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Abstract

Background: Anxiety disorders rank among the most prevalent mental disorders worldwide. Anxiety symptoms are typically
evaluated using self-assessment surveys or interview-based assessment methods conducted by clinicians, which can be subjective,
time-consuming, and challenging to repeat. Therefore, there is an increasing demand for using technologies capable of providing
objective and early detection of anxiety. Wearable artificial intelligence (AI), the combination of AI technology and wearable
devices, has been widely used to detect and predict anxiety disorders automatically, objectively, and more efficiently.

Objective: This systematic review and meta-analysis aims to assess the performance of wearable AI in detecting and predicting
anxiety.

Methods: Relevant studies were retrieved by searching 8 electronic databases and backward and forward reference list checking.
In total, 2 reviewers independently carried out study selection, data extraction, and risk-of-bias assessment. The included studies
were assessed for risk of bias using a modified version of the Quality Assessment of Diagnostic Accuracy Studies–Revised.
Evidence was synthesized using a narrative (ie, text and tables) and statistical (ie, meta-analysis) approach as appropriate.

Results: Of the 918 records identified, 21 (2.3%) were included in this review. A meta-analysis of results from 81% (17/21) of
the studies revealed a pooled mean accuracy of 0.82 (95% CI 0.71-0.89). Meta-analyses of results from 48% (10/21) of the studies
showed a pooled mean sensitivity of 0.79 (95% CI 0.57-0.91) and a pooled mean specificity of 0.92 (95% CI 0.68-0.98). Subgroup
analyses demonstrated that the performance of wearable AI was not moderated by algorithms, aims of AI, wearable devices used,
status of wearable devices, data types, data sources, reference standards, and validation methods.

Conclusions: Although wearable AI has the potential to detect anxiety, it is not yet advanced enough for clinical use. Until
further evidence shows an ideal performance of wearable AI, it should be used along with other clinical assessments. Wearable
device companies need to develop devices that can promptly detect anxiety and identify specific time points during the day when
anxiety levels are high. Further research is needed to differentiate types of anxiety, compare the performance of different wearable
devices, and investigate the impact of the combination of wearable device data and neuroimaging data on the performance of
wearable AI.

Trial Registration: PROSPERO CRD42023387560; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=387560

(J Med Internet Res 2023;25:e48754) doi: 10.2196/48754
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Introduction

Background
Anxiety is defined as an unpleasant emotional state whose cause
is either not easily defined or considered to be uncontrollable
or unavoidable, resulting in tension and physiological
manifestations [1]. Anxiety disorders (ADs) include generalized
AD, social AD, panic disorder, and various phobia-related
disorders [2-5]. ADs are one of the most common mental
disorders, and they have a high prevalence worldwide. It is
estimated that 284 million people worldwide have been
diagnosed with AD [6]. A report conducted by the National
Health Interview Survey revealed that 15.6% of adults in the
United States had ADs in 2019 [7]. In Europe, anxiety is the
most prevalent mental health condition among people aged 14
to 65 years, with a 12-month prevalence of 14% and
approximately 61.5 million affected individuals [8]. Studies
have also reported that AD affects 14.5% to 33.7% of the
population at least once in their lifetime, which means that up
to one-third of individuals experience AD at some point in their
lives [9]. People with ADs often experience intense, excessive,
and persistent worry and fear about everyday situations. Anxiety
can significantly affect an individual’s social, occupational, and
personal functioning and can interfere with daily activities such
as job performance, schoolwork, and social relationships.

The diagnosis of ADs is a very complicated and challenging
task. Currently, ADs are diagnosed and screened primarily
through clinical observations of patients’ mental states, clinical
histories, and self-report questionnaires (eg, the State-Trait
Anxiety Inventory) for anxiety [10]. However, these approaches
have been hampered by a number of significant limitations,
such as the subjectivity and reproducibility of these methods,
shortage of mental health professionals worldwide, the long
time required to conduct comprehensive clinical interviews,
and the extensive presence of comorbidities in patients with
anxiety [11]. As a result, anxiety is commonly underdetected
and undertreated despite the huge disease burden. Thus, there
is a substantial need for more efficient automated tools and
technologies that can overcome the challenges of the current
approaches to anxiety assessment [12].

Advances in digital technologies and wireless sensors have led
to the proliferation of wearable health care devices, which can
be particularly useful for the diagnosis and prediction of anxiety.
Wearable devices offer a convenient way for people with anxiety
to monitor, examine, track, and share their health features, such
as physical activities, heart rates, sleep patterns, blood oxygen,
and respiratory rate. Wearable devices are made in different
forms to meet their use requirements and can be classified into
4 types: on-body devices (fixed directly on the body or skin),
near-body devices (fixed close to the body with no direct contact
with the body or skin), in-body devices (implantable
electronics), and electronic textiles (textiles with integrated
electronics).

Wearable devices have undergone a significant transformation
over the last few years, reflecting the rapid advancement of
technology in the field. Early iterations of smartwatches and
activity trackers were primarily focused on basic monitoring
and display functions. Many of these devices lacked connectivity
options, limiting their ability to interact with other technologies.
However, the introduction of Bluetooth components marked a
turning point in the evolution of wearables, allowing for
synchronization with smartphones and other wireless devices.
This integration not only enhanced the user experience but also
paved the way for more advanced functionalities.

More recent versions of wearable devices have embraced
cutting-edge innovations by incorporating artificial intelligence
(AI) and machine learning components, thus introducing what
we call wearable AI technology. Wearable AI is the fusion of
data obtained from wearables and sophisticated machine learning
algorithms [13]. Machine learning techniques can be used for
analyzing a patient’s wearable data to detect anxiety, helping
replicate human reasoning or make logical decisions. Moreover,
many wearable devices come equipped with embedded
computing capacity that enables them to use AI algorithms.
However, other wearable devices can use another connected
device or the cloud for the required computing power. Hence,
resource-intensive AI algorithms can be seamlessly integrated
into a wearable device [14-16]. If effectively used, wearable AI
can greatly help in the accurate diagnosis and prediction of
anxiety as well as the management of several ADs.

Research Problem and Aim
In the past few years, numerous studies have examined the
performance of wearable AI devices for the detection of anxiety.
In an effort to summarize these studies, several reviews have
been conducted, but they had the following limitations. First,
most extant reviews have largely focused on general wearable
devices rather than wearable AI devices [12,17-21]. Second, in
many of these reviews, specific age groups were targeted, such
as children and adolescents [20]. Third, a large number of these
reviews did not search relevant databases such as PsycINFO
[17,19,20], ACM Digital Library [17-21], and IEEE Xplore
[17-21]. Fourth, some of these reviews examined the
performance of wearable AI for limited data types (eg,
electrocardiogram [ECG] data) [12] rather than considering all
data types collected by wearables. Finally, and most importantly,
no systematic reviews or meta-analyses have been conducted
to evaluate the effectiveness of wearable AI in detecting anxiety
[17,19,20,22]. To address this gap, this review aimed to examine
the performance of wearable AI in detecting and predicting
anxiety. It is worth noting that this review is built upon and
differs from our previous reviews [22,23]. Specifically, the first
study [22] was a scoping review to explore the features of
wearable AI used for anxiety and depression and identify the
research gaps in this area. However, this scoping review did not
focus on the performance of wearable AI in detecting and
predicting depression or anxiety [22]. The second study was a
systematic review and meta-analysis that summarized the
evidence on the performance of wearable AI in detecting and
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predicting depression [23]. This review will bridge one of the
gaps identified by the first review and not addressed by the
second review, which is the assessment of the performance of
wearable AI in detecting and predicting anxiety.

Methods

Overview
The authors conducted and reported this systematic review in
accordance with the PRISMA-DTA (Preferred Reporting Items
for Systematic Reviews and Meta-Analyses extension for
Diagnostic Test Accuracy) [24]. The PRISMA-DTA checklist
for this review is outlined in Multimedia Appendix 1 [24]. The
protocol for this review was registered in PROSPERO (ID:
CRD42023387560).

Search Strategy
To find relevant studies, the first author searched the following
8 electronic databases on October 3, 2022: MEDLINE (via
Ovid), Embase (via Ovid), PsycINFO (via Ovid), CINAHL (via
EBSCO), ACM Digital Library, Scopus, IEEE Xplore, and
Google Scholar. An automated search was set up with biweekly
alerts for 3 months (ending on January 2, 2023). Owing to the
large number of results retrieved from Google Scholar, only the
first 100 hits (ie, 10 pages) were checked for this review. To
identify additional studies, we screened the reference lists of
the included studies (ie, backward reference list checking) and
reviewed studies that cited the included studies (ie, forward
reference list checking).

The search terms used in this review were compiled after
consulting with 3 experts in digital mental health and after
reviewing relevant reviews. The search query was composed
of 3 groups of terms: those related to AI (eg, artificial
intelligence, machine learning, and deep learning), those related
to wearable devices (eg, wearable, smart watch, and
smartwatch), and those related to anxiety (eg, anxiety and
anxious). The search queries used in this review are presented
in Multimedia Appendix 2.

Study Eligibility Criteria
This review examined papers that focused on building or
applying AI algorithms for detecting or predicting anxiety using
data from wearable devices. The selection criteria for articles
that qualified for inclusion and exclusion were agreed upon
through the collaborative expertise of the authors. To be
considered for inclusion in this review, studies had to evaluate
the performance of AI algorithms in detecting or predicting
anxiety and report the confusion matrix or performance
measures (eg, accuracy, sensitivity, or specificity). We excluded
studies that used AI to predict the outcome of an anxiety
intervention or treatment. The data acquisition had to be via
noninvasive on-body wearables, such as smartwatches, smart
glasses, smart wristbands, smart clothes, and smart rings. We
excluded studies that used the following devices to collect the
data: nonwearable devices, handheld devices (eg, mobile
phones), near-body wearable devices (eg, devices that do not
have direct contact with the body surface), in-body wearable
devices (eg, implants), wearable devices wired to nonwearable
devices, and wearable devices requiring expert supervision (eg,

wearable devices that require placement of electrodes at very
specific body points). This review included studies that collected
data using other methods (eg, nonwearable devices, interviews,
and questionnaires) along with wearable devices. We included
peer-reviewed journal articles, conference papers, and
dissertations with full text regardless of study settings, reference
standards, and the country in which the study was conducted.
Considering our focus on modern technology and the fact that
the domain of wearable AI devices is under constant
development, only articles from 2015 onward were included.
Studies published in a language other than English or structured
as review articles, editorials, conference abstracts, preprints,
posters, protocols, and research highlights were excluded.
Articles demonstrating a theoretical foundation for wearable
AI devices for anxiety were disregarded.

Study Selection
Relevant studies were identified through the following 3 steps.
First, all the retrieved studies were imported into EndNote X9
(Clarivate Analytics) to identify and eliminate duplicate items.
Second, 2 reviewers independently screened the titles and
abstracts of all the retrieved studies. Finally, the remaining
articles were subsequently sourced in full text and inspected by
the 2 reviewers independently. Any disagreements in the second
and third steps were resolved through discussion. The Cohen κ
was used to calculate interrater agreement, which was 0.90 for
title and abstract screening and 0.94 for full-text reading.

Data Extraction
Using Excel (Microsoft Corp), 2 reviewers independently
extracted metadata, wearable devices, AI algorithms, and results
of the studies. The data extraction form used in this review was
pilot-tested with 5 studies (Multimedia Appendix 3). Any
disputes in the extracted data between the reviewers were
resolved through consensus. For all studies in which raw data
or confusion matrices were reported, we calculated the following
performance metrics: accuracy, specificity, and sensitivity. If
the confusion matrix was not available in the published studies,
the first and corresponding authors were contacted in an attempt
to retrieve it. We did not include results derived from AI
algorithms based solely on nonwearable device data (eg, data
collected by smartphones or questionnaires). As many studies
conducted multiple experiments to test, for example, different
numbers of features, data types, validation approaches, and AI
algorithms, they reported several results for the same
performance measure. Thus, for these studies, we extracted the
highest results for each performance measure for each algorithm.

Risk-of-Bias and Applicability Appraisal
To carefully assess the quality of the included studies, we
adapted a well-known tool (Quality Assessment of Diagnostic
Accuracy Studies–Revised; QUADAS-2) [25] for our analysis
by replacing some irrelevant criteria with more relevant criteria
from another applicable tool (the Prediction Model Risk of Bias
Assessment Tool) [26]. In this section, we describe our modified
QUADAS-2 tool that is based on both experience using the
original tool and potential sources of bias originating from
differences in the design and conduct of the included studies.
Our QUADAS-2 modified tool consists of 4 domains:
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participants, index test (AI algorithms), reference standard
(ground truth), and analysis. Each domain comprises 4 signaling
questions that were developed to address the specific aims of
this review. In addition to assessing the risk of bias for each of
the 4 domains, the first 3 domains are also assessed in terms of
concerns regarding applicability. In total, 2 reviewers
independently examined the risk of bias in the included studies
using the modified version of the QUADAS-2 (Multimedia
Appendix 4), which was first trialed with 5 studies. Any
inconsistencies in decisions between the reviewers were resolved
through discussion.

Data Synthesis
Narrative and statistical approaches were used to synthesize the
data extracted from the included studies. In our narrative
synthesis, we used text and tables to summarize and describe
the characteristics of the included studies (study metadata,
wearable devices, and AI techniques). With regard to the
statistical approach, DerSimonian-Laird random-effects models
[27] using the Freeman-Tukey double arcsine transformation
[28,29] were conducted to pool outcome measures (ie, accuracy,
sensitivity, and specificity) when the extracted effect sizes in
one stratum were independent (ie, extracted from different
unique citations). This methodology accounts for the sampling
variation and heterogeneity in effect sizes and was conducted
using the meta package in R (version 4.2.2; R Foundation for
Statistical Computing) [30].

In this review, some studies reported multiple effect sizes. Such
studies will have a larger effect on the results of the
meta-analysis than studies reporting only one effect size.
Therefore, we used a multilevel meta-analysis [27,31] to account
for this dependency in effect sizes (ie, extracted from the same
citation), thereby reducing the likelihood of type-I errors.
Multilevel meta-analyses were conducted using the metafor
package in R (version 4.2.2) [32].

When applicable, subgroup multilevel meta-analyses were
conducted to assess for a possible association between outcome
measures and different moderators (algorithms, aims of AI,
wearable devices used, status of wearable devices, data types,
data sources, reference standards, and validation methods
[27,31]). The strength of evidence for an association was deemed
significant for moderators with a P value of <.05.

Between-study heterogeneity was assessed using the Cochran
Q statistic (P<.05 indicated heterogeneity), between-study

variance was assessed using τ2, and the magnitude of
between-study variation because of true difference in effect

sizes rather than chance was assessed using I2 [29,33]. The

degree of heterogeneity was considered insignificant when I2

ranged from 0% to 40%, moderate when it ranged from 30%
to 60%, substantial when it ranged from 50% to 90%, or
considerable when it ranged from 75% to 100% [34].

Results

Search Results
The results of the systematic search are presented in Figure 1.
A total of 918 studies were identified through the systematic
search across the preidentified databases. Of the 918 identified
studies, 184 (20%) duplicates were removed using EndNote
X9, leaving 734 (80%) studies. A further 85.4% (627/734) of
the studies were excluded following title and abstract screening.
We retrieved and read the full text of the remaining 107 studies.
The full-text reading led to the removal of 82.2% (88/107) of
the studies, primarily because of not using wearable devices,
not using AI methods, not having anxiety as a measured
outcome, or being other irrelevant publication types. We
identified 2 additional studies relevant to this review through
backward and forward reference list checking. The remaining
21 studies were included in this review [35-55], of which 17
(81%) were included in the meta-analysis
[35-43,45,46,48,49,51,52,54,55].
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Figure 1. Flowchart of the study selection process. AI: artificial intelligence.

Characteristics of the Included Studies
The key characteristics of the studies included in the review are
presented in Table 1. The included studies were published
between 2016 and 2022. The years in which the largest number
of included studies was published were 2021 (6/21, 29%) and
2020 (6/21, 29%). Studies were conducted in 10 different
countries (Table 1), with the United States accounting for more
than a quarter of the included studies (6/21, 29%). Most of the
studies (15/21, 71%) were peer-reviewed journal articles, and
the rest were conference papers (6/21, 29%). The number of
participants in the included studies ranged from 10 to 823, with
an average of 173.4 (SD 247; Table 1). The mean age of the

participants was reported in more than half (11/21, 52%) of the
studies and ranged from 19.8 to 73.4 years, with an average of
35.0 (SD 14.4) years. All studies targeted adults, with 5% (1/21)
of the studies focusing only on older adults (aged 60-80 years).
A total of 71% (15/21) of the studies reported the proportion of
female participants, which ranged from 37% to 66.3%, with an
average of 57.7% (SD 13.3%). Most studies (17/21, 81%)
recruited participants with any health condition, and the
remaining studies either focused on patients with a specific AD
(4/21, 19%) or recruited both patients with anxiety and healthy
individuals (1/21, 5%). The characteristics of each included
study are listed in Multimedia Appendix 5 [35-55].
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Table 1. Characteristics of the included studies (N=21).

ReferencesValuesFeature

Year of publication, n (%)

[42,48,54]3 (14)2022

[35,43,45,47,50,52]6 (29)2021

[36-39,41,44]6 (29)2020

[49,51,53]3 (14)2019

[40]1 (5)2017

[46,55]2 (10)2016

Country of publication, n (%)

[39,42,43,47,50,53]6 (29)United States

[37,49,52]3 (14)United Kingdom

[35,36,45]3 (14)Pakistan

[38,48]2 (10)Japan

[40,44]2 (10)China

[41,46,51,54,55]1 (5) eachOther (Germany, Hong Kong, Lithuania, Mexico, and Taiwan)

Type of publication, n (%)

[35,37,40-47,50-52,54,55]15 (71)Journal article

[36,38,39,48,49,53]6 (29)Conference paper

[35-55]173.4 (247; 10-823)Number of participants, mean (SD; range)

[35,37,42,43,46-48,50-53]35.0 (14.4; 19.8-73.4)Age of participants (years), mean (SD; range)

[35-37,39,42-48,51-54]57.7 (13.3; 37-66.3)Gender (% of women), mean (SD; range)

Health conditionsa, n (%)

[35-40,42-50,53,55]17 (81)Any health condition

[52]1 (5)Social anxiety

[54]1 (5)Panic disorders

[41]1 (5)Arachnophobia

[51]1 (5)Glossophobia

[51]1 (5)Healthy

aNumbers do not add up as participants in one study had more than 1 health condition.

Features of Wearable AI
Among the included studies, 8 different wearable devices were
used. Approximately a quarter of all studies (5/21, 24%) did
not indicate what type of wearable device they used. The most
common wearable devices used were the Fitbit series (eg, Fitbit
Charge, Fitbit Flex, and Fitbit Alta; 4/21, 19%), the Empatica
series (3/21, 14%), and Muse (3/21, 14%; Table 2). There were
9 locations on the body where wearable devices were worn in
the included studies; however, wrist-worn devices were the
most prevalent (15/21, 71%). The included studies used AI to
detect the current anxiety status in 86% (18/21) of the studies
or predict the occurrence of anxiety in the future in 14% (3/21)
of the studies. The AI algorithms in the included studies were
used to solve classification problems (20/21, 95%), regression
problems (2/21, 10%), and clustering problems (2/21, 10%).
Among the included studies, 20 different algorithms were used,
but the most commonly used algorithms were support vector

machine (10/21, 48%) and random forest (RF; 8/21, 38%).
Nearly all studies (19/21, 90%) used closed data sets (ie,
collected by the authors of the study or obtained from previous
studies) except for 10% (2/21) of the studies, which used open
data sets (public databases). The included studies used 14 types
of data to develop their models (Table 2). The most common
data used to develop the models were heart rate data (eg, heart
rate, heart rate variability, and interbeat interval; 12/21, 57%),
physical activity data (eg, step counts, calories, and metabolic
rate; 9/21, 43%), electrodermal activity data (6/21, 29%), and
sleep data (eg, duration and patterns; 5/21, 24%). There were
13 different tools used by the included studies to identify the
ground truth, but the State-Trait Anxiety Inventory (8/21, 38%)
was the most common. Among the included studies, 3 methods
were used to validate the performance of the models, which
were k-fold cross-validation (13/21, 62%), hold-out
cross-validation (7/21, 33%), and leave-one-out cross-validation
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(4/21, 19%). The features of the wearable devices in each included study are described in Multimedia Appendix 6 [35-55].
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Table 2. Features of artificial intelligence (AI) wearables (N=21).

ReferencesStudies, n (%)Feature

Wearable devicea

[38,39,48,53]4 (19)Fitbit series

[46,51,52]3 (14)Empatica series

[35,36,46]3 (14)Muse

[50,54]2 (10)Vivosmart

[37,41-43,46,53,55]1 (5) eachOther

[40,44,45,47,49]5 (24)Not reported

Placementb

[37-40,43-48,50-54]15 (71)Wrist

[35,36,46,55]4 (19)Head

[46,53]2 (10)Chest

[40-42,49,55]1 (5) eachOther (eyes, hip, neck, arm, hand, and waist)

Aim of AI algorithms

[35-38,40-42,44-48,50-53,55]18 (86)Detection

[39,43,54]3 (14)Prediction

Problem-solving approachesc

[35-49,51-55]20 (95)Classification

[42,50]2 (10)Regression

[39,50]2 (10)Clustering

AI algorithmsd

[39,41,43,46,47,49-53,55]10 (48)Support vector machine

[35,36,38,43,45,47,52,54]8 (38)Random forest

[41,49,52,54]4 (19)Decision tree

[41,43,52,55]4 (19)K-nearest neighbor

[35,36,49,50]4 (19)Multilayer perceptron

[35,36,47]3 (14)Logistic regression

[37,44,45]3 (14)Long short-term memory

[43,50,54]3 (14)XGBoost

[44,45]2 (10)Convolutional neural network

[45,50]2 (10)Gradient boosting

[41,42]2 (10)Ensemble model

[40,50]2 (10)K-means

[41,54]2 (10)Linear discriminant analysis

[41,43,45,48,50,54]1 (5) eachOther

Data set source

[35-38,40-49,51-55]19 (90)Closed

[39,50]2 (10)Open

Data input to AI algorithme

[37,39,41,46-49,51-55]12 (57)Heart rate data

[39,42-45,48-50,54]9 (43)Physical activity data

[41,46,47,49,51,52]6 (29)Electrodermal activity data
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ReferencesStudies, n (%)Feature

[38,43,48,50,54]5 (24)Sleep data

[35,36,55]3 (14)EEGf data

[40,44]2 (10)Audio data

[48,50]2 (10)Behavioral data

[51,52]2 (10)Skin temperature data

[48,50,54]1 (5) eachOther

Ground truth assessmentg

[35-37,39,40,44,47,50]8 (38)STAIh

[38,48]2 (10)DAMSi

[41,46]2 (10)Observation

[42,43]2 (10)CIDIj

[37,41,44,45,51,52,54,55]1 (5) eachOther

[49,53]2 (10)Not reported

Validation approachk

[35,36,41-43,45,48,50-55]13 (62)K-fold cross-validation

[37,39,44,45,47,50,54]7 (33)Hold-out cross-validation

[38,45,46,51]4 (19)Leave-one-out cross-validation

[40,49]2 (10)Not reported

aNumbers do not add up as several studies used more than 1 wearable device.
bNumbers do not add up as the wearable devices in 1 study were placed in different parts of the body.
cNumbers do not add up as many studies used more than 1 problem-solving approach.
dNumbers do not add up as many studies used more than 1 AI algorithm.
eNumbers do not add up as many studies used more than 1 data input.
fEEG: electroencephalogram.
gNumbers do not add up as many studies used more than 1 tool to assess the ground truth.
hSTAI: State-Trait Anxiety Inventory.
iDAMS: Depression and Anxiety Mood Scale.
jCIDI: Composite International Diagnostic Interview.
kNumbers do not add up as many studies used more than 1 validation approach.

Results of Risk-of-Bias Appraisal
Approximately two-thirds of the studies (14/21, 67%) did not
provide adequate information to identify whether an appropriate
consecutive or random sample of eligible patients was used.
Most of the included studies (20/21, 95%) avoided inappropriate
exclusions. The number of patients in the subgroups was
appropriately balanced across half (10/21, 48%) of the studies.
A sufficient sample size was reported in 43% (9/21) of the

studies, whereas there was no clear indication of whether a
sufficient sample size was used in the remaining studies (12/21,
57%). Consequently, the risk of bias resulting from the
“selection of participants” was rated as low in only half (10/21,
48%) of the studies (Figure 2). A low level of concern was
judged regarding the matching between the spectrum of
participants and the prestated requirements in 90% (19/21) of
the studies (Figure 3).
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Figure 2. Results of the assessment of risk of bias in the included studies.

Almost all studies (20/21, 95%) described the AI models in
detail. Most of the included studies (19/21, 90%) provided a
clear description of the features (predictors) used in the models,
and the features in nearly all studies (20/21, 95%) were assessed
in the same way for all participants. In all the included studies
(21/21, 100%), features were collected without knowledge of

outcome data. Thus, the risk of bias owing to the “index test”
was rated as low in most of the included studies (19/21, 90%;
Figure 2). All studies (21/21, 100%) were judged to have low
concerns that the definition, assessment, or timing of predictors
in the model did not match the review question (Figure 3).

Figure 3. Results of the assessment of applicability concerns in the included studies.

The outcome of interest (ie, anxiety level) was assessed using
appropriate tools in 81% (17/21) of the included studies. The
outcome was defined in a similar way for all participants in
almost all studies (20/21, 95%) and was determined without
knowledge of predictor information in all studies (21/21, 100%).
An adequate interval was used between the index test and the
reference standard in most studies (17/21, 81%). Accordingly,
the risk of bias because of the “reference standard” was low in
90% (19/21) of the studies (Figure 2). All the included studies
(21/21, 100%) were judged to have low concerns that the
outcome definition, timing, or determination did not match the
review question (Figure 3).

All participants enrolled in the study were included in the data
analysis in 62% (13/21) of the studies. In 90% (19/21) of the
studies, the data preprocessing was carried out appropriately,

and in 86% (18/21) of the studies, the breakdown of the training,
validation, and test sets was adequate. In 71% (15/21) of the
studies, suitable measures were used to evaluate the performance
of the models. According to these judgments, 76% (16/21) of
the studies had a low risk of bias in the “analysis” domain
(Figure 2). Multimedia Appendix 7 [35-55] shows the reviewers’
judgments on the “risk of bias” and “applicability concerns”
for each domain in each included study.

Results of the Studies

Overview
Meta-analyses were carried out for the highest accuracy,
sensitivity, and specificity. Furthermore, when applicable,
subgroup meta-analyses were performed to assess the
performance of wearable AI based on different AI algorithms,
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aims of AI, wearable devices used, status of wearable devices,
data types, data sources, reference standards, and validation
methods. The following sections present the aforementioned
results.

Accuracy
Wearable AI accuracy, which is the ability of the AI to correctly
classify patients with and without anxiety, was examined in
81% (17/21) of the studies. From these investigations, we
extracted 40 accuracy estimates as multiple algorithms were

often assessed in a single study. The highest accuracies observed
spanned 0.50 to 1.00. As displayed in Table 3, a meta-analysis
of the 40 estimates derived from 149,909 participants across
the 81% (17/21) of studies revealed a pooled mean accuracy of
0.82 (95% CI 0.71-0.89). The meta-analyzed evidence exhibited

considerable statistical heterogeneity (P<.001; I2=99.9%). Table
3 also indicates that, through subgroup analyses, no statistically
significant difference (P>.05) was found in the highest accuracy
between subgroups in all groups.
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Table 3. Pooled mean estimates of highest accuracy by several factors.

Test for sub-
group differ-
ences (P value)

Heterogeneity measuresPooled mean
accuracy,
mean (95%
CI)

Accuracy
(%), range

Sample size,
N

Studies, NaGroup

I2 (%)Q (P value)τ2

.07Algorithms

99.3819.0
(<.001)

0.05200.82 (0.67-
0.94)

0.50-0.9921,4137Support vector machine

99.61187.6
(<.001)

0.04260.83 (0.68-
0.94)

0.56-0.9922,1326Random forest

99.71164.3
(<.001)

0.05850.87 (0.68-
0.98)

0.70-0.9921,7854Decision tree

75.88.3 (.02)0.00870.81 (0.70-
0.90)

0.71-0.875043Multilayer perceptron

0.00.0 (.98)0.00000.71 (0.61-
0.80)

0.70-0.71932Logistic regression

92.112.7 (<.001)0.00700.62 (0.50-
0.73)

0.55-0.6712392XGBoost

17.71.2 (.27)<0.00010.67 (0.66-
0.69)

0.67-0.6910,6952Long short-term memory
networks

28.61.4 (.24)0.00030.92 (0.89-
0.94)

0.91-0.946052Ensemble model

93.415.0 (<.001)0.16720.88 (0.32-
1.00)

0.62-0.9961,0222K-nearest neighbor

.33Aims of AIb

99.962,108.0
(<.001)

0.28570.84 (0.72-
0.91)

0.50-0.99143,80033Detectionc

94.9117.9
(<.001)

0.00820.72 (0.66-
0.78)

0.55-0.8161097Prediction

.91Status of WDd

99.928,205.8
(<.001)

0.33450.82 (0.68-
0.91)

0.55-0.99130,27927Commercialc

99.41363.3
(<.001)

0.04710.85 (0.71-
0.92)

0.67-0.9516,61011Noncommercialc

.12WDs

46.29.0 (.11)0.00000.77 (0.67-
0.85)

0.71-0.882796Musec

1001722.8
(<.001)

1.07150.97 (0.00-
0.99)

0.86-0.99121,0485Empatica E4c

96.252.4 (<.001)0.04530.70 (0.45-
0.89)

0.56-0.893933Fitbit

.59Data sources

99.959,871.8
(<.001)

0.34980.81 (0.64-
0.90)

0.50-0.99141,51627WD-basedc

98.4622.7
(<.001)

0.05520.86 (0.75-
0.92)

0.67-0.95839313WD-based and othersc

.48Data types

99.71041.3
(<.001)

0.11330.88 (0.62-
0.96)

0.67-0.9418,6198Activity datac

99.1573.6
(<.001)

0.14920.78 (0.57-
0.90)

0.55-0.95767512Activity data and othersc
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Test for sub-
group differ-
ences (P value)

Heterogeneity measuresPooled mean
accuracy,
mean (95%
CI)

Accuracy
(%), range

Sample size,
N

Studies, NaGroup

I2 (%)Q (P value)τ2

99.95870.6
(<.001)

0.67180.92 (0.55-
0.99)

0.71-0.99122,6509EDAe data and othersc

46.29.0 (.11)0.00000.78 (0.67-
0.85)

0.71-0.882796EEGf datac

.80Reference standards

61.719.5 (.006)0.00870.73 (0.61-
0.82)

0.58-0.883988STAIb,g

99.1117.5
(<.001)

0.10990.77 (0.33-
1.00)

0.55-0.945292CIDIh

96.427.6 (<.001)0.06910.75 (0.39-
0.98)

0.56-0.892962DAMSi

.41Validation methods

99.924,618.6
(<.001)

0.38750.86 (0.70-
0.94)

0.55-0.99129,11324K-foldc

99.3901.7
(<.001)

0.03030.76 (0.57-
0.87)

0.50-0.9218,95910Hold-outc

86.07.1 (.008)0.01410.66 (0.49-
0.82)

0.56-0.745822Leave-one-out

N/Aj99.975,900.5
(<.001)

0.27130.82 (0.71-
0.89)

0.50-1.00149,90940All studiesc

aMany studies were included more than once in each meta-analysis given that they assessed the performance of more than one algorithm.
bAI: artificial intelligence.
cAccuracy was pooled using the multilevel meta-analysis method.
dWD: wearable device.
eEDA: electrodermal activity.
fEEG: electroencephalogram.
gSTAI: State-Trait Anxiety Inventory.
hCIDI: Composite International Diagnostic Interview.
iDAMS: Depression and Anxiety Mood Scale.
jN/A: not applicable.

Sensitivity
In 48% (10/21) of the studies, the sensitivity of wearable AI,
referring to the AI’s capacity to accurately identify patients with
anxiety, was examined. From these studies, we extracted 24
sensitivity estimates as many studies assessed sensitivity for
more than one algorithm. The highest sensitivity in these studies
ranged from 0.21 to 1.00. A meta-analysis of the 24 estimates,

involving 97,794 participants from the 48% (10/21) of the
studies, revealed a pooled mean sensitivity of 0.79 (95% CI
0.57-0.91), as displayed in Table 4. The statistical heterogeneity

of the evidence was considerable (P<.001; I2=99.9%). Table 4
also demonstrates that, based on subgroup analyses, no
statistically significant difference (P>.05) in the highest
sensitivity was revealed between subgroups in all groups.
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Table 4. Pooled mean estimates of highest sensitivity by several factors.

Test for sub-
group differ-
ences (P value)

Heterogeneity measuresPooled mean
sensitivity,
mean (95%

CIb)

Sensitivity
(%), range

Sample
size, N

Studies, NaGroup

I2 (%)Q (P value)τ2

.53Algorithms

99.3539.7
(<.001)

0.06380.78 (0.56-
0.94)

0.57-0.9910,4245Random forest

99.6520.6
(<.001)

0.14340.84 (0.45-
1.00)

0.47-1.0037,8073Support vector machine

99.5427.7
(<.001)

0.08840.87 (0.57-
1.00)

0.58-0.9810,1493Decision tree

87.415.99
(<.001)

0.03330.76 (0.54-
0.93)

0.60-0.902063Multilayer perceptron

0.00.2 (.64)0.00000.66 (0.52-
0.79)

0.63-0.71472Logistic regression

97.744.1 (<.001)0.21920.52 (0.01-
1.00)

0.21-0.853592XGBoost

.70Aims of AIc

99.97418.4
(<.001)

0.46340.82 (0.54-
0.93)

0.47-1.0095,77017Detectionb

99.958.5 (<.001)0.20900.69 (0.01-
0.93)

0.21-0.8520417Prediction

.74Status of WDd

99.916,064.4
(<.001)

0.48080.78 (0.46-
0.92)

0.21-1.0097,29920Commercialb

91.27.3 (.06)0.08640.87 (0.50-
0.97)

0.75-0.934954Noncommercialb

.86Data sources

1006773.9
(<.001)

0.45070.80 (0.51-
0.93)

0.47-1.0095,31315WD-basedb

99.2416.5
(<.001)

0.47150.77 (0.01-
0.97)

0.21-0.9324819WD-based and othersb

.36Reference standards

2.84.4 (.62)0.00000.72 (0.59-
0.81)

0.60-0.831537STAIb,e

24.91.3 (.25)0.00360.78 (0.63-
0.91)

0.70-0.85462CIDIf

.34Validation methods

10014.910.3
(<.001)

0.56140.83 (0.48-
0.95)

0.21-1.0097,04518K-foldb

33.31.5 (.22)0.00180.50 (0.40-
0.59)

0.47-0.572542Leave-one-out

N/Ag99.916,735.8
(<.001)

0.40390.79 (0.57-
0.91)

0.21-1.0097,79424All studiesb

aMany studies were included more than once in each meta-analysis given that they assessed the performance of more than one algorithm.
bSensitivity was pooled using the multilevel meta-analysis method.
cAI: artificial intelligence.
dWD: wearable device.
eSTAI: State-Trait Anxiety Inventory.
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fCIDI: Composite International Diagnostic Interview.
gN/A: not applicable.

Specificity
The specificity of wearable AI, which refers to the AI’s capacity
to accurately identify patients without anxiety, was examined
in 48% (10/21) of the studies. From these studies, we extracted
24 specificity estimates as many studies assessed specificity for
more than one algorithm. The highest specificity observed
spanned 0.52 to 1.00. As displayed in Table 5, a meta-analysis

of the 24 estimates, derived from 45,555 participants across the
48% (10/21) of the studies, revealed a pooled mean specificity
of 0.92 (95% CI 0.68-0.98). The meta-analyzed evidence
exhibited considerable statistical heterogeneity (P<.001;

I2=100%). Table 5 also indicates that, through subgroup
analyses, no statistically significant difference (P>.05) was
found in the highest specificity between subgroups in all groups.
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Table 5. Pooled mean estimates of highest specificity by several factors.

Test for sub-
group differ-
ences (P value)

Heterogeneity measuresPooled mean
specificity,
mean (95%

CIb)

Specificity
(%), range

Sample size,
N

Studies, NaGroup

I2 (%)Q (P value)τ2

.78Algorithms

98.1208.5
(<.001)

0.06580.90 (0.71-
1.00)

0.56-1.0010,7055Random forest

98.9189.6
(<.001)

0.03250.96 (0.84-
1.00)

0.88-1.0010,5543Support vector machine

99.7608.1
(<.001)

0.06230.95 (0.76-
1.00)

0.77-1.0010,8953Decision tree

11.02.3 (.33)<0.00010.87 (0.83-
0.91)

0.73-0.912983Multilayer perceptron

0.00.1 (.71)0.00000.77 (0.63-
0.88)

0.73-0.77462Logistic regression

99.3150.2
(<.001)

0.10700.75 (0.31-
1.00)

0.52-0.918802XGBoost

.11Aims of AIc

10042,583.8
(<.001)

1.37430.94 (0.65-
0.99)

0.56-1.0041,47017Detectionb

100361.9
(<.001)

0.30830.77 (0.01-
0.97)

0.52-0.9440857Predictionb

.62Status of WDd

10070,885.1
(<.001)

1.45830.93 (0.61-
0.99)

0.52-1.0044,79520Commercialb

97.696.9
(<.001)

0.05920.89 (0.41-
0.98)

0.70-0.977604Noncommercialb

.82Data sources

10040,154.8
(<.001)

1.54240.93 (0.52-
0.99)

0.52-1.0040,95915WD-basedb

97.8318.5
(<.001)

0.00000.90 (0.84-
0.94)

0.77-0.9745969WD-based and othersb

.88Reference standards

51.910.2 (.12)0.02940.83 (0.65-
0.92)

0.70-0.911487STAIb,e

99.3143.3
(<.001)

0.14700.77 (0.27-
1.00)

0.52-0.964832CIDIf

.50Validation methods

10068,899.9
(<.001)

1.81810.95 (0.53-
1.00)

0.52-1.0044,46718K-foldb

93.615.6
(<.001)

0.10470.79 (0.34-
1.00)

0.56-0.943282Leave-one-out

N/Ag10075,736.0
(<.001)

1.18440.92 (0.68-
0.98)

0.52-1.0045,55524All studiesb

aMany studies were included more than once in each meta-analysis given that they assessed the performance of more than one algorithm.
bSpecificity was pooled using the multilevel meta-analysis method.
cAI: artificial intelligence.
dWD: wearable device.
eSTAI: State-Trait Anxiety Inventory.
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fCIDI: Composite International Diagnostic Interview.
gN/A: not applicable.

Discussion

Principal Findings
This review aimed to assess the performance of wearable AI in
detecting and predicting anxiety. The results of our
meta-analyses showed that wearable AI has a good but not
optimal performance in detecting and predicting anxiety. To be
more precise, the review revealed that wearable AI was able to
correctly classify patients with and without anxiety in 81% of
cases. Furthermore, we found that wearable AI has a slightly
better performance in detecting individuals who do not have
anxiety (92%) compared with those who do (79%). This may
be attributed to the fact that the number of controls (individuals
without anxiety) was larger than the number of cases
(individuals with anxiety) in 78% (14/18) of the studies that
reported the number of cases and controls. Therefore, the
algorithms were trained on imbalanced data with more
representation of control samples. This review also demonstrated
that the performance of wearable AI was not moderated by
algorithms, aims of AI, wearable devices used, status of
wearable devices, data types, data sources, reference standards,
and validation methods. This finding should be interpreted
carefully given that the number of studies in most subgroup
analyses was small (≥5).

As mentioned earlier, no previous reviews have examined the
performance of wearable AI in detecting or predicting anxiety.
However, a recent systematic review investigated the
performance of wearable AI in detecting or predicting
depression [23]. Although some of the findings of this review
contradict those of the previous review [23], there are also some
findings that are in agreement. Specifically, the specificity of
wearable AI in this review (92%) and the previous review (93%)
was comparable [23]. In contrast, the previous review showed
higher accuracy (89% vs 81%) and sensitivity (87% vs 79%)
than this review [23]. Furthermore, although the previous review
demonstrated that the performance of wearable AI is moderated
by the type of algorithm [23], our review showed no moderating
effect of the type of algorithm on the performance of wearable
AI. The aforementioned discrepancies in findings may be due
to several reasons. First, although anxiety and depression are
often interrelated, these disorders exhibit different signs,
symptoms, and biomarkers. This differentiation extends to the
detection methods applied through wearable AI. Wearable
devices designed to detect anxiety might focus on indicators
such as elevated heart rate, sweating, or muscle tension as these
physiological responses often accompany anxiety episodes. In
contrast, devices tailored for depression detection might
prioritize data points such as sleep patterns, physical activity
levels, or even vocal characteristics as these can provide insights
into mood disorders such as depression. Although some
wearable devices may have the capacity to monitor both sets of
symptoms, the algorithms and interpretive models would need
to be designed and calibrated differently to accurately diagnose
either anxiety or depression. Second, the number of studies
included in the meta-analyses was larger in the previous review

than in this review (38 vs 17). Finally, although the data set size
was ≥1000 in 41% (31/75) of the studies in the previous review,
data set size was ≥1000 in 23% (9/40) of the studies in this
review.

Research and Practical Implications
Although this review showed that wearable AI is a promising
tool for diagnosing anxiety, wearable AI is not ready to be
implemented in clinical practice for the following reasons: (1)
its performance in detecting patients with anxiety is not optimal
at present, (2) the sample size was small (≤100) in two-thirds
of the studies (14/21, 67%), and (3) only 29% (6/21) of the
studies were judged to have a low risk of bias in all domains.
Consequently, it is advisable to use wearable AI in conjunction
with other clinical assessments and diagnostic criteria (eg,
self-report surveys or clinical interviews) to detect and predict
anxiety.

None of the commercial wearable devices in this review had
AI embedded into them to detect anxiety. Instead, AI was
embedded in a host device (eg, computers) where the data
collected by wearable devices were stored. Therefore, there is
a need to develop wearable devices that can promptly identify
and predict anxiety, similar to those that detect stress (eg, Fitbit
Charge 5, Apple Watch Series 7, and Samsung Galaxy Watch4),
and are also capable of identifying specific time points during
the day when anxiety levels are high, which could help users
and health care providers identify causes of anxiety. We expect
that this scenario could materialize in the near future,
particularly with the advancements in wearable technology and
the development of new chips that augment computing power.

The studies included in this review did not use neuroimaging
data in addition to wearable device data to detect or predict
anxiety. Neuroimaging can play an essential role in the diagnosis
of anxiety by visualizing the brain and identifying structural or
functional changes that may be associated with ADs [56-59].
Through techniques such as magnetic resonance imaging,
positron emission tomography, and functional magnetic
resonance imaging, it is possible to detect alterations in brain
activity, blood flow, and connectivity that may be indicative of
anxiety. For example, hyperactivity in the amygdala, an
almond-shaped structure in the brain, can be associated with
anxiety [57,58]. Therefore, one potential area of future research
involves evaluating how effectively wearable AI technology
can detect anxiety by analyzing both wearable device data and
neuroimaging data.

Most studies (18/21, 86%) included in this review focused on
the performance of wearable AI in identifying current anxiety
status rather than forecasting the likelihood or severity of anxiety
in the future. Predicting the occurrence of anxiety in the future
is as important as or more important than detecting the current
anxiety state as it can help develop and deliver more effective,
timely, and personalized interventions. Thus, we encourage
researchers to conduct additional investigations on the
performance of wearable AI in predicting the occurrence of
anxiety in the future.
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None of the studies included in this review assessed the
performance of wearable AI in distinguishing anxiety from other
mental health conditions (depression, schizophrenia, and stress)
or distinguishing types of anxiety (panic disorders, social AD,
phobias, obsessive-compulsive disorder, and posttraumatic
stress disorder). Typically, clinical practitioners rely on intricate
and error-prone diagnostic methods to differentiate between
various patient groups rather than merely distinguishing them
from healthy individuals. As a result, additional research is
necessary to examine the performance of wearable AI in
distinguishing different types of anxiety and distinguishing
individuals with anxiety from those with other mental disorders
that exhibit comparable signs and symptoms of anxiety.

As previously stated, the sample size of two-thirds of the studies
(14/21, 67%) was limited to ≤100 participants. This may have
hindered the detection of potential variations in the efficacy of
wearable AI technology in subgroup analyses. In addition, it
may have restricted the use of certain algorithms that require a
considerable amount of data to be trained and tested. We
encourage researchers to undertake additional studies with larger
sample sizes and extended durations to ensure adequate
statistical power and enable the use of more sophisticated and
efficient algorithms that require greater quantities of data.

Although the included studies used some common wearables
(eg, Fitbit and Muse), they did not assess the performance of
other common wearables such as Google Pixel Watch, Galaxy
Watch, and Oura Ring. Furthermore, none of the included
studies compared the performance of different wearable devices.
Therefore, it is recommended that researchers evaluate the
performance of other wearable devices and compare their
efficacies.

The discrepancy between the wearable AI accuracy in detecting
individuals with and without anxiety highlights the need for
refining the AI algorithms to improve their performance. This
could involve gathering more diverse and representative data,
refining feature selection, or implementing advanced techniques
to enhance the detection of anxiety among users.

There are many challenges associated with the integration of
AI into wearable devices for mental disorders in general and
ADs in particular. First, obtaining high-quality data is difficult
with wearable technology owing to differences in spatial,
temporal, and data resolution. This becomes more challenging
when multiple devices have to be combined to collect multiple
types of data to generate a comprehensive picture of the body.
Therefore, the quality of wearable data should be emphasized
to improve the performance of the algorithms. To achieve this,
there is a need for more practical standards for wearable device
development that are necessary to ensure the consistent
measurement of different signals generated from wearable
devices. Second, the presence of missing data, outliers, signal
noise, and artifacts can also lead to large variations and
inaccurate algorithms [60]. For example, it is necessary for
sensors that monitor heart rate during physical activity to be
able to distinguish artifacts caused by arm motion [61,62].
Furthermore, even when high-quality data are collected,
transmission from wearables to processing platforms (eg, the
cloud or another computing device) for processing is resource

and time intensive. Therefore, the development of more
sophisticated sensors that can accurately and efficiently collect
and transmit cleaner data is required. In addition, more focus
should be placed on building high-performing yet efficient AI
algorithms to effectively handle missing data, outliers, and noise
to enhance their practicality for implementation on edge-sensing
devices. Overcoming these obstacles will enable AI-driven
wearable devices to manage personalized anxiety, ultimately
improving mental health outcomes for individuals.

The transition of wearable AI into existing clinical practice for
anxiety detection and management is an intricate process that
requires careful consideration. A robust framework must be
devised that outlines how wearable AI technologies can
complement traditional methods such as interviews, self-report
surveys, and existing diagnostic criteria. Such an integration
framework would involve validating AI algorithms using
established clinical guidelines, ensuring data privacy and
security compliance, training health care providers in the
interpretation of AI-generated insights, and creating a clear
protocol for incorporating these insights into patient care. The
integration of wearable AI into existing practices could offer a
more refined, real-time understanding of anxiety levels, allow
for tailored interventions, and foster collaboration between
health care providers and technology developers. Efforts toward
these integrations could form a promising direction for future
research and innovation, contributing to a more effective and
patient-centric approach to anxiety management.

Recently, various studies have proposed statistical and AI
approaches for wearable devices to study the effectiveness of
various parameters and biosignals (eg, electroencephalography
[EEG] and ECG) in differentiating patients with ADs from
healthy individuals [22,63-66]. Automated systems have been
proposed for the diagnosis and detection of such
neuropsychological issues, providing more feasibility for
integration with various wearable devices [35,64,67,68]. Al
Zoubi et al [63] conducted an association study to explore the
link between EEG microstate dynamic patterns and mood
disorders and ADs. Abnormalities of the EEG microstates in
mood disorders and ADs were described, with statistical
significance, based on the occurrence sequence and temporal
dynamics of EEG microstate signals. In another study [67],
various machine learning schemes (eg, support vector machine
and RF) were investigated for classification using the EEG
signals of 23 patients recorded during exposure therapy with
an EMOTIV EPOC wireless headset. The EEG channels
exploited in the classifier were selected to ensure their statistical
significance using t test and ANOVA based on their power
spectral density. The highest accuracies of 94.9% and 92.74%
using an RF classifier were achieved from the 2 and 4 levels in
the power spectral density of the EEG recording, respectively.
In a study carried out by Arsalan and Majid [35], EEG data
acquisition was performed using an Interaxon Muse wearable
headband consisting of 4 dry electrodes at
positions TP9, AF7, AF8, and TP10. A classification accuracy
of 78.5% and 78.5% was demonstrated using features from all
4 channels with the RF algorithm. Furthermore, an improved
accuracy of 89.28% was achieved when a feature vector of
length 3 was used. Some studies have suggested that ECG
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signals represent an optimal biosignal for automated detection
and characterization of anxiety [68-70]. In another study [69],
a consumer-friendly heart rate variability biofeedback wearable
device was evaluated with a remote stress management coach
to reduce the symptoms of anxiety. In a study carried out by
Tripathy et al [68], a wearable sensor–based ECG signal was
used to detect and classify the level of anxiety (light, moderate,
and severe) based on features obtained using the Fourier-Bessel
domain adaptive wavelet transform. The results demonstrated
a superior performance of the XGBoost model with an accuracy
and F1-score of 92.27% and 92.13%, respectively.

Limitations
This review cannot comment on (1) the performance of wearable
AI in diagnosing other mental disorders (eg, depression, stress,
bipolar disorder, and schizophrenia); (2) the performance of
wearable AI in managing anxiety or predicting outcomes of
anxiety treatment; and (3) the performance of nonwearable
devices, handheld devices, near-body wearable devices, in-body
wearable devices, wearable devices connected to nonwearable
devices using wires, and wearable devices that require an expert
to be applied on users. This is because such disorders, outcomes,
and wearable devices were beyond the scope of this review,
thus limiting the generalizability of our findings to these
contexts. In addition, the results of our meta-analyses are likely

to be overestimated or underestimated for 2 reasons. First, it is
probable that we overlooked some studies as our search was
limited to research published in the English language from 2015
onward and we did not use terms related to types of anxiety (eg,
phobia, obsessive-compulsive disorder, and posttraumatic stress
disorder). Second, several studies in this review were not
included in the meta-analyses as they did not provide findings
suitable for meta-analysis.

Conclusions
Although wearable AI shows promise in detecting and predicting
anxiety, it is not yet advanced enough to be used in clinical
practice. As such, wearable AI should be used along with other
clinical assessments and diagnostic criteria to provide a more
comprehensive understanding of a patient’s condition until
further evidence shows an ideal performance of wearable AI.
Wearable device companies should develop devices that can
promptly detect anxiety and identify specific time points during
the day when anxiety levels are high. There is a need to
investigate the effect of using a combination of wearable device
data and neuroimaging data on the performance of wearable AI
in detecting and predicting anxiety. In addition, further studies
are needed to differentiate among types of anxiety and
differentiate patients with anxiety from those with other mental
disorders. We urge researchers to compare the performance of
different wearable devices in detecting anxiety.
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