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Abstract

Background: Electronic health records (EHRs) in unstructured formats are valuable sources of information for research in both
the clinical and biomedical domains. However, before such records can be used for research purposes, sensitive health information
(SHI) must be removed in several cases to protect patient privacy. Rule-based and machine learning–based methods have been
shown to be effective in deidentification. However, very few studies investigated the combination of transformer-based language
models and rules.

Objective: The objective of this study is to develop a hybrid deidentification pipeline for Australian EHR text notes using rules
and transformers. The study also aims to investigate the impact of pretrained word embedding and transformer-based language
models.

Methods: In this study, we present a hybrid deidentification pipeline called OpenDeID, which is developed using an Australian
multicenter EHR-based corpus called OpenDeID Corpus. The OpenDeID corpus consists of 2100 pathology reports with 38,414
SHI entities from 1833 patients. The OpenDeID pipeline incorporates a hybrid approach of associative rules, supervised deep
learning, and pretrained language models.

Results: The OpenDeID achieved a best F1-score of 0.9659 by fine-tuning the Discharge Summary BioBERT model and
incorporating various preprocessing and postprocessing rules. The OpenDeID pipeline has been deployed at a large tertiary
teaching hospital and has processed over 8000 unstructured EHR text notes in real time.

Conclusions: The OpenDeID pipeline is a hybrid deidentification pipeline to deidentify SHI entities in unstructured EHR text
notes. The pipeline has been evaluated on a large multicenter corpus. External validation will be undertaken as part of our future
work to evaluate the effectiveness of the OpenDeID pipeline.
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Introduction

Background and Significance
Electronic health records (EHRs) have become a valuable source
for observational research, owing to the accessibility and
availability of patient-level data. EHRs contain clinical, imaging,
and omics data from patients, enabling clinicians and researchers
to generate novel evidence [1]. The EHR data are stored in
structured, semistructured, and unstructured formats. Using
unstructured data for research purposes is challenging [2].
Unstructured data, including structured or semistructured data,
must be deidentified in several scenarios before they can be
used for research. Scenarios include where informed consent is
not possible to share identified information. As part of the
deidentification process, sensitive health information (SHI)
must be removed or replaced by surrogates to protect patient
privacy [3,4]. The Australian government, similar to the United
States with the Health Insurance Portability and Accountability
Act (HIPAA) [5], defines several categories of SHI [4]. These
include but are not limited to names, dates, any unique
identifying numbers or codes, and geographical data, which
should be excluded or replaced from EHR text notes prior to
secondary use for research purposes. The goal of the
deidentification process in unstructured EHR text notes is to
identify SHI by inspecting entire medical records.
Deidentification by medical experts is time-consuming, error
prone, and expensive [6]. In contrast, automated deidentification
techniques based on recent advances in artificial intelligence
can be used to simplify the entire process [7]. Automated
deidentification techniques require an annotated corpus to
identify SHI [8].

Over the past 2 decades, several deidentification methods have
been developed to identify the SHI in unstructured EHR text
notes. Three methods are widely used in the deidentification
process, which are rule-based, machine learning–based, and
hybrid techniques. Early methods were rule based and required
medical professionals to manually develop the rules for most
of the time. Researchers from the University of Pittsburgh
Medical Center used a rule-based approach to identify and
replace SHI while preserving the underlying medical information
in pathology reports [9]. Sweeney [10] proposed another
rule-based approach for identifying and replacing
SHI.MIT-De-id (PhysioNet) software, which is also a rule-based
deidentification system developed using nursing progress reports
[11]. Zhao et al [12] developed a rule-based model and
integrated it into an ensemble framework and achieved the best
performance of the model when compared with a non–rule-based
model. Similarly, Dehghan et al [13] developed cDeID software
to deidentify 7 HIPAA categories. Philter is another
deidentification system based on rules incorporating name lists
and statistical natural language processing (NLP) to remove
SHI from EHR text notes [14].

In recent years, with advancements in artificial intelligence,
researchers have proposed traditional machine learning–based
approaches and deep learning–based approaches. For example,
He et al [15] used conditional random fields (CRFs) with a large
number of lexical, orthographic, and dictionary features. In
another study, researchers proposed a self-attention mechanism
using stacked recurrent neural networks [16]. Contextualized
word embeddings and pretrained word embeddings have been
examined with bidirectional long short-term memory networks
(Bi-LSTM) or Bi-LSTM-CRF in various studies [17-19].
Another recent study proposed an ensemble-based framework
to deidentify 5 SHI categories, including person, address, date
of birth, identifiers, and phone numbers using Australian hospital
discharge summaries [20].

Hybrid approaches have also been proposed to combine
rule-based and machine learning–based methods to achieve
better performance. For example, Ferrández et al [21] proposed
a stepwise hybrid approach, which used CRF, rules, and a
dictionary first and then support vector machine. Lee et al [22]
presented a hybrid approach using CRF and rules for the
automatic deidentification of psychiatric notes. Zhao et al [23]
proposed a hybrid approach using recurrent neural networks
and text templates. Liu et al [24] developed a hybrid method
based on a rules-based method and an ensemble classifier of
CRF and Bi-LSTM.

However, there are several limitations to the existing
approaches. These methods lack robustness and require
comprehensive modifications of rules to achieve better accuracy
when applied to EHR text notes data from different health care
settings. Many existing deidentification studies have focused
either on using rule-based approaches or hybrid approaches
based on CRF or Bi-LSTM and rules to identify SHI categories
[21-24]. Only a few studies have examined the potential of
hybrid approaches that incorporate rules, state-of-the-art
pretrained language models, and deep learning [25].
Furthermore, in most of these approaches, the models are trained
on a corpus developed from a single center or a corpus prepared
from a cohort of patients with a specific disease. As such, there
is little evidence on the implementation of these approaches in
the real-time processing of EHR text notes deidentification.

Objective
This study proposes an end-to-end deidentification pipeline
called OpenDeID to deidentify real-world Australian
unstructured EHR text notes data. The OpenDeID pipeline
incorporates a hybrid approach of associative rules, supervised
deep learning, and pretrained language models. The
best-performing run of OpenDeID was used at a large tertiary
teaching hospital in Australia in 2019, deidentifying EHR text
notes associated with biobanking in real time. Moreover, the
OpenDeID pipeline can also generate realistic surrogates to
safeguard SHI [26]. As of 2022, this deployment of the
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OpenDeID pipeline has processed more than 8000 reports in
real time.

Methods

OpenDeID Corpus
An OpenDeID corpus was used to develop the OpenDeID
pipeline. The OpenDeID corpus comprised 2100 pathology
reports from 1833 patients with 38,414 SHI entities. The
interannotator agreement, measured using Cohen κ, was 0.9464.
The corpus was created using 2 annotators in 3 different

experimental settings. Table 1 lists the 8 SHI categories and
their corresponding subcategories annotated in the corpus. The
corpus was randomly divided into 3 equal sets: training,
validation, and test sets based on the reports. The training set
was used for the initial training and validation sets to tune the
hyperparameters and early stopping. The models were then
trained on the combined training and validation sets, followed
by evaluation on the test set. The corpus characteristics and
corpus development process are described in detail in [27,28].
The OpenDeID corpus was developed using annotation
guidelines developed by Stubbs et al [29]. The corpus is
available at the OpenDeID-Corpus GitHub repository [30].

Table 1. SHIa categories and subcategories for deidentification annotation.

SHI subcategorySHI category

PATIENT, DOCTOR, USERNAMEName

No subcategoriesProfession

HOSPITAL, ORGANIZATION, STREET, CITY, STATE, COUNTRY, ZIP CODE, OTHERLocation

No subcategoriesAge

No subcategoriesDate

PHONE, FAX, EMAIL, URL, IP ADDRESSContact

SSN, MEDICAL RECORD, HEALTH PLAN, ACCOUNT, LICENSE, VEHICLE, DEVICE, BIOID, IDNUMID

No subcategoriesOther

aSHI: sensitive health information.

OpenDeID

Overview
OpenDeID uses a step-by-step pipeline approach for
deidentifying sensitive information. The first step is
preprocessing, where pathology reports in the XML format are
cleaned using NLP methods such as regular expression rules,
sentence segmentation, and tokenization. The next step is to
build deidentification models. We used two methods: (1) training

a neural network model with word embeddings and (2)
fine-tuning pretrained Bidirectional Encoder Representations
from Transformers (BERT)–base models using transfer learning.
The methods were compared and evaluated in terms of their
accuracy and performance. The deidentified reports were further
processed to generate an output with the appropriate SHI entity
tags. Figure 1 shows a conceptual overview of the OpenDeID
pipeline. The OpenDeID pipeline is available at the
OpenDeID-Pipeline GitHub repository [31]. The main steps are
elaborated in the following subsections.
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Figure 1. Conceptual overview of the pipeline of OpenDeID. BERT: Bidirectional Encoder Representations from Transformers; LSTM: long short-term
memory.

Preprocessing
The pathology reports were segmented and assigned tokens
using the Spacy toolkit. We observed that some of the tokens
were incorrectly cascaded, which would impact the SHI tagging.
For example, the tokens “PsychiatryChief” and “JMH.Does”
should have been “Psychiatry Chief” and “JMH. Does,”
respectively. For example, consider “Age: \n\n39Sex”—where
just the number “39” should be labeled as an SHI, not “Age”
or the entire value “39Sex.” We applied regular
expressions–based rules after tokenization to further split and
fix the incorrectly cascaded tokens to overcome this problem.
The fixed tokens were then updated in the sentences. This is
the most common problem in tokenizing, where custom rules
need to be added as per the task [32]. We designed the
deidentification process as a sentence-tagging task and predicted

the labels assigned to tokens in each sentence. These labels were
used to indicate different categories of SHI. Our study explored
2 types of tagging schemes: BIO and BIESO [33]. We finally
used the BIESO tagging scheme in which “B,” “I,” and “E”
indicate that the corresponding token is the “beginning,”
“inside,” and “ending” for a certain SHI. “S” indicates that the
current token is an SHI consisting of only 1 word. Additionally,
“O” refers to the “outside” label, which indicates that the token
is not an SHI. Furthermore, we observed that the cascaded
tokens were not correctly identified. For example, 2 ID entities
were recorded as 1 ID. Subsequently, we tailored the associated
cascaded rules for preprocessing to improve the deidentification
performance for Australian pathology reports.
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Experimental Setup

Neural Networks With Word Embeddings

Word embedding or word vector is a method where individual
words are represented as a vector in a predefined space. It is
used for dimensionality reduction and capture word semantics,
which can be later used as an input in machine learning models
for training and inference. This is required because neural
networks only recognize the numerical inputs [34]. In this
experimental setting, sentences were further split into tokens
and n-grams. The pretrained word embeddings of the word
token and its surrounding tokens were used to represent each
token. In this experiment, we investigated GloVe (global vectors
for word representation), PMC, and Word2vec-OpenDeID
corpus and GloVe+PMC+word2vec-OpenDeID corpus
embeddings. GloVe is pretrained on Wikipedia and English
Giga-word fifth edition [35]. PMC is pretrained on PubMed,
PMC texts, and Wikipedia [36]. Word2vec-OpenDeID corpus
is pretrained on the OpenDeID corpus with the word2vec
algorithm [37]. In the GloVe+PMC+word2vec-OpenDeID
corpus, each token was represented by using a concatenation
of the above 3 pretrained embeddings. Furthermore, we
manually engineered orthographical features [38] based on
regular expressions to detect writing patterns of different SHI
categories. The manually developed features were encoded
using a 1-hot representation and concatenated with the token
representation. After activation by a rectified linear unit, the
activated representation vectors were fed into a neural network
based on long short-term memory (LSTM) to learn the tagging
sequence. The network architecture was implemented using
Keras software (Google). The minibatch gradient descent along
with Adam was used to optimize the parameters. The epoch
was set to 20, with a batch size of 8192.

Fine-Tuning Pretrained BERT-Base Model

BERT is a machine learning framework designed for NLP tasks.
BERT is based on a deep learning model called transformers.
The mechanism of transformers includes an encoder that reads
and processes the text input and a decoder that produces an
output based on prediction for the given input. Previously,
language models could read text inputs in a sequential order.
BERT, on the other hand, has a bidirectional capability
introduced by transformers. There are 2 types of BERT
framework: BERT-base and BERT-large. The main difference
between them is the number of encoder layers.

BERT is designed to pretrain deep bidirectional representations
from unlabeled text data by joint conditioning on both the left
and right context in all layers. The fine-tuning step is done by
including an additional output layer for deep learning tasks.
BERT is evaluated on 11 NLP tasks. Fine-tuning the pretrained
BERT model allows it to be used for various downstream tasks
with minimal architectural modifications. Semantic and syntactic
knowledge in a pretrained large corpus can be transferred to
downstream tasks [39]. To achieve the deidentification task, a
pretrained BERT-base model was first incorporated with an
additional output layer to perform token-level classification,
and the model was then fine-tuned on labeled data. In this set
of experiments, we examined three contextual clinical and
biomedical BERT embeddings: (1) BioBERT: pretrained a

BERT model on PubMed abstracts and PubMed Central full-text
articles [40], (2) Clinical BioBERT: initialized from BioBERT
and pretrained on approximately 2 million notes in the
MIMIC-III (Medical Information Mart for Intensive Care) v1.4
database [41], and (3) Discharge Summary BioBERT: initialized
from BioBERT and pretrained on the discharge summaries only
in the MIMIC-III v1.4 database [41]. Alsentzer et al [41]
released clinically trained BERT models fine-tuned atop
BioBERT. The BERT-base models were implemented using
PyTorch (version 1.10.1; PyTorch) in Python 3.9 (Python
Software Foundation). The parameters were optimized using

the AdamW Optimizer with a learning rate of 2 × 10–5. The
batch size was 32 for training and 64 for validation and testing,
respectively. The early stopping criterion was used to prevent
overfitting. The training was stopped when the token-level
accuracy or microaveraged F1-score in the validation set no
longer increased for a certain number of patience epochs. The
number of training epochs was 20, with a patience of 5. The
sequence length of the input to the BERT-base model was 128.
Sentences longer than 128 in length were divided into segments.
The default hyperparameters were not fine-tuned for efficient
training.

Postprocessing

The output from the trained models was postprocessed to
produce a report in the XML format with the identified SHI
entities. The predicted BIESO tags in the sentences were
matched with the original text and combined to assign a
corresponding SHI categorical output. Furthermore, regular
expression rules using the Python re library were applied to
detect “DATE,” “PHONE,” and “URL” to further improve the
accuracy of the identified SHI categories. For example, in the
“DATE” field, we used regular expression rules to find mentions
matching the following formats “1/12/2000,” “1-12-2000,”
“Jan/12/2000,” “12/Jan/2000,” “Jan-12-2000,” and
“12-Jan-2000.” For “PHONE,” we used regular expression rules
to find any string with the following format: “1234567890,”
“123.456.7890,” and “123-456-7890” to identify 10-digit phone
numbers.

An XML file was generated, with the text and SHI annotations
for each discharge summary report as the final output.
Additionally, if required, the OpenDeID pipeline can generate
surrogates. In this study, we have not generated or evaluated
surrogates. However, we have incorporated our previous work
on surrogates into the pipeline to allow users to generate
surrogates [26]. Surrogates can be generated on 6 SHI categories
such as name, age, contact, location, date, and ID. For example,
the surrogate for a name can be generated by an alphabet shift
of fixed length. This is followed by mapping the initial alphabet
with another random alphabet and finally selecting a surrogate
starting with the new alphabet from the dictionaries prepared.
Similarly, a surrogate for a date can be generated by a date shift
in the range of 1 to 730 days. For ID and contact surrogates, a
custom set of rules can be developed [26].

Evaluation
Model performance was evaluated using microaveraged
precision, recall, and F1-scores with strict and relaxed matching
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[42]. For strict matching, the start and end offsets for the system
outputs must exactly match those of the gold standard
annotations. Relaxed matching allows tolerance of character
offsets. This allows for variations in including “s” and other
endings that our system may ignore due to the tokenization. For
example, “HM” is identified as a “DOCTOR” tag in gold
standard annotations. Strict matching would only take the exact
words of the token. Relaxed matching would take tokens such
as “HMs” and assign them as “DOCTOR” in the system. The
F1-score is a metric used in machine learning to evaluate the
accuracy of a model. It incorporates both the precision and recall
scores of the model. The details of how to compute the precision,
recall, and F1-score can be found in Multimedia Appendix 1.
The evaluation script is based on the 2016 i2b2 evaluation script
[43].

Ethical Considerations
This study was approved by the University of New South Wales
Sydney Human Research Ethics Committee (HC17749). This
research study was undertaken in accordance with the approved
ethics application, relevant guidelines, and regulations.
Additionally, access to the OpenDeID Corpus was approved
by the Secure Research Environment for Digital Health
(SREDH) Consortium’s [44] Translational Cancer
Bioinformatics working group (SR42-2022).

Results

Overview
The corpus contained 2100 pathology reports with 38,414 SHI
entities. After preprocessing, 15,85,905 tokens and 144,183
sentences were extracted from the corpus. The length of the
sentences ranged from 1 token to 293 tokens, with an average
length of 11 tokens. The length of the reports ranged from 106
tokens to 3618 tokens, with an average of 755.19 tokens. The
corresponding SHI categories (and subcategories) in the training,
validation, and testing data sets are summarized in Table S1 in
Multimedia Appendix 1. Six SHI categories and 18
subcategories were identified by using the OpenDeID pipeline.
We excluded the “LOCATION: ROOM” and “ID: BIOID”
subcategories from the model building when fine-tuning the
BERT-base models because these subcategories only appeared
once in the entire data set.

Neural Networks With Different Word Embeddings
Table 2 presents the performance of the LSTM neural network
with different word embeddings. The model with a
concatenation of all developed embeddings achieved the best
microaveraged F1-scores of 0.9222 in strict matching and 0.9237
in relaxed matching settings. The learning curve for the
best-performing model is shown in Figure S1 in Multimedia
Appendix 1. We also used 2 strategies to investigate their impact
on the overall performance (Table S2 in Multimedia Appendix
1).

Table 2. Performance on the test sets using neural networks with different word embedding methodsa.

RelaxedStrictWord embeddings

F1-scoreRecallPrecisionF1-scoreRecallPrecision

0.92370.89350.95590.92220.89210.9544GloVeb+PMC+word2vec-OpenDeID corpus

0.83300.76790.91020.83200.76690.9091word2vec-OpenDeID corpus

0.91460.87630.95650.91320.87490.9550PMC

0.82150.74790.91120.82060.74700.9101GloVe

aPrecision, recall, and F1-score are microaveraged measures under relaxed settings.
bGloVe: global vectors for word representation.

Fine-Tuning Different Pretrained BERT-Base Models
The performance of the different biomedical and clinical
BERT-base models is shown in Table 3. For the overall
performance, the best-performing model was Discharge
Summary BioBERT with a microaveraged F1-score of 0.9374
for strict matching and 0.9401 for relaxed matching. However,
the difference between the best- and worst-performing
BERT-base models was only 0.0014 for strict matching and
0.0015 for relaxed matching, which can be considered minor.
The learning curve for the discharge summary BioBERT is
presented in Figure S2 in Multimedia Appendix 1. In terms of
precision and recall, we observed that the precision of the
models was higher than that of the recalls for both strict and
relaxed metrics across different BERT-base models.

Approximate randomization tests were used to test for statistical
significance between different models, and the P-values are
provided in Table S3 in Multimedia Appendix 1. All the
fine-tuned BERT-base models outperformed the neural network
models with word embeddings in terms of overall performance.
This is mainly achieved by an improvement in the
microaveraged recall from 0.8921 (neural network with
GloVe+PMC+word2vec-OpenDeID corpus) to 0.9196
(Discharge Summary BioBERT). To evaluate the robustness
of the results and the impact of training size, we evaluated
different splits of the training and validation sets for fine-tuning
the Discharge Summary BioBERT (details in Table S4 and
Figure S3 in Multimedia Appendix 1). The results did not
change considerably, and we recorded relaxed microaveraged
F1-scores ranging from 0.9361 to 0.9374.

J Med Internet Res 2023 | vol. 25 | e48145 | p. 6https://www.jmir.org/2023/1/e48145
(page number not for citation purposes)

Liu et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 3. Performance on the test sets using different fine-tuned pretrained BERTa-base models.

RelaxedStrictBERT-base models

F1-scoreRecallPrecisionF1-scoreRecallPrecision

0.93970.92420.95580.93690.92140.9529BioBERT

0.93860.91980.95820.93600.91720.9555Clinical BioBERT

0.94010.92220.95870.93740.91960.9560Discharge Summary BioBERT

aBERT: Bidirectional Encoder Representations from Transformers.

To account for cascaded tokens with a missing space in real
life, additional preprocessing rules to splitting the cascaded
tokens are implemented by considering the Discharge Summary
BioBERT model with the updated OpenDeID pipeline as an
example, which results in a 3.04% strict microaveraged F1-score

improvement from 0.9374 to 0.9659, as shown in Table 4. This
indicates that a carefully crafted rule-based approach added to
the preprocessing phase to boost the performance of the
BERT-base model is essential in real-life deidentification
problems.

Table 4. Performance on the test sets using cascaded ruled applied into BERTa-base models.

RelaxedStrictRun

F1-scoreRecallPrecisionF1-scoreRecallPrecision

0.94010.92220.95870.93740.91960.9560Discharge summary BioBERT run without
cascading rules

0.96870.95920.97840.96590.95640.9756Discharge summary BioBERT run with addi-
tional cascading rules

aBERT: Bidirectional Encoder Representations from Transformers.

The best-performing run of the OpenDeID pipeline is currently
used at a large tertiary hospital to deidentify EHR text notes
associated with biobanking. As of 2022, the deployment of
OpenDeID pipelines has processed more than 8000 reports in
real time.

Discussion

Principal Findings
We investigated various configurations of our pipeline using
word embeddings and transformer-based methods in conjunction
with cascade associative preprocessing rules to deidentify
Australian pathology reports. The proposed OpenDeID pipeline
consists of 3 steps: preprocessing, modeling, and postprocessing.
In the modeling steps, neural networks with word embeddings
and fine-tuned pretrained language models were considered and
implemented as options. For neural networks with word
embeddings, a combination of different word embeddings
(GloVe+PMC+word2vec-OpenDeID corpus) achieved the best
microaveraged F1-scores (strict: 0.9222, relaxed: 0.9237). For
fine-tuned pretrained language models, the OpenDeID pipeline
using Discharge Summary BioBERT with additional
preprocessing rules achieved an accurate performance on the
test set, achieving the best microaveraged F1-scores (strict:
0.9659, relaxed: 0.9687).

We evaluated the performance of our pipeline over 6 categories
and 18 subcategories commonly found in Australian EHR text
notes [45]. Various annotated corpora are available for
deidentification. The 2014 i2b2/UTHealth deidentification
corpus contains 1304 clinical notes from 296 patients in the
United States [46]. The second was the 2016 CEGS N-GRID

corpus, which contains 1000 clinical notes from the United
States [29]. Uzuner et al [47] developed a corpus containing
889 hospital discharge summaries. The MIMIC-III database
contains deidentified clinical data of patients admitted to the
Beth Israel Deaconess Medical Center in Boston, United States.
Our initial experiments with these corpora showed low
generalizability to Australian EHR text notes. Therefore, we
used the OpenDeID corpus for training, which is based on
Australian EHR text notes data.

To investigate the effectiveness of popular NLP methods in the
modeling steps, we implemented neural networks with word
embeddings and pretrained language models. It was shown that
fine-tuning pretrained BERT-base models outperformed the
neural networks with word embeddings in terms of overall
performance. For neural networks, various word embeddings
were compared, including combinations of PMC, the
word2vec-OpenDeID corpus, and GloVe. The result indicates
that the concatenation of all word embeddings performed the
best. Among the pretrained word embeddings, PMC performed
better than the word2vec-OpenDeID corpus and GloVe. There
was a negligible difference in performance between the
word2vec-OpenDeID corpus and the GloVe word embeddings.

In terms of pretrained language models, we examined different
clinical models, including BioBERT, Clinical BioBERT, and
Discharge Summary BioBERT, and their deidentification
performances were largely similar in this study. Similar results
were reported for the performances of BioBERT, Clinical
BioBERT, and Discharge Summary BioBERT when they were
evaluated on the standard deidentification tasks of i2b2 2006
and i2b2 2014, as shown in Table S5 in Multimedia Appendix
1 [41]. This may be attributed to the lack of necessary
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patient-identifying knowledge from the upstream pretrained
models to be transferred to the downstream deidentification
task. This is because many of these clinically pretrained models,
such as the Discharge Summary BioBERT and Clinical
BioBERT, were pretrained using the MIMIC-III data set, which
contains SHI surrogates instead of real SHI. In addition, Ji et
al [48] explained the importance of biomedical entity
normalization in enhancing the model’s performance. Similarly,
reducing the batch size to 16 or 32, as suggested by Devlin et
al [49], can improve the overall results. Our experiments showed
that a strict microaveraged F1-score of 0.9374 could be achieved
on the test set using the OpenDeID pipeline with Discharge
Summary BioBERT training on only 700 annotated reports.
This indicates the potential of the pipeline for implementation
in low-resource settings.

Error Analysis
As shown in Table S6 in Multimedia Appendix 1, we further
examined the causes of the prediction mistakes identified
through error analysis. This step is crucial because it allows us
to customize efficient preprocessing methods to deal with
frequently occurring, repeating, and mistakenly cascaded tokens.
Using the fine-tuned Discharge Summary BioBERT model, we
applied the OpenDeID pipeline to detect SHI for these 50
reports. Of the 940 SHI entities, 874 were correctly identified,
whereas 66 were mislabeled or not detected by OpenDeID.
Among all the SHI subcategories in the selected reports,
“NAME: PATIENT,” “LOCATION: ZIP,” “AGE,” and “ID:
MEDICAL RECORD” were accurately identified by the
OpenDeID pipeline. There were 3 false positives and 4 false
negatives related to incorrect gold standard annotations, which
should have been treated as true positives. Two examples are
presented in Table S7 in Multimedia Appendix 1.

The cascaded rules we implemented prevented 16 false positives
and 31 false negatives caused by incorrectly cascaded tokens.
These cascaded tokens can be correctly detected by
incorporating cascaded rules into an OpenDeID pipeline with
a BERT-base model. For instance, without the cascaded rules,
a string such as “12G00123,12N01234” would have been treated
as a token together, instead of 2 IDs: IDNUM “12G00123” and
“12N01234,” resulting in 1 false positive and 2 false negatives
outcome. Similarly, we specified the associated rules to (1)
identify a token with a comma or semicolon in the middle and
(2) add a space after the comma or semicolon and then split the
cascaded tokens. The additional cascaded rules can help improve
the precision of tokenization and sentence splitting, improving
deidentification accuracy. EHR text notes are written as free
text, and misspelling and missing space issues are widely
observed in the text. Therefore, performing error analysis and
applying rule-based preprocessing steps are important to
discover and eliminate potential writing problems. Furthermore,
different EHR text notes collected by different hospitals may
possess different formats, templates, and structures. A
one-size-fits-all approach may not be able to fully realize the
potential of the deidentification pipeline across all systems. For
external data sets that may incorporate this pipeline in the future,

it is suggested to study the resulting errors systematically, and
in-house modelers can tailor additional rules to incorporate the
data properties retained in each specific model. For a detailed
example of such an error investigation, refer to the error analysis
in Multimedia Appendix 1.

Limitations and Future Work
This study had some limitations. The recall of OpenDeID must
be further improved. Recall measures the ability to retrieve all
SHI from clinical texts, which is essential to the deidentification
problem because any unidentified SHI could potentially
compromise patient privacy. We may consider different loss
functions based on recall when optimizing the parameters in
the models. Furthermore, we did not fine-tune the
hyperparameters in the BERT-base models, which could
potentially improve the performances and should be further
investigated. It is important to note that our study provides
valuable insights and a foundation for deidentification in the
context of Australian pathology reports. We anticipate further
research to externally validate our pipeline and evaluate the
applicability and performance of our approach across different
clinical note types. The proposed pipeline was not examined
using an external data set. We also intend to further validate the
pipeline using other Australian DeID data sets. Although the
annotations in the OpenDeID corpus are replaced with synthetic
but realistic SHI, it is still possible that the real data might have
variations that are not observed in the synthetic annotations. As
such, large-scale external validation using real SHI data is
necessary to evaluate the effectiveness of the OpenDeID
pipeline. Our future work will include the external validation
of the pipeline on corpora from other countries and
benchmarking against state-of-the-art deidentification tools like
OpenDeID.

Conclusions
This study presents a hybrid deidentification pipeline called the
OpenDeID pipeline. The pipeline was deployed at a large
tertiary hospital in 2019 and has processed over 8000 reports
in real time. The OpenDeID pipeline is evaluated under various
settings, using transformer-based neural networks and different
configurations of word embeddings. We used the OpenDeID
corpus, which consists of 2100 pathology reports extracted from
Australian EHR systems to train and evaluate performance. The
models were trained on the training and validation sets, followed
by evaluation on the test set. Strict and relaxed matching
schemes were used for comparative analysis, and the
performance was measured using precision, recall, and
microaveraged F1-score. The OpenDeID deidentification
pipeline incorporates LSTM with different settings for word
embedding or fine-tuned BERT-base models. The pipeline
achieved the best performance using a combination of different
word embeddings (GloVe+PMC+word2vec-OpenDeID corpus).
The best run is the fine-tuned Discharge Summary BioBERT
model with an F1-score of 0.9659. Our systematic error analysis
identified minor annotation errors in the corpus and areas of
improvement in the OpenDeID pipeline.
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