was conducted on the distribution of outbreak severity
conditional on outbreak occurrence.

Figure 3. Number of realizations with or without further infections beyond initial infections. BT: Bluetooth; SHED: Saskatchewan Human Ethology
Dataset.

The Bonferroni-corrected Shapiro-Wilk test was passed for each
of the 50 samples of attack rate, denoted by θ, for every pair of
disease M and the underlying population V, except for

COVID-19, with contact records collected via GPS using a
distance threshold of 20 over SHED8. The results of the
Bonferroni-corrected Welch t test are presented in Table 4.
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Table 4. Bonferroni-corrected Welch t test for incidence number.

P value

GPS8-GPS20BT20-GPS20BT20-GPS8BT8-GPS20BT8-GPS8BT8-BT20a

Norovirus

<.001<.001<.001<.001.05<.001SHED7

<.001<.001<.001<.001<.001<.001SHED8

<.001.001<.001<.001<.001<.001SHED9

Influenza

<.001<.001<.001<.001.12<.001SHED7

.001<.001<.001<.001<.001<.001SHED8

<.001<.001<.001<.001<.001<.001SHED9

COVID-19

<.001<.001<.001<.001.85<.001SHED7

.04<.001<.001<.001<.001.04SHED8

<.001<.001<.001>.99<.001.001SHED9

Measles

<.001>.99<.001<.001.003<.001SHED7

<.001<.001<.001<.001<.001<.001SHED8

<.001<.001<.001<.001<.001<.001SHED9

aBT: Bluetooth.

Our predetermined α level was .05.

The results of Bonferroni-corrected pairwise t tests [69] between
observed attack rates (having filtered out scenarios with 0

endogenous infections) across all simulation runs for a condition
are presented in Table 5.
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Table 5. Bonferroni-corrected pairwise t test for attack rate.

P value

GPS8-GPS20BT20-GPS20BT20-GPS8BT8-GPS20BT8-GPS8BT8-BT20a

Norovirus

<.001<.001<.001<.001.25<.001SHED7

>.99<.001<.001<.001<.001.44SHED8

<.001.008<.001.005.01<.001SHED9

Influenza

<.001<.001<.001<.001>.99<.001SHED7

>.99<.001<.001<.001<.001<.001SHED8

<.001<.001<.001.02.004<.001SHED9

COVID-19

<.001<.001<.001<.001.73<.001SHED7

>.99<.001<.001<.001<.001.07SHED8

<.001<.001<.001>.99<.001<.001SHED9

Measles

<.001.49<.001<.001>.99<.001SHED7

.002<.001<.001<.001<.001<.001SHED8

<.001<.001<.001<.001<.001<.001SHED9

aBT: Bluetooth.

These results confirm our hypothesis that BT- and GPS-based
contact histories induce significantly different estimates of total
disease burden across multiple simulated realizations. The
primary comparisons are the BT8-GPS8 and the BT20-GPS20,
with the others included for completeness. For SHED7
BT8-GPS8, the results are not significant. For all other diseases
and data sets, the results are statistically significantly different.
In the case of BT20-GPS20, all results are significantly different,
with the exception of the SHED7 measles. While we suspected
that the infectiousness of the disease would impact simulated
outcomes, the results seem to be dominated by differences in
the data set and contact measurement modality. Looking at the
impact of resolution, some combinations of data set and disease
are not significantly different, but for the most part, increasing
the threshold increases the number of contacts, driving
differences in simulated outcomes. The exception to this general
rule seems to be SHED8 GPS8-GPS20, where increasing the

threshold did not significantly alter the outcomes for most
diseases and only marginally for measles.

Figure 4 shows the violin plots for the attack rates over each
realization across all simulated conditions and provides insight
into the statistical results from Table 5. SHED7 consistently
has lower attack rates for all diseases, with a smaller variance
and mean than other data sources. The limited attack rate likely
drives the similarity between the BT and the GPS. The denser
SHED8 and SHED9 networks have substantially larger variance,
leading to significant differences between the measurement
modality conditions. The highly contagious measles virus, in
particular, exhibits marked differences within the SHED8 and
SHED9 data sets. In general, BT contact patterns have longer
tails, indicating a greater possibility of larger outbreaks
throughout the population. In cases where a substantial
probability mass is contained in the tail, the median is also
drawn higher, as in SHED8 with BT20 for measles.
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Figure 4. Distribution of the attack rate (filtered out 0) for data collections and diseases. BT: Bluetooth; SHED: Saskatchewan Human Ethology Dataset.

Figure 5 shows the KL divergence on individual infection risks
within blocks of disease and the underlying population. The
individual infection risks are reflected by the likelihood of being
the most likely infected individual between different sensing
configurations, where a sensing configuration is a pair of
selected sensor types and proximate distance thresholds. The
distance threshold of proximate contact does not appear to
impact GPS-collocated inferred proximity contacts in terms of
individual infection risks, regardless of the underlying
population. This invariance to distance thresholds suggests that
the primary bottleneck lies in the GPS-colocation method’s
inability to identify exact proximity contacts among a group of
collocated individuals. Meanwhile, the BT-beaconing method

may capture proximity contacts at certain distance thresholds
(such as for SHED7 and SHED8), which can be important when
considering droplet-based pathogen transmission. There seems
to be a lower magnitude of KL divergence for BT8-BT20 and
BT20-BT8. The KL divergence among pairs of different sensor
types is similar regardless of the distance thresholds of
proximate contact, suggesting that BT beaconing and GPS
colocating collect different proximity contacts regardless of the
resolution of the distance thresholds of proximate contacts. The
magnitude of asymmetric |DKL(p‖q) – DKL(q‖p)| shown in
red lines is lower than either DKL(p‖q) or DKL(q‖p), indicating
that the asymmetry of the KL divergence is not impairing our
aforementioned analyses.
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Figure 5. Kullback-Leibler divergence of individual infection risks.

Discussion

Disparate Results From GPS- and BT-Based Contact
Tracking
Our results clearly indicate that GPS- and BT-based contact
tracking yield disparate results for the same cohort under
measurement. The ground truth contact network, while
unknown, was the same for each data set—it was the same set
of participants carrying a single phone measuring both
quantities. Both BT- and GPS-derived contact measurements
are estimates of the underlying contact pattern, admitting false
positives (eg, BT contacts through a wall) and negatives (eg, a
missed GPS contact because it occurred in an area of poor
satellite reception). GPS-based contact tracking identifies fewer
shorter contacts, leading to a significant decrease in expected
outbreak intensity and the number of outbreaks, potentially

because both participants need to have a sufficiently good
location fix to estimate colocation. The denser contacts reported
by BT-based contact tracking led to a higher probability of an
outbreak and larger outbreaks, resulting in significantly different
attack rates for most data sets and diseases. While there were
conditions under which no significant differences were observed
across the data collection modalities (particularly for SHED7
BT8-GPS8), differences were often significant enough to
encourage caution in the uptake and interpretation of these
sensed contact networks. GPS8 tends to underestimate the attack
rate relative to the others (BT8, BT20, and GPS20), indicating
the general inability of GPS colocating to capture proximate
contacts within a short distance. Sensing configurations tend to
estimate similar attack rates for infectious diseases without a
comparatively high R0 in a more distant underlying population,
except for SHED9-measles. Our study cannot conclusively
determine if the higher outbreak frequency and size in
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BT-derived networks is due to false positives in BT or false
negatives in GPS, but based on the precision of commodity GPS
receivers and their propensity to lose signal in large buildings,
we suspected that the observed disparities are predominantly
driven by GPS false negatives. If this suspicion is warranted,
GPS location–based proximity measurement should be used in
epidemiological simulations with caution and in a fashion that
anticipates and accounts for the fact that the data collection
modality used may be systemically underestimating contact.
This is particularly true for the short contacts outside of normal
contact networks that drive mixing.

The significance results were relatively insensitive to differences
in simulated disease impacting differences in GPS and BT, but
the data collection modality induced fewer differences in the
results for less contagious diseases, such as seasonal influenza,
than for more contagious diseases, such as measles. It is possible
that weakly contagious diseases might not demonstrate
differences, as outbreaks would be rare and limited in both GPS
and BT networks. These findings hold for both a nominal 8-m
and 20-m threshold for determining if contact has occurred. The
thresholds chosen are already judicious and indicate participants
being close enough during a measured portion to have come
into close contact during a sensor sleep period, rather than
explicitly detecting close contact. Comparing the within-sensor
outcomes, the contact threshold impacted the simulated attack
rate for most cases, with the exception of SHED8.

We used a stylized, agent-based SEIR model to determine the
attack rate using both BT- and GPS-inferred temporal contact
patterns. The stylized nature of the simulation implies that the
results should be generally correct, but that more detailed models
may diverge in the magnitude of the differences observed.
SHED7, SHED8, and SHED9 are interesting data sets due to
the multiple sensor modalities, but they are also highly biased,
being drawn from a university social science participant pool
comprised primarily of undergraduate students in the social and
physical sciences. GPS or BT data from other demographics
will almost certainly have different contact patterns, leading to
different outcomes. At one extreme, institutionalized individuals
(eg, in incarceration facilities or care homes) have limited
mobility and would be expected to have much more convergent
GPS and BT contact patterns. Perhaps not surprisingly, some
of the worst COVID-19 outbreaks occurred in these institutional
settings. Similarly, we analyzed 4 relatively contagious diseases
and ignored diseases where a specific type of contact initiates
infection, such as sexually transmitted or blood-borne diseases,
or where disease propagation is slow or exhibits prolonged
latent periods, such as with tuberculosis. As the definition of
contact for such excluded diseases is substantially different
from those analyzed in this study, the difference between GPS
and BT contact patterns may be more or less pronounced. The
process we have used to evaluate the differences should
generalize to any contagious disease or measured contact pattern
and can be used to evaluate the impact of novel contact detection
algorithms or other novel diseases such as COVID-19 variants
of concern.

While this study has made several meaningful contributions to
the literature, particularly in highlighting divergent attack rates
for GPS and BT measurements of the same underlying contact
network, it is subject to notable limitations. We used 3 data sets
drawn from a social sciences participant pool at our institution.
These data sets included individuals who were often unknown
to each other and likely produced more diffuse data sets than
would have been expected had we used snowball or
respondent-driven sampling or other socially connected
recruiting techniques. Running a similar analysis on other data
sets could provide more broadly generalizable or representative
results. However, for reasonable privacy reasons, public data
sets containing both GPS and BT records are not available,
requiring additional measurement effort to extend this analysis.
We used an agent-based SEIR model because it provided the
most direct link between the data and the simulated diseases.
We chose the stylized SEIR model to emphasize the role of
evolving contact networks in other disease dynamics. These
results could be extended to include more sophisticated disease
models and compared against compartmental transmission
models grounded in aggregate representations of the underlying
contact network. The COVID-19 pandemic has driven
innovation in contact tracing, and new measurement techniques
based on dongles, beacons, or badges are now readily available.
A similar analysis including these data sources could be
valuable. Finally, we constrained our analysis to 4 canonical
contagious diseases from a historical perspective with relatively
well-parameterized behaviors. However, novel diseases will
have novel disease parameters. An exploratory simulation study
that outlined how diseases might be expected to behave over
these contact networks using, for example, a random-walk
through parameter space might be valuable in predicting new
variants, existing diseases, or new diseases emerging from
animal reservoirs.

Conclusions
Epidemiological models of disease propagation are an important
tool in controlling and containing epidemic outbreaks. These
models rely on the accurate measurement of key biological and
behavioral parameters to ground the simulation results.
Quantifying the characteristics of dynamic contact networks is
a particularly challenging aspect of grounding these simulations.
The significant differences in the predicted outcomes for contact
networks demonstrated here between GPS- and BT-based
contact tracking highlight the difficulty of grounding these
simulations. Because of the nature of our data, we know that
the contact networks being sought via measurement by BT and
GPS should have been identical, as they corresponded to the
same device held by the same individual as they went about
their lives. The fact that the resulting contact networks and
predicted attack rates were different indicates that these
modalities are not interchangeable and that caution should be
exercised by modelers employing these measures. While BT
and GPS data provide more precise measurements than
traditional surveys, they are still prone to error and disparate
estimates of the underlying network structure and dynamics.
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