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Abstract

Background: Cardiac arrest (CA) is the leading cause of death in critically ill patients. Clinical research has shown that early
identification of CA reduces mortality. Algorithms capable of predicting CA with high sensitivity have been developed using
multivariate time series data. However, these algorithms suffer from a high rate of false alarms, and their results are not clinically
interpretable.

Objective: We propose an ensemble approach using multiresolution statistical features and cosine similarity–based features for
the timely prediction of CA. Furthermore, this approach provides clinically interpretable results that can be adopted by clinicians.

Methods: Patients were retrospectively analyzed using data from the Medical Information Mart for Intensive Care-IV database
and the eICU Collaborative Research Database. Based on the multivariate vital signs of a 24-hour time window for adults diagnosed
with heart failure, we extracted multiresolution statistical and cosine similarity–based features. These features were used to
construct and develop gradient boosting decision trees. Therefore, we adopted cost-sensitive learning as a solution. Then, 10-fold
cross-validation was performed to check the consistency of the model performance, and the Shapley additive explanation algorithm
was used to capture the overall interpretability of the proposed model. Next, external validation using the eICU Collaborative
Research Database was performed to check the generalization ability.

Results: The proposed method yielded an overall area under the receiver operating characteristic curve (AUROC) of 0.86 and
area under the precision-recall curve (AUPRC) of 0.58. In terms of the timely prediction of CA, the proposed model achieved
an AUROC above 0.80 for predicting CA events up to 6 hours in advance. The proposed method simultaneously improved
precision and sensitivity to increase the AUPRC, which reduced the number of false alarms while maintaining high sensitivity.
This result indicates that the predictive performance of the proposed model is superior to the performances of the models reported
in previous studies. Next, we demonstrated the effect of feature importance on the clinical interpretability of the proposed method
and inferred the effect between the non-CA and CA groups. Finally, external validation was performed using the eICU Collaborative
Research Database, and an AUROC of 0.74 and AUPRC of 0.44 were obtained in a general intensive care unit population.

Conclusions: The proposed framework can provide clinicians with more accurate CA prediction results and reduce false alarm
rates through internal and external validation. In addition, clinically interpretable prediction results can facilitate clinician
understanding. Furthermore, the similarity of vital sign changes can provide insights into temporal pattern changes in CA prediction
in patients with heart failure–related diagnoses. Therefore, our system is sufficiently feasible for routine clinical use. In addition,
regarding the proposed CA prediction system, a clinically mature application has been developed and verified in the future digital
health field.
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Introduction

Critical illness was defined as the presence or potential
development of organ dysfunction. Cardiac arrest (CA), a critical
illness that affects patient safety, is the sudden cessation of
cardiac function caused by specific abnormal events, such as
ventricular arrhythmia, asystole, and pulseless electrical activity
[1,2]. Previous studies have reported that at least one abnormal
sign, such as respiratory distress or hemodynamic instability,
occurs in 59.4% of patients within 1-4 hours before the onset
of CA [3]. A previous study showed that early identification of
the causes of CA improved patient survival by approximately
29% within the first hour of the episode and 19% at discharge
[4]. Therefore, the early prediction of CA is important to allow
for more time for clinical intervention, thereby reducing
mortality.

Clinical decision support systems (CDSSs) are clinical computer
systems that apply algorithms to patient information, use
machine learning to evaluate clinical data, and provide clinical
decision support [5,6]. These systems have been developed
using electronic medical records to exploit various paradigms,
such as the prediction of early cardiac events, heart failure (HF),
and critical illness, for rapid response systems through real-time
patient monitoring [7]. To improve the quality and speed of
medical services, CA prediction and warning systems in
intensive care units (ICUs) have been developed in the field of
CDSSs [7]. These computer-based CA prediction algorithms
provide new opportunities for clinicians to improve the accuracy
of predicting CA events [8].

Several studies have used statistical methods for the early
detection of CA [9-11]. Statistical methods generally use latent
clinical features, including the simplified acute physiology score
(SAPS)-II [9] and sequential organ failure assessment (SOFA)
[12], which are calculated after the first day of ICU admission
using data collected at a prespecified time frame. In addition,
the modified early warning score (MEWS) [13] is a tool used
by in-hospital care teams to identify early indicators of clinical
deterioration and initiate early intervention and therapy.

Recently, machine learning approaches have been used to
develop robust CA predictions for CDSSs. For example,
Churpek et al [14] used a random forest (RF) classifier based
on demographics, hospitalization histories, vital signs, and
laboratory results extracted from a multicenter data set and
obtained an area under the receiver operating characteristic
curve (AUROC) of 0.83. Hong et al [15] used a clinical data
set from a retrospective clinical study to apply an RF model. A
clinical data set was collected from emergency department
patients with CA at a tertiary academic hospital. They extracted
the vital signs, sex, age, and primary concerns from the clinical
data set. The proposed model achieved an AUROC of 0.97 and
an area under the precision-recall curve (AUPRC) of 0.86. While
their proposed model generally achieved more accurate CA
prediction results than existing models, it relied excessively on
features that were not commonly used during hospitalization

and did not provide real-time predictions. Layeghian Javan et
al [16] proposed a stacking method including RF, balanced
bagging, and logistic regression (LR) to predict CA 1 hour in
advance, and they obtained an AUROC of 0.82 using the
Medical Information Mart for Intensive Care (MIMIC)-III [17].
Kwon et al [18] proposed a deep learning–based early warning
system using a recurrent neural network (RNN) to assess risk
scores using input vectors measured over 8 hours. They
extracted vital signs from a retrospective multicenter cohort
data set and obtained AUROC and AUPRC values of 0.85 and
0.04, respectively.

Statistical and machine learning techniques used in hospital
settings for the early prediction of CA have certain limitations.
First, current CA prediction algorithms for CDSSs suffer from
low precision and high false alarm rates [19]. Second, a class
imbalance problem exists in a skewed class distribution because
CA events occur less frequently than in normal states [20].
Third, the influence of various characteristics on the results
obtained from the model and decision support information must
be determined [11]. An interpretable model that can provide
this information has not yet been developed.

This study aimed to address these issues by proposing a
framework for the early and accurate prediction of CA using
CDSSs. We used an ensemble approach with gradient boosting
ensemble of decision trees (LGB) classifiers to improve the
overall precision of the CA prediction and reduce the false alarm
rate. Furthermore, a cost-sensitive learning approach was
considered to solve the imbalance problem regarding the class
weights of CA events. In addition, the MIMIC-IV data set was
used to show changes in feature importance according to
changes in time for referencing clinical decisions [21].

Methods

Data Source
The MIMIC-IV database [21], which contains information on
vital signs, laboratory tests, and procedural events of ICU
patients, was used to develop and validate a CA prediction
model using multivariate vital sign time series data of patients
with HF. Specifically, this is a well-known single-center
database that contains information on 46,520 patients admitted
to the Beth Israel Deaconess Medical Center (BIDMC) between
2008 and 2019. Demographic data, International Classification
of Diseases codes (IX), clinical modification codes, hourly vital
signs and inputs or outputs, laboratory test and microbiological
culture results, imaging data, treatment methods, medication
administration, and survival statistics were included in the
relevant records. In addition, MIMIC-IV [21] includes data from
the clinical information system iMDsoft MetaVision. Compared
to MIMIC-III, which extracts data from heterogeneous sources,
this system provides more patient data and detailed information
on procedure events, a main source of clinical information in
ICUs [17]. Therefore, unlike MIMIC-III data, MIMIC-IV data
[21] are homogeneous.
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We used the eICU Collaborative Research Database
(eICU-CRD) for external validation. The eICU-CRD is
populated with data from more than 200,000 ICU admissions
monitored across the United States by the eICU-CRD program
developed by Philips Healthcare. The data in this collaborative
database involve patients admitted to the ICU in 2014 and 2015.

Ethical Considerations
The MIMIC-IV database and eICU-CRD are deidentified,
transformed, and made available to researchers who have
completed training in human research and signed a data use
agreement. The Institutional Review Board at the BIDMC
granted a waiver of informed consent and approved the
MIMIC-IV database sharing initiative, and the eICU-CRD data
were exempt from institutional review board approval with a
waiver of informed consent [22,23].

Problem Definition
The task in this study was to predict CA events 1 hour in
advance. The input data contained the patient’s vital signs, the
MEWS of temperature, and oxyhemoglobin saturation (SpO2)
values from a 24-hour time window. The output is a binary
vector, where each number represents the likelihood of a CA
event in the next 1 hour. The primary outcomes comprised the
AUROC and AUPRC scores, which were used to quantitatively
check the prediction results for CA events 1 hour in advance.
Next, we used the sensitivity, specificity, and F1-score as
secondary outcomes to confirm any decrease in false alarms or
missed CA events. In addition, we presented clinically
interpretable decision support information.

Prediction Model Framework
We suggest a framework for predicting CA 1 hour in advance.
As shown in Figure 1, the proposed framework consists of 6
parts: data preparation, data preprocessing and extraction, feature
generation, feature aggregation, model development, and
evaluation. First, data were obtained from the MIMIC-IV
database to construct a cohort that met the inclusion and
exclusion criteria [21]. After filtering the inclusion and exclusion
criteria, we extracted vital signs and calculated the MEWS
through the vital signs. Then, in step 2, the features were
processed and normalized after resampling the vital signs and
MEWS at a resolution of 1 hour. Next, in step 3, 2 features were
generated: statistical features and cosine similarity–based
features. Multiresolution statistical features were generated
using a sliding window–based statistical approach to segment
each vital sign at 4, 6, 12, and 24 hours. The cosine similarity
measure creates time-level and vital sign–level features that
capture the degree of similarity in the changes in vital signs
over time. Next, time-level and vital sign–level similarity
matrices were used to calculate the mean and SD. In addition,
a multiresolution statistical approach was used to extract
time-level and vital sign–level similarity matrices to capture
statistical similarity changes. In step 4, multiresolution statistical
features, cosine similarity–based features, and labels were
aggregated. Then, in step 5, we created an LGB classifier that
is easy to implement and achieves good classification results
in various medical tasks [24], containing different cost weights
for each class. Finally, in step 6, the performance of the
proposed model was measured using the evaluation metrics of
precision, sensitivity, specificity, F1-score, AUROC, and
AUPRC. Information about the open source and development
code used is presented in Multimedia Appendix 1

Figure 1. Overview of the proposed CA prediction framework. CA: cardiac arrest; DBP: diastolic blood pressure; HR: heart rate; MBP: mean blood
pressure; MEWS: modified early warning score; MIMIC: Medical Information Mart for Intensive Care; RR: respiratory rate; SBP: systolic blood
pressure; SpO2: oxyhemoglobin saturation; TEMP: temperature.
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Step 1: Data Preparation
The inclusion and exclusion criteria were established to select
the necessary data for CA prediction (Figure 2). After applying
the inclusion and exclusion criteria, a cohort study was
conducted. The study included patients aged >18 years and
<100 years. HF is a major risk factor for sudden CA and a
significant contributor to sudden CA mortality [25,26]. As CA
occurs more frequently in patients with a history of HF or CA,
we included the ICU stay of patients with these cardiovascular

diseases in the cohort study. In the CA group, data on ICU stay
were included if the vital sign data were not outliers and if any
events that occurred 1 hour before CA occurred 24 hours after
patient admission. In the normal group, data on ICU stay were
included if the vital sign data were not outliers and if the
admission time was longer than the average admission time in
the CA group. Finally, an experimental database was created
with 82 cases in the CA group and 1899 cases in the normal
group.

Figure 2. Patient inclusion and exclusion flow diagram for the Medical Information Mart for Intensive Care-IV database. CA: cardiac arrest; ICU:
intensive care unit; n: number of stays; SAPS: simplified acute physiology score; SOFA: sequential organ failure assessment.

Step 2: Data Preprocessing and Extraction
We collected data on the vital sign parameters, including heart
rate (HR), systolic blood pressure (SBP), diastolic blood
pressure (DBP), mean arterial pressure (MAP), temperature,
respiratory rate (RR), and SpO2, of the patients from the
experimental database. Vital sign parameters may be recorded
with irregularly sampled time series data because of equipment
malfunction and declining recipient response [27]. Prediction
models are not designed to classify data with irregular samples
from time series between groups. To solve this problem, the
models require data collected at regular time intervals. We used
the bucketing technique to solve the problem of irregularities
in the time series [16]. We divided the 12- and 24-hour time
windows into 12 and 24 sequential buckets of 1 hour each,
respectively. The measured values within a bucket were
averaged. As a result, each time series included 12 and 24 values
at regular 1-hour intervals. When averaging within a bucket, if

there was no time series value in the bucket, it was marked as
null. To solve the problem of missing values as null, we used
the last observation carried forward (LOCF) and backward
(LOCB) imputation techniques [28]. The LOCF imputation
technique is a technique in which previous nonmissing values
are carried or copied forward and replaced with missing values.
Similar to the LOCF method, the LOCB method replaces
missing values by carrying or copying post-nonmissing values
to the preceding missing values. Although we mainly used the
LOCB method to impute missing values, the LOCF method
was used when post values were missing, and then, missing
values imputed previous nonmissing values. Additionally, we
extracted the early warning score (EWS) for temperature and
SpO2. We used the MEWS [13], which is a composite score
commonly used by medical staff to determine illness severity.
EWS observations were assigned a score between 0 and 3. The
EWS calculated temperature and SpO2 every 1 hour. To remove
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outliers, the acceptable range of each variable was determined
according to the opinions of medical experts. Values outside
the acceptable range were eliminated. Then, we normalized
each feature using z-score normalization because each column
listing features has a different scale. We processed the database
into an hourly time series with 12- and 24-hour time steps. Then,
we combined the CA and normal (non-CA) groups to perform
an imputation task.

Step 3: Feature Generation

Multiresolution Statistical Features

To capture the temporal history of the data, we created time
windows of increasing size and extracted summary statistics
across the multiresolution sliding window. Regarding the
multiresolution sliding window–based statistical features, the
input data were used to segment each vital sign at 4-, 6-, 12-,
and 24-hour resolutions. All time-series segments of the vital
sign data were aggregated as the mean, median, minimum,
maximum, and SD of each feature.

Cosine Similarity–Based Features

We used a cosine similarity measure to capture the changes in
the degree of similarity between vital signs over time. We then
measured the degree of similarity in the changes in the vital
sign features over time and the input data similarity degree of
the changes in the vital sign types. To extract similarity features,
we performed 3 steps. First, we extracted the cosine similarity
matrix between the vital signs in the input time series data and
their time steps in the vital signs. The similarity features at the
time and vital sign levels were aggregated as the mean and SD
in a single dimension. Additionally, multiresolution statistical
features were extracted based on the similarity matrix at the
time and vital sign levels to capture the statistical similarity
changes in the mean and SD in that single dimension. Next, we
created a weighted matrix multiplied by the raw vital sign matrix
and cosine similarity–based features.

Step 4: Feature Aggregation
We aggregated multiresolution statistical features, cosine
similarity–based features, and labels to derive better temporal
features and inter-ICU generalizations from the model using
vital signs and specific clinical latent scores. We then aggregated
the variables into binary indicators, indicating the presence or
absence of CA in a given class.

Step 5: Model Development
There are 3 approaches for handling the problem of class
imbalance: data-, algorithm-, and hybrid-level approaches. We
used an algorithm-level approach to address the extreme
imbalances in our data set [29]. Specifically, we used
cost-sensitive learning and the ensemble method of an LGB
classifier to predict CA events within 1 hour of a patient’s ICU
stay. The LGB classifier using cost-sensitive learning plays a
role in reducing the bias or variance and improving the stability
of machine learning algorithms [30,31]. Cost-sensitive learning
was applied to penalize errors in the minority class of the CA
group. Therefore, this method provides improved performance
in applications where the medical data set has a highly skewed
class distribution. Moreover, the LGB classifier uses

cost-sensitive learning to reduce bias or variance and improve
the stability of the machine learning algorithms. The minority
classes were penalized at 100.

It is important to develop CA prediction models that increase
sensitivity and reduce false-positive results in clinical settings.
It is also important to develop an algorithm that uses a model
with a sensitivity cutoff of 0.75 or higher for CA event
prediction problems [32]. This is because it is important never
to miss an event that is triggered, even if there is a false-positive
result for the CA event. Precision and sensitivity are trade-offs,
but these two metrics are important because they provide
important information regarding the performance of the
proposed method. Therefore, AUROC, a diagnostic index of
models that considers both precision and sensitivity, is primarily
used to compare the performance of prediction algorithms [33].
In summary, the model development phase focused on
developing a model that maximizes sensitivity and AUROC.

After fitting the training set, the hyperparameter settings that
maximized the AUROC in the validation set were used to
generate predictions for the test set. If the AUROC of the
validation set did not improve after 500 consecutive fitting
iterations, the model was reset to its best iteration before
premature termination. This model was then used for further
analysis, as it was the best-performing model during system
development. We set the number of trees to 1 to obtain the
decision tree (DT) baseline, the weight of the CA class as a
minority class to 100, and the learning rate to 0.04.

After tuning the hyperparameters, the Youden J statistic was
used to select the optimal decision threshold value in the receiver
operating characteristic curve of the proposed method [34]. We
then calculated precision, sensitivity, and specificity using the
decision threshold.

Step 6: Model Validation
We used the eICU-CRD to check the generalization ability of
CA event predictions in more general settings. To conduct CA
prediction events in a general ICU, we constructed the
eICU-CRD data set, which had similar exclusion and inclusion
criteria but was slightly different as follows. First, the target
groups between the 2 databases were different. The MIMIC-IV
database includes only cardiac-related diseases in the ICU, but
the eICU-CRD covers all patients in the ICU. Second, the
number of CA events per subject differed between the 2
databases. The CA event from the MIMIC-IV database is 1 per
patient, while CA events from the eICU-CRD are multiple per
patient. Because CA events may be multiple per patient in the
clinical setting, we validated multiple events in the eICU-CRD
(204 events/83 cases for the CA group). However, the rest of
the inclusion and exclusion criteria were the same. Finally, we
trained on the MIMIC-IV database with subjects with a higher
risk of CA and validated with subjects in a more typical
environment. In addition, we compared performance metrics
between the proposed method and baseline models.
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Step 7: Evaluation

K-Fold Cross-Validation

For internal validation, we used k-fold cross-validation, which
avoids overfitting. In this study, k=10 was selected because it
is a commonly used value [35]. Data are presented as mean±SD.

Baseline Models

We compared the CA event learning and prediction performance
of the proposed model with those of 9 conventional ML
methods: LR, k-nearest neighbors (KNN), DT, support vector
machine (SVM), Gaussian naïve Bayes (GB), multilayer
perceptron (MLP), RF, extreme gradient boosting ensemble of
decision trees (XGB), and LGB. The details of the
hyperparameters of the baseline models are listed in Multimedia
Appendix 2.

Evaluation Metrics

We used the overall precision, sensitivity, specificity, AUROC,
AUPRC, and Brier score values to evaluate model performance.
The AUROC is a measure derived from sensitivity and
specificity over different thresholds. For binary classification
tasks, the AUROC ranges from 0.5 to 1, with values closer to
1 indicating better model performance. Clinical models are
considered to have good or excellent discrimination ability if
their AUROC is greater than 0.80 or 0.90. We also evaluated
the sensitivity and specificity of each model using a series of
validation runs. The AUPRC is useful for testing false alarm
rates at different recalls and shows a relationship between
precision (ie, 1 false alarm rate) and sensitivity [36]. The Brier
score is the mean squared difference between the predicted
probability and the actual outcome, with a lower Brier score
indicating better calibration [37].

Explainable Predictions
The Shapley additive explanation (SHAP) algorithm was applied
to the proposed model to explain the features driving
patient-specific predictions. The SHAP algorithm is an approach
based on the game theory used to explain the performance of
machine learning models, and it employs an additive feature
attribution method to generate interpretable models [38,39].
SHAP is useful in explaining various supervised learning models
and assigning importance values to each input variable for a

specific prediction. This allowed us to interpret the
decision-making process of the model and explain the prediction
outcomes.

After extracting the impact of each feature using the proposed
model, we summarized and visualized the 20 features with the
highest mean values. In addition, the impact of the features over
time was visualized as a heat map. Next, the features with the
highest values were visualized according to changes over time.

Statistical Analysis
Differences in patient characteristics, such as age, ICU length
of stay, and vital signs, between the non-CA and CA groups
were evaluated using independent t-tests. The performance
metrics between the baseline and proposed models were tested
using the Kruskal-Wallis test, and the Tukey honest significant
difference test was used for the post-hoc analysis. In addition,
the performance differences between the feature types, statistical
features, cosine similarity–based features, and combined
statistical and cosine similarity–based features were evaluated
using the Kruskal-Wallis test for post-hoc analysis. A 5%
significance level (P<.05) was used for all the analyses.

Results

Patient Characteristics
In the 24-hour time window, 1981 ICU stay cases (82 CA cases
and 1899 non-CA cases) were included. The patient
characteristics corresponding to these cases have been presented
as means and SDs. The data are listed in Table 1. Independent
sample t-tests were performed to analyze differences between
the CA and non-CA groups. Age and ICU length of stay were
not considered significant because their significance levels were
greater than .05. Except for DBP, which was significant in both
groups, the significance levels were less than .05. The details
of patients in the ICU according to the inclusion of the 12-hour
time window are listed in Multimedia Appendix 3. Furthermore,
the eICU-CRD used for external validation included 9482 ICU
stay cases (83 CA cases and 9399 non-CA cases) in the 24-hour
time window. The details of patients in the ICU from the
eICU-CRD according to the inclusion of the 24-hour time
window are listed in Multimedia Appendix 4.
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Table 1. Patient characteristics.

P valueNon-CA (n=1899)CAa (nb=82)Characteristic

.4368.01 (13.71)69.24 (13.60)Age (years), mean (SD)

.54298.54 (286.20)321.97 (336.65)ICUc length of stay (h), mean (SD)

Vital signs, mean (SD)

<.00187.11 (17.22)89.92 (16.41)HRd

<.00196.98 (3.11)97.25 (3.85)SpO2
e

<.00121.05 (5.79)21.64 (5.50)RRf

<.001117.81 (21.72)111.98 (21.68)SBPg

.1759.23 (14.28)61.56 (13.86)DBPh

<.00175.59 (14.88)76.29 (14.62)MBPi

<.00136.93 (0.71)37.08 (0.82)Temperature

aCA: cardiac arrest.
bn: number of ICU stays.
cICU: intensive care unit.
dHR: heart rate.
eSpO2: oxyhemoglobin saturation.
fRR: respiratory rate.
gSBP: systolic blood pressure.
hDBP: diastolic blood pressure.
iMBP: mean blood pressure.

Evaluation of Model Performance
To investigate the effect of the proposed model in both the 24-
and 12-hour time windows, we compared the performance of
the model with that of the comparison models using 10-fold
cross-validation of the binary class prediction results of the
MIMIC-IV database. The same test database was used to ensure
a fair comparison.

In the 24-hour time window obtained from the MIMIC-IV
database, the proposed model achieved the best performance
with mean AUROC and AUPRC values of 0.86±0.01 and
0.58±0.07, respectively, for predicting CA 1 hour in advance
(Table 2; Multimedia Appendix 5). Next, we compared
additional performance metrics in the 24-hour time window.
The proposed model obtained the best performance with
precision, sensitivity, specificity, and F1-score values of
0.68±0.04, 0.90±0.03, 0.90±0.04, and 0.72±0.04, respectively
(Multimedia Appendix 5). The AUROC values indicated that
the proposed model had statistically better performance than
KNN, DT, SVM, GB, and RF when we conducted a comparison

of the statistical analysis (P<.001; Multimedia Appendix 6).
The proposed model outperformed the comparison models in
the AUROC results.

We compared the precision, specificity, AUROC, and AUPRC
based on a model with a sensitivity cutoff of 0.75 or higher
because it is important for the CA prediction algorithm to avoid
missing CA events [32]. Although the KNN and MLP classifiers
obtained higher precision than the proposed method, the
sensitivity of these classifiers was lower based on the sensitivity
cutoff criteria. The proposed method achieved the highest
precision among the compared models, including DT, RF, XGB,
and LGB, with a sensitivity of 0.75 or higher. It also showed
the highest specificity, AUROC, and AUPRC.

The proposed method outperformed the baseline models in
terms of AUROC results in the 12-hour time window when we
performed a comparison of the statistical AUROC results
achieved by the baseline models and the proposed model in the
12-hour time window of the MIMIC-IV database (Multimedia
Appendix 7).
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Table 2. Results predicted by the proposed model for different time windows.

AUPRCb, mean
(SD)

AUROCa, mean
(SD)

F1-score, mean
(SD)

Specificity, mean
(SD)

Sensitivity, mean
(SD)

Precision, mean
(SD)

Window and feature

12-hour window

0.26 (0.05)0.65 (0.02)0.35 (0.01)0.65 (0.02)0.65 (0.02)0.53 (0.00)Statistical features

0.38 (0.06)0.71 (0.01)0.41 (0.01)0.71 (0.01)0.71 (0.01)0.54 (0.00)Similarity features

0.40 (0.05)0.73 (0.02)0.45 (0.01)0.73 (0.02)0.73 (0.02)0.54 (0.00)All statistical features

24-hour window

0.34 (0.09)0.69 (0.03)0.41 (0.01)0.69 (0.03)0.69 (0.03)0.53 (0.00)Statistical features

0.52 (0.06)0.84 (0.02)0.56 (0.00)0.84 (0.02)0.84 (0.02)0.57 (0.00)Similarity features

0.58 (0.07)0.86 (0.02)0.72 (0.04)0.90 (0.04)0.90 (0.03)0.68 (0.04)All statistical features

aAUROC: area under the receiver operating characteristic curve.
bAUPRC: area under the precision-recall curve.

Effects of the Feature Set
The proposed framework comprises 3 types of feature sets: (1)
statistical features, (2) cosine similarity–based features, and (3)
a combination of statistical and cosine similarity–based features.
In addition, various feature set experiments were conducted
using the MIMIC-IV database to demonstrate the role and
effectiveness of each feature set. We compared the performances
of the feature set types using 10-fold cross-validation with the
MIMIC-IV database to investigate the effect of each feature set
on the proposed model.

We compared feature set types, including statistical features,
cosine similarity–based features, and a combination of statistical
and cosine similarity–based features, in 24- and 12-hour time
windows. The performance metrics of most models using the
24-hour time window improved when the cosine
similarity–based feature set was input into the model and the
proposed method, with XGB and LGB obtaining statistically
higher AUROC values (P<.001; Table 2; Multimedia Appendix
8). The performance metrics of most models using the 12-hour
time window also improved when the cosine similarity–based
feature set was input into the model and the proposed method
(Table 2; Multimedia Appendix 9).

The combination of feature sets generated through the 24-hour
time window improved the performance of the proposed model.
Compared with its performance when employing the feature
sets generated using the 24-hour time window, the proposed
model achieved a lower performance when employing the
feature sets generated using the 12-hour time window. Compared
with its performance when using the statistical feature set, its
performance was higher when using the cosine similarity–based
features and a combination of feature sets. Therefore, we

inferred that the cosine similarity–based feature set improved
the performance of the proposed model when using the features
generated by the 12- and 24-hour time windows.

Effect of the Time Window
Different performance metrics were used to evaluate the
prediction results of the proposed model with different feature
sets, including statistical features, cosine similarity–based
features, and a combination of statistical and cosine
similarity–based features in both the 12- and 24-hour time
windows, as shown in Table 2.

External Validation of the Model
We tested the proposed method and baseline models on the
eICU-CRD as an independent database after training it on the
MIMIC-IV database to measure its prediction of CA. We
obtained an AUROC of 0.74 (95% CI 0.70-0.77) (Figure 3;
Multimedia Appendix 10). The AUROCs of LR, KNN, DT,
SVM, GB, MLP, RF, XGB, and LGB were 0.52 (95% CI
0.46-0.53), 0.52 (95% CI 0.54-0.59), 0.50 (95% CI 0.56-0.60),
0.52 (95% CI 0.46-0.53), 0.61 (95% CI 0.61-0.67), 0.55 (95%
CI 0.58-0.65), 0.50 (95% CI 0.61-0.67), 0.63 (95% CI
0.68-0.76), and 0.60 (95% CI 0.66-0.74), respectively (Figure
3; Multimedia Appendix 10). Therefore, the AUROC results
using the proposed method were higher than the AUROC results
using comparison methods. In addition, the results of precision,
sensitivity, F1-score, specificity, Brier score, and AUPRC were
higher using the proposed method than using the comparison
methods (Multimedia Appendix 10). This indicated that the
proposed method outperformed comparison models on the
eICU-CRD and successfully pulled features from external
validation.
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Figure 3. Comparison among baseline models and the proposed method using a 24-hour time window from the eICU Collaborative Research Database.
(A) AUROC; (B) AUPRC. The baseline and proposed models were trained on the Medical Information Mart for Intensive Care-IV database. After the
training procedure, we validated the baseline models and the proposed model to estimate generalization ability. We have presented 95% CIs after 1000
bootstrap iterations. AUPRC: area under the precision-recall curve; AUROC: area under the receiver operating characteristic curve; DT: decision tree;
GB: Gaussian naïve Bayes; KNN: k-nearest neighbors; LGB: gradient boosting ensemble of decision trees; LR: logistic regression; MLP: multilayer
perceptron; RF: random forest; SVM: support vector machine; XGB: extreme gradient boosting ensemble of decision trees.

Clinical Interpretability
We used SHAP [38] values to evaluate the influence of each
feature on the proposed model output. Positive and negative
SHAP values indicated an increase and decrease in the
prediction score, respectively. Figure 4 shows the top 20 features
of the proposed model based on the SHAP values.

Regarding the impact of the model as a global aspect, RR_18-24
h_Median and RR_0-24 h_Median had relatively significant
impacts on the performance of the proposed method. In addition,
the 20 most influential features were created using the time-step
data obtained after 12 hours.

Regarding cosine similarity features, the mean values of HR,
RR, and SpO2 in the proposed model differed between the
non-CA and CA groups. The effect of the time-level cosine
similarity features changed between the non-CA and CA groups
after 12 hours. Furthermore, the cosine similarity features for
vital sign levels resulted in changes in HR, RR, and SpO2 values
between the non-CA and CA groups.

Regarding the multiresolution statistical features based on the
sliding window, temperature, EWS-temperature, SpO2, and
EWS-SpO2 had different effects on the proposed model. Both
the minimum value of EWS-temperature in the 16 to 24-hour
window and the minimum value of EWS-SpO2 in the 8 to
12-hour window differed between the non-CA and CA groups.
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Figure 4. Clinical interpretability results. (A) Global feature impact values produced by the proposed model. (B) Cosine similarity feature set between
the non-CA and CA groups. (C) Multiresolution statistical features based on the cosine similarity matrix between the non-CA and CA groups. (D)
Statistical feature set between the non-CA and CA groups. C: channel-level average; CA: cardiac arrest; Cos: cosine similarity; DBP: diastolic blood
pressure; HR: heart rate; MBP: mean blood pressure; MEWS: modified early warning score; MIMIC: Medical Information Mart for Intensive Care;
RR: respiratory rate; SBP: systolic blood pressure; SHAP: Shapley additive explanation; SpO2: oxyhemoglobin saturation; TEMP: temperature; W:
weighted matrix.

Comparison With Existing Research
Table 3 lists a comprehensive performance comparison between
the CA prediction results of the proposed method and those of
existing models. Churpek et al [14] used a clinical database to
identify CA events at a given time point using an RF classifier
and obtained an AUROC of 0.83. The time since ward
admission, demographics, hospitalization history, vital signs,
and laboratory test results were considered. Kwon et al [18]
proposed an n-RNN for predicting CA events using vital sign
information. Their model achieved AUROC and AUPRC values
of 0.85 and 0.04, respectively. Layeghian Javan et al [16]
suggested that a stacking ensemble model could predict CA 1
hour in advance. Their model used time intervals and statistical
features generated by vital signs and latent clinical data from
MIMIC-III and achieved an AUROC of 0.82.

The proposed method uses data from the MIMIC-IV database
to generate statistical and cosine similarity–based feature sets.
Using a combination of statistical and cosine similarity–based
feature sets, the proposed method achieved AUROC and

AUPRC values of 0.86 and 0.58, respectively. As listed in Table
3, the proposed model outperformed the existing models.

Considering the latest studies, Layeghian Javan et al [16]
reported a precision of 0.19, sensitivity of 0.77, and AUROC
of 0.82. In addition, Kwon et al [18] showed a precision of 0.05,
sensitivity of 0.75, AUROC of 0.85, and AUPRC of 0.04
(Multimedia Appendix 11). In summary, our method had a
higher precision (0.49), higher sensitivity (0.13), and higher
AUROC (0.04) compared with the method of Layeghian Javan
et al [16]. The proposed method showed high performance in
terms of precision, sensitivity, AUROC, and AUPRC compared
with the method of Kwon et al [18]. Therefore, the proposed
model exhibited higher precision, sensitivity, specificity,
F1-score, AUROC, and AUPRC than those of recent studies.

In a comparison of the AUROC values for CA prediction up to
6 hours in advance, the proposed model achieved an AUROC
over 0.80, whereas the model of Layeghian Javan et al [16]
achieved an AUROC under 0.80. In addition, the proposed
model obtained a higher AUROC for the prediction of CA 1
hour in advance (Figure 5).
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Table 3. Results comparing the prediction performance between the proposed model and state-of-the-art models.

PerformanceBefore

CAa
ExplainableClassifierFeaturesDatabaseGroupYearAuthor

AUROCc=0.830 h, cur-
rent point

YesRFbTime since ward admission, de-
mographics, hospitalization histo-
ry, vital signs, and laboratory re-
sults

Clinical
database

Non-CA:
253,547;
CA: 424

2016Churpek et
al [14]

AUROC=0.85;

AUPRCe=0.04

0 h, cur-
rent point

NoRNNdVital signsClinical
database

Non-CA:
45,539; CA:
396

2018Kwon et al
[18]

AUROC=0.821 hNoStackingTime interval and statistical fea-
tures using vital signs and clini-
cal latent features

MIM-

ICf-III [17]

Non-CA:
2681; CA:
79

2019Layeghian
Javan et al
[16]

AUROC=0.86

AUPRC=0.58

1 hYesLGBhCosine similarity and statistical
features using vital signs and
clinical latent features

MIMIC-IV
[21]

Non-CA:
1899; CA:
82

N/AgProposed
method

aCA: cardiac arrest.
bRF: random forest.
cAUROC: area under the receiver operating characteristic curve.
dRNN: recurrent neural network.
eAUPRC: area under the precision-recall curve.
fMIMIC: Medical Information Mart for Intensive Care.
gN/A: not applicable.
hLGB: gradient boosting ensemble of decision trees.

Figure 5. Comparison of AUROC values achieved by the proposed model and a state-of-the-art model. The light green line indicates the proposed
model, while the blue line represents the method proposed by Layeghian Javan et al [16]. AUROC: area under the receiver operating characteristic
curve.

Discussion

Principal Findings
Clinicians can use the proposed model to make clinical decisions
for patients with HF-related diagnoses in the ICU, providing
rapid response services more accurately than those in previous
studies. In this study, we developed and validated an ensemble
approach–based model capable of predicting CA events 1 hour
in advance. The prediction performance of the proposed model
was considerably better than that of conventional machine
learning models used for patients requiring ICU support.

Therefore, the number of in-hospital CA events and deaths could
be reduced. In addition, the proposed method obtained better
prediction performance up to 6 hours in advance, allowing
clinicians to be better prepared for in-hospital CA events.

Kwon et al [18] solved a real-time challenge using deep learning
models and achieved high AUROC scores. However, owing to
the black-box nature of these models, the relationship between
the prediction results and features cannot be understood, making
them undesirable for clinical decision support. Layeghian Javan
et al [16] used an ensemble method with the stacking method
to achieve a high AUROC value; however, their method could
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not provide a relationship between the prediction results and
features.

Regarding CA prediction using existing machine learning
methods, cosine similarity–based features led to statistically
higher performance in terms of AUROC, AUPRC, and
specificity than statistical features (all P<.001). The best
performance was observed when the proposed LGB model used
cosine similarity–based features. Moreover, when the other
models and this feature set were combined, a statistically better
performance was obtained than when only the statistical feature
set was used (all P<.001). Therefore, cosine similarity–based
features can play an important role in predicting the occurrence
of CA.

Several noteworthy insights were obtained regarding the clinical
interpretability results of the proposed model. First, we observed
that the time-level cosine similarity–based features changed
after 12 hours in the CA group but not in the non-CA group
(Figure 4B and C). This result is consistent with the difference
in the significance of the changes in temporal silence features
between the non-CA and CA groups at 12 hours [3].
Specifically, the instability of at least one vital sign 1-4 hours
before CA was consistent with the difference in the significance
of changes in temporal silence features between the non-CA
and CA groups at 12 hours [3] (Figure 4D). Second, vital
sign–level features, including HR, RR, and SpO2, differed in
their level of correlation with other vital sign data in the 24-hour
time window (Figure 4B). This is consistent with the finding
that changes in the temporal pattern of vital signs become
irregular before CA occurs [3,40]. These results were consistent
with the neuroscientific results. After being fed into the proposed
model, the similarity change and correlation information of vital
sign data over time showed a statistically significant
improvement in performance based on the relationship between
the statistical features and predictive power. This indicates that
the proposed model is more useful for providing accurate CA
predictions in a target population. Additionally, for patients
with an HF-related diagnosis, the information extracted using
a statistical method for temporal patterns from each vital sign
was not significant in the CA prediction results. However, the
information extracted using the cosine similarity–based feature
set was significant, indicating that it provided valuable
information for predicting CA.

Strengths
This study has several strengths. First, we adopted widely
applied machine learning models and model evaluation
techniques that have rarely been applied to evaluate the clinical
predictive ability of these machine learning models. Second,
we tuned the hyperparameter values for each machine learning
model identified through an iterative grid search. It was verified
that hyperparameter tuning can improve the performance of
these models. We proposed an interpretable and calibrated
ensemble approach using LGB with different cost weights for
each class to predict CA events within 1 hour. Compared with
baseline models that are widely used in related clinical

applications, the proposed model achieved the highest AUROC
values and provided a statistically higher performance (all
P<.001). Our proposed method achieved an AUROC exceeding
0.8 for predicting CA 6 hours in advance. Therefore, clinicians
have sufficient time to respond to CA events when using the
proposed model. Cosine similarity–based features statistically
improved the performance of all models (all P<.001). The results
revealed that the cosine similarity–based features of vital signs
and EWSs greatly supported the prediction of CA events in
patients with HF.

Our proposed CA prediction system significantly reduced false
alarm rates and showed high performance in terms of precision,
AUROC, and AUPRC compared with comparative models for
validated internal and external data sets, and thus, it can be
applied to ICU patients. In addition, our framework can explain
which features among the vital signs input into the CA
prediction system generate alerts to medical staff through feature
importance analysis. This can easily help medical staff judge
and improve the reliability of machine learning results.
Therefore, our CA prediction system is considered to have
reached clinical maturity and is being used and verified for
everyday clinical use.

Limitations
This study had several limitations. An ensemble approach based
on gradient boosting was developed without feature screening.
However, as indicated by the high-performance results, this
approach did not significantly affect the model’s performance.
Even though the proposed method showed higher precision,
sensitivity, specificity, F1-score, AUROC, and AUPRC for
external validation, the precision was still low, which is
considered a limitation of our study. Further work is needed to
propose feature generation methods and models that can further
improve precision while maintaining AUROC and sensitivity.
In the future, the proposed model could be optimized for feature
screening. Nevertheless, as mentioned in the discussion section,
the prediction model of this study has good potential for clinical
applicability in CDSSs and early interventions. Accessibility
and user ability can be improved using a user-centered CDSS
or web-based application based on the proposed model.

Conclusions
In this study, we evaluated the performance of an explainable
artificial intelligence warning model using an ensemble
technique in an ICU population. The proposed model
incorporated statistical and cosine similarity–based features
from vital signs in the 24-hour time window and achieved a
high AUROC value for early CA diagnosis. The proposed model
attempted to predict CA events every 1 hour. The SHAP value
was used to explain overall and time-to-time relevance. These
clinical interpretability results can aid doctors in making clinical
decisions by providing insights into the links between predictive
findings and characteristics. These findings indicate that the
proposed technique outperformed other comparable models in
terms of CA prediction in ICU settings.
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