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Abstract

Background: Nonalcoholic fatty liver disease (NAFLD) has emerged as a worldwide public health issue. Identifying and
targeting populations at a heightened risk of developing NAFLD over a 5-year period can help reduce and delay adverse hepatic
prognostic events.

Objective: This study aimed to investigate the 5-year incidence of NAFLD in the Chinese population. It also aimed to establish
and validate a machine learning model for predicting the 5-year NAFLD risk.

Methods: The study population was derived from a 5-year prospective cohort study. A total of 6196 individuals without NAFLD
who underwent health checkups in 2010 at Zhenhai Lianhua Hospital in Ningbo, China, were enrolled in this study. Extreme
gradient boosting (XGBoost)–recursive feature elimination, combined with the least absolute shrinkage and selection operator
(LASSO), was used to screen for characteristic predictors. A total of 6 machine learning models, namely logistic regression,
decision tree, support vector machine, random forest, categorical boosting, and XGBoost, were utilized in the construction of a
5-year risk model for NAFLD. Hyperparameter optimization of the predictive model was performed in the training set, and a
further evaluation of the model performance was carried out in the internal and external validation sets.

Results: The 5-year incidence of NAFLD was 18.64% (n=1155) in the study population. We screened 11 predictors for risk
prediction model construction. After the hyperparameter optimization, CatBoost demonstrated the best prediction performance
in the training set, with an area under the receiver operating characteristic (AUROC) curve of 0.810 (95% CI 0.768-0.852).
Logistic regression showed the best prediction performance in the internal and external validation sets, with AUROC curves of
0.778 (95% CI 0.759-0.794) and 0.806 (95% CI 0.788-0.821), respectively. The development of web-based calculators has
enhanced the clinical feasibility of the risk prediction model.

Conclusions: Developing and validating machine learning models can aid in predicting which populations are at the highest
risk of developing NAFLD over a 5-year period, thereby helping delay and reduce the occurrence of adverse liver prognostic
events.
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Introduction

Background
Nonalcoholic fatty liver disease (NAFLD) is a chronic metabolic
liver disease closely related to obesity, dyslipidemia, and insulin
resistance. It is characterized by excessive fat deposition in
hepatocytes, excluding alcohol and other definite liver-damaging
factors. In recent years, coinciding with lifestyle and dietary
habits changes, the prevalence of NAFLD has gradually
increased in several countries [1,2]. Recent studies have shown
that the global prevalence of NAFLD is approximately 25%,
varying by region and ethnicity [3]. A meta-analysis in China
showed a national NAFLD prevalence rate of 29.2% [4]. The
rapid increase in the prevalence of NAFLD carries a substantial
economic burden and poses a significant threat to people’s lives
and overall health [5], which has become a major public health
problem.

NAFLD is emerging as one of the most common causes of
chronic liver disease and a major cause of liver-related morbidity
and mortality worldwide [6,7]. Without timely intervention,
NAFLD may progress from simple steatosis to necrotizing
inflammation, liver fibrosis, cirrhosis, or even liver cancer [8].
NAFLD is also considered a hepatic manifestation of the
metabolic syndrome because of its close association with
metabolic disease disorders such as obesity, dyslipidemia, and
diabetes mellitus [3,9]. A growing body of research reveals that
NAFLD is a multisystem disease that increases the risk of type
2 diabetes, cardiovascular disease, and chronic kidney disease
[7]. In addition, studies have shown that obesity, metabolic
syndrome, diabetes, and hyperlipidemia are risk factors for
NAFLD [2,10]. Early screening for effective interventions can
help reduce and delay the occurrence of adverse prognostic
events related to NAFLD.

NAFLD has no specific hepatic biochemical abnormalities or
clinical symptoms in its early stages, and it is often detected by
imaging during health checks or follow-ups of other diseases
[9]. Although liver biopsy remains the gold standard for
diagnosing NAFLD as an invasive technique, large-scale clinical
application is unlikely [11]. In addition, there are no clinically
reliable specific markers; therefore, screening for NAFLD is
primarily based on liver ultrasound [12]. Mass screening of
health screening populations via ultrasound is not only expensive
but also consumes a significant amount of medical resources.
Therefore, more researchers have begun developing NAFLD
risk prediction models using existing clinical data through
machine learning and artificial intelligence [13-17]. Risk
prediction models for NAFLD are also available and
demonstrate good predictive value, but most are built based on
retrospective studies. Zhou et al [15] developed a model for
predicting NAFLD risk based on children with obesity and
demonstrated it by nomograms. Their model had good clinical
discrimination, with an area under the receiver operating
characteristic (AUROC) curve of 0.821. Liu et al [18]

constructed a NAFLD risk prediction model via a machine
learning algorithm based on healthy checkup populations, in
which extreme gradient boosting (XGboost) showed excellent
clinical predictive value, with an AUROC curve of 0.926. In
addition, risk models constructed by integrating clinical
biochemical and dietary variables also demonstrated better
predictive value, with an AUROC curve of 0.843 [13]. Few
studies have been reported on 5-year risk prediction models for
NAFLD. A 5-year study in a population without obesity showed
that the ratio of low-density lipoprotein (LDL) to high-density
lipoprotein (HDL) cholesterol was an independent predictor of
NAFLD. Its associated hazard ratio was 1.66 (95% CI
1.38-1.99), and it had a P trend <.001 and some predictive value,
with an AUROC curve of 0.671 [19].

However, there are still limitations to the currently available
NAFLD risk prediction models. Most NAFLD risk models have
been developed based on cross-sectional studies [13,15,16],
meaning that they use postonset experimental data (case
controls) to train the model, which inevitably leads to model
overfitting. In addition, the level of evidence for cross-sectional
studies is relatively low in epidemiologically relevant studies.
Notably, external validation is missing in the current NAFLD
risk prediction models, which could render their generalization
less powerful. NAFLD is a chronic and progressive disease that
does not manifest abruptly.

Objective
Accordingly, the primary objectives of this study were twofold.
First, we aimed to examine the 5-year prevalence of NAFLD
and identify the associated risk factors in a healthy population
in Ningbo, China. Second, we sought to develop and externally
validate risk prediction models that can help with evaluating
the NAFLD risk over a 5-year period through prospective cohort
studies. This approach offers a valuable opportunity for the
early prevention and intervention of NAFLD.

Methods

Study Population and Design
This study population originated from a long-term follow-up
study at Zhenhai Lianhua Hospital in Ningbo, China, which has
been reported in the previous literature [20-23]. From the 2010
annual health checkup attendees, we initially gathered a group
of 17,611 individuals. Ultimately, 6196 healthy individuals
were enrolled after applying the following exclusion criteria:
(1) absence of liver ultrasound; (2) diagnosis of liver disease,
such as NAFLD, viral hepatitis, and autoimmune hepatitis; (3)
alcohol consumption exceeding 140 grams per week for men
and 70 grams per week for women; and (4) missing follow-up.
Variables with over 30% missingness were removed, and the
remaining variables were filled by multiple interpolations
(Multimedia Appendix 1) [24]. The study flow is shown in
Figure 1.
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Figure 1. Flowchart of the study. NAFLD: nonalcoholic fatty liver disease.

Ethics Approval
This study was conducted under the guidance of the STROBE
(Strengthening the Reporting of Observational Studies in
Epidemiology) statement [25]. The study protocol adhered to
the Declaration of Helsinki and was approved by the Ethics
Committee of the First Affiliated Hospital of Ningbo University
(KY20181209). Informed consent was signed by all participants,
and the study data were anonymized.

Clinical Baseline Data
Height, weight, blood pressure, and waist circumference (WC)
measurements were obtained by physical examination. Height
and weight measurements required participants to be upright
and without shoes and hats. BMI was calculated by dividing
weight (kg) by the square of height (m). Before systolic blood
pressure (SBP) and diastolic blood pressure (DBP) were
measured in the right arm, participants were asked to sit still
and rest for 5 minutes. The WC measurements required a
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horizontal circumference around the abdomen along the
midpoint of the line connecting the lower edge of the ipsilateral
rib cage and the anterior superior iliac spine. Participants were
required to fast for at least 8 hours before venous blood was
drawn. Participants’ blood biochemical parameters were
measured using either an automated hematology analyzer
(Sysmex XT-1800; Sysmex Corp) or an Olympus AU640
automated analyzer (Olympus Optical Corp), following standard
protocols [20,23]. Abdominal ultrasound examinations were
conducted using a diagnostic ultrasound instrument (Toshiba
Medical Systems) evaluated independently by experienced
ultrasonographers [26]. NAFLD was diagnosed by the
ultrasonographers based on abdominal ultrasound examinations,
taking into account the exclusion of excessive alcohol
consumption and other etiologies of fatty liver [27].

Statistical Analyses
The Kolmogorov-Smirnov test was performed to determine
whether the samples conformed to a normal distribution.
Continuous variables conforming to a normal distribution were
described by means and SD, nonnormal continuous variables
by median and IQR, and categorical variables by frequency and
percentage. Comparisons between continuous variables in the
2 groups were made via an independent sample t test or the rank
sum test (Mann-Whitney U test) depending on whether they
conformed to a normal distribution. Categorical variables were
tested by chi-square test, and comparisons were made before
and after follow-up via a paired t test or paired rank sum test
(Mann-Whitney Wilcoxon test). Independent risk factors were
identified by multivariate logistic regression analysis. Restricted
cubic spline (RCS) was used to assess the dose relationship
between the variables and NAFLD. In addition, the sample size
of this study complied with the rule of 10 events per variable
[28]. All statistic analyses were performed with R (version 4.2.2;
R Foundation for Statistical Computing) and Python (version
3.9.0; Python Software Foundation). All tests conducted in this
study were 2-tailed, and P<.05 was deemed statistically
significant.

Participants were randomly assigned to the training and internal
validation sets in a 7:3 ratio [29,30]. In addition, to further
validate the performance of the prediction model, we used the
follow-up population from 2015 to 2020 as an external
validation set. We then used extreme gradient boosting
(XGBoost)–recursive feature elimination (RFE) combined with
the least absolute shrinkage and selection operator (LASSO) to
screen the characteristic predictors [31-33]. The Synthetic

Minority Oversampling Technique (SMOTE) algorithm was
introduced to solve the sample imbalance [24]. A total of 6
machine learning methods, namely logistic regression, decision
tree, support vector machine, random forest, categorical
boosting, and XGBoost, were used to construct the risk models.
The main parameters for the evaluation of the risk prediction
model’s effectiveness included the accuracy, precision, F-1

score, recall, and area under the receiver operating characteristic
(AUROC) curve. The calibration curve and Brier score were
used to evaluate the degree of model fit.

Results

Clinical Baseline Information Before and After
Follow-up
This study was derived from a long-term follow-up study, which
has been documented in the previous literature. In 2010, 6196
individuals who completed a health checkup (excluding
NAFLD) were included in the research. After 5 years of
follow-up, we obtained health screening data from this study
population again. We statistically described the clinical data of
the study before and after the follow-up, and the results are
shown in Table 1. During the 5-year follow-up period, a total
of 1155 (18.64%) individuals were newly diagnosed with
NAFLD, and the incidence was statistically different between
the sexes, with an incidence of 941 (81.47%) for male
participants and 214 (18.53%) for female participants (P<.01).

Among the NAFLD population, the lean type (BMI <24 kg/m2)

was 434 (37.58%), the overweight type (24 kg/m2 ≤ BMI < 28

kg/m2) was 603 (52.21%), and the obese type (28 kg/m2 ≤ BMI)
was 118 (10.21%). Based on measurements taken before and
after the follow-up, there were slight alterations (P<.01)
observed within the normal range for BMI, lipids, blood glucose,
liver function, and kidney function in the entire population.
Compared with the preonset of NAFLD, metabolism-related
indicators such as BMI, WC, triglyceride, HDL,
apolipoprotein-A1 (Apo-A1), and fasting blood glucose (FBG)
increased, and LDL and apolipoprotein-B (Apo-B) decreased.
Liver function–related indicators, such as aspartate
aminotransferase (AST) and alanine aminotransferase (ALT),
were elevated with the onset of NAFLD. In addition,
inflammation-related indicators such as white blood cell count
(WBC) and neutrophil count were elevated in the postonset
NAFLD population.
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Table 1. Clinical baseline information before and after the follow-up.

P valueTotal population (N=6196)P valueNAFLDa population (N=1155)Characteristics

2015201020152010Years

N/A4107 (66.3)4107 (66.3)N/Ab941 (81.5)941 (81.5)Male sex, n (%)

N/A52.97 (10.18)47.97 (10.18)N/A52.47 (10.17)47.47 (10.17)Age (years), mean (SD)

<.00122.64 (20.76-24.39)22.34 (20.57-24.16)<.00124.84 (2.38)24.19 (2.42)Body mass index (kg/m2),
mean (SD)/median (IQR)

<.00181 (75-87)79 (73-84)<.00187 (83-92)84 (80-88)Waist circumference (cm),
median (IQR)

<.001123.91 (15.54)121.37 (14.89)<.001129.40 (15.13)125.99 (13.83)Systolic blood pressure
(mmHg), mean (SD)

<.00175.93 (10.71)77.34 (10.05).6679.94 (10.50)79.80 (9.86)Diastolic blood pressure
(mmHg), mean (SD)

<.00180 (72, 88)78 (71, 86)<.00180.74 (12.01)78.75 (12.46)Heart rate (times/min),
mean (SD)

<.0015.80 (4.90-6.80)5.70 (4.90-6.70)<.0016.46 (1.43)6.32 (1.44)White blood cell count

(109/L), mean (SD)/medi-
an (IQR)

<.0013.20 (2.60-3.90)3.10 (2.50-3.70)<.0013.50 (2.90-4.20)3.40 (2.80-4)Neutrophil count (109/L),
median (IQR)

.640.11 (0.06-0.18)0.11 (0.06-0.18).990.12 (0.08-0.20)0.12 (0.07-0.20)Eosinophil count (109/L),
median (IQR)

<.0010.01 (0.01-0.02)0.01 (0.01-0.02)<.0010.01 (0.01-0.02)0.01 (0.01-0.02)Basophil count (109/L),
median (IQR)

.0482 (1.70-2.40)2.10 (1.70-2.50).012.20 (1.90-2.70)2.20 (1.80-2.60)Lymphocyte count

(109/L), median (IQR)

<.0014.74 (0.45)4.67 (0.44)<.0014.94 (0.42)4.85 (0.42)Red blood cell count

(1012/L), mean (SD)

<.001144 (133-153)140 (128-147)<.001150 (142-157)144 (137-151)Hemoglobin (g/L), median
(IQR)

<.00112.50 (12.20-12.90)12.70 (12.30-13.10)<.00112.50 (12.10-12.90)12.70 (12.30-
13.10)

Red blood cell distribution
width (%), median (IQR)

<.00192 (89-94)92.90 (90.10-95.40)<.00191 (88-94)92.20 (89.70-
94.80)

Mean red blood cell vol-
ume (fl), median (IQR)

.011211 (182-244)211 (182-243).39214 (186-248)214 (186-244)Platelet count (109/L), me-
dian (IQR)

<.00112.10 (11.10-13.30)34.80 (16-39.60)<.00112.10 (11.20-13.30)35.10 (17.40-
39.60)

Platelet distribution width
(%), median (IQR)

<.00110.30 (9.80-10.90)10.70 (10.20-11.30)<.00110.30 (9.80-10.90)10.70 (10.10-
11.20)

Mean platelet volume (fl),
median (IQR)

<.00116 (12-23)15 (11-22)<.00123 (17-32)19 (14-27)Alanine aminotransferase
(U/L), median (IQR)

.1220 (16-24)19 (16-24)<.00121 (18-26)20 (17-25)Aspartate aminotransferase
(U/L), median (IQR)

<.00113.30 (10.40-17)13 (10-16)<.00113.40 (10.50-16.90)13 (10-16)Total bilirubin (μmol/L),
median (IQR)

<.0014.10 (3.40-5.10)4 (3-5)<.0014.30 (3.60-5.10)4 (3-5)Direct bilirubin (μmol/L),
median (IQR)

<.0019.91 (4.31)9.33 (4.22)<.0019.10 (6.80-11.90)8 (7-11)Direct bilirubin (μmol/L),
median (IQR)/mean (SD)
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P valueTotal population (N=6196)P valueNAFLDa population (N=1155)Characteristics

2015201020152010Years

<.00173.05 (4.32)72.30 (3.59)<.00173.75 (4.12)72.51 (3.45)Total protein (g/L), mean
(SD)

<.00145.80 (44.10-47.40)44.80 (43.30-46.30)<.00146.10 (2.33)45.14 (2.14)Albumin (g/L), mean
(SD)/median (IQR)

<.00127.40 (4.02)27.46 (3.03).00327.64 (3.88)27.36 (3.03)Globulin (g/L), mean (SD)

<.00120 (14-29)18 (14-26)<.00129 (20-42)24 (18-33)Gamma-glutamyl
transpeptidase (U/L), medi-
an (IQR)

<.0014.74 (1.13)4.90 (1.17).0034.83 (1.13)4.97 (1.17)Blood urea nitrogen
(mmol/L), mean (SD)

<.00159 (50-67)64 (54-72)<.00162 (54-69)67 (58-73)Serum creatinine, μmol/L,
median (IQR)

<.001313 (260-365)316 (260-372).11355.98 (74.01)353.06 (76.37)Uric acid (μmol/L), mean
(SD)/median (IQR)

<.0014.96 (0.49)4.68 (0.43)<.0015.05 (0.53)4.74 (0.44)Fasting blood glucose
(mmol/L), mean (SD)

<.0014.68 (4.16-5.25)4.71 (4.16-5.30).684.92 (0.87)4.91 (0.91)Total cholesterol
(mmol/L), mean (SD)/me-
dian (IQR)

<.0011.05 (0.75-1.47)0.96 (0.71-1.34)<.0011.54 (1.13-2.09)1.23 (0.91-1.70)Triglyceride (mmol/L),
median (IQR)

<.0011.52 (0.28)1.43 (0.32)<.0011.41 (0.26)1.30 (0.25)High-density lipoprotein
(mmol/L), mean (SD)

<.0012.62 (0.65)2.77 (0.73)<.0012.70 (0.68)2.85 (0.77)Low-density lipoprotein
(mmol/L), mean (SD)

<.0011.48 (1.26-1.70)1.28 (1.21-1.39)<.0011.36 (1.19-1.57)1.25 (1.12-1.33)Apolipoprotein-A1 (g/L),
median (IQR)

<.0010.68 (0.58-0.79)0.73 (0.59-0.87)<.0010.77 (0.66-0.86)0.81 (0.66-0.96)Apolipoprotein-B (g/L),
median (IQR)

<.0011.66 (1.21-2.25)1.60 (1.10-2.20)<.0011.60 (1.19-2.14)1.50 (1.10-2.10)Thyroid-stimulating hor-
mone (mIU/L), median
(IQR)

.511.68 (1.52-1.83)1.70 (1.50-1.90).701.72 (0.24)1.73 (0.29)Total triiodothyronine
(nmol/L), mean (SD)/medi-
an (IQR)

<.001110.76 (17.30)107.87 (17.44)<.001109.60 (17.60)107.12 (16.87)Total tetraiodothyronine
(nmol/L), mean (SD)

<.0014.66 (0.48)4.75 (0.62)<.0014.79 (0.48)4.88 (0.61)Free triiodothyronine
(pmol/L), mean (SD)

aNAFLD: nonalcoholic fatty liver disease.
bN/A: not applicable.

Independent Risk Factors
Further, we explored the independent risk of NAFLD based on
the 2015 dataset. To this end, 36 potential risk factors associated
with NAFLD were screened by univariate analysis (Table 2).
Multiple colinearity between variables was tested through
variance inflation factor (VIF), which was considered to have
severe multiple colinearity between variables when the VIF was

greater than 10 (Multimedia Appendix 2). We removed multiple
colinear variables by stepwise backward logistic regression,
and the final 24 (66.67%) variables were used to screen
independent risk factors. Finally, 17 (70.83%) independent risk
factors associated with NAFLD, such as BMI, WC, Apo-B, and
triglyceride, were identified by multivariate logistic regression
(Figure 2).
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Figure 2. Multivariate logistic regression analysis of nonalcoholic fatty liver disease (NAFLD). OR: odds ratio.
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Table 2. Univariate analysis of NAFLDa.

P valueNAFLD (n=1155)NCb (n=5041)Overall (N=6196)Characteristics

<.001941 (81.5)3166 (62.8)4107 (66.3)Male sex, n (%)

.1052 (45-60)53 (46-59)53 (46-59.25)Age (years), median (IQR)

<.00124.84 (2.38)22.20 (2.45)22.69 (2.65)Body mass index (kg/m2), mean (SD)

<.00187 (83-92)80 (74-86)81 (75-87)Waist circumference (cm), median (IQR)

<.001129 (119-138)121 (112-132)123 (113-134)Systolic blood pressure (mmHg), median
(IQR)

<.00180 (73-87)74 (67-82)75 (68-83)Diastolic blood pressure (mmHg), medi-
an (IQR)

.9980.74 (12.01)80.73 (12.03)80.73 (12.03)Heart rate (times/min), mean (SD)

<.0016.30 (5.40-7.30)5.70 (4.80-6.60)5.80 (4.90-6.80)White blood cell count (109/L), median
(IQR)

<.0013.50 (2.90-4.20)3.10 (2.50-3.80)3.20 (2.60-3.90)Neutrophil count (109/L), median (IQR)

<.0010.12 (0.08-0.20)0.10 (0.06-0.18)0.11 (0.06-0.18)Eosinophil count (109/L), median (IQR)

<.0010.01 (0.01-0.02)0.01 (0.01-0.02)0.01 (0.01-0.02)Basophil count (109/L), median (IQR)

<.0012.20 (1.90-2.70)2 (1.70-2.40)2 (1.70-2.40)Lymphocyte count (109/L), median
(IQR)

<.0014.94 (0.42)4.70 (0.44)4.74 (0.45)Red blood cell count (1012/L), mean
(SD)

<.001150 (142-157)143 (131-151)144 (133-153)Hemoglobin (g/L), median (IQR)

<.00112.50 (12.10-12.90)12.50 (12.20-13)12.50 (12.20-12.90)Red blood cell distribution width (%),
median (IQR)

<.00191 (88-94)92 (89-94)92 (89-94)Mean red blood cell volume (fl), median
(IQR)

.003214 (186-248)210 (182-243)211 (182-244)Platelet count (109/L), median (IQR)

.2912.10 (11.20-13.30)12.10 (11-13.30)12.10 (11.10-13.30)Platelet distribution width (%), median
(IQR)

.4910.30 (9.80-10.90)10.30 (9.80-10.90)10.30 (9.80-10.90)Mean platelet volume (fl), median (IQR)

<.00123 (17-32)15 (11-21)16 (12-23)Alanine aminotransferase (U/L), median
(IQR)

<.00121 (18-26)19 (16-23)20 (16-24)Aspartate aminotransferase (U/L), medi-
an (IQR)

.3613.40 (10.50-16.90)13.30 (10.30-17)13.30 (10.40-17)Total bilirubin (μmol/L), median (IQR)

<.0014.30 (3.60-5.10)4.10 (3.40-5)4.10 (3.40-5.10)Direct bilirubin (μmol/L), median (IQR)

.629.10 (6.80-11.90)9.10 (6.90-12)9.10 (6.90-12)Direct bilirubin (μmol/L),

median (IQR)

<.00173.75 (4.12)72.89 (4.35)73.05 (4.32)Total protein (g/L), mean (SD)

<.00146.10 (2.33)45.70 (2.57)45.78 (2.53)Albumin (g/L), mean (SD)

.0327.64 (3.88)27.35 (4.05)27.40 (4.02)Globulin (g/L), mean (SD)

<.00129 (20-42)18 (14-26)20 (14-29)Gamma-glutamyl transpeptidase (U/L),
median (IQR)

.0044.69 (4.02-5.50)4.61 (3.92-5.40)4.64 (3.94-5.42)Blood urea nitrogen (mmol/L), median
(IQR)

<.00161.39 (11.47)58.62 (11.81)59.13 (11.80)Serum creatinine (μmol/L), mean (SD)

<.001354 (305-405)303 (253-354)313 (260-365)Uric acid (μmol/L), median (IQR)
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P valueNAFLD (n=1155)NCb (n=5041)Overall (N=6196)Characteristics

<.0014.98 (4.70-5.32)4.88 (4.63-5.18)4.90 (4.64-5.21)Fasting blood glucose (mmol/L), median
(IQR)

<.0014.88 (4.36-5.44)4.65 (4.11-5.22)4.68 (4.16-5.25)Total cholesterol (mmol/L), median
(IQR)

<.0011.54 (1.13-2.09)0.97 (0.72-1.32)1.05 (0.75-1.47)Triglyceride (mmol/L), median (IQR)

<.0011.38 (1.22-1.56)1.54 (1.35-1.72)1.50 (1.32-1.70)High-density lipoprotein (mmol/L), me-
dian (IQR)

<.0012.66 (2.26-3.10)2.56 (2.16-2.97)2.58 (2.18-3)Low-density lipoprotein (mmol/L), me-
dian (IQR)

<.0011.36 (1.19-1.57)1.50 (1.29-1.73)1.48 (1.26-1.70)Apolipoprotein-A1 (g/L), median (IQR)

<.0010.77 (0.66-0.86)0.66 (0.57-0.77)0.68 (0.58-0.79)Apolipoprotein-B (g/L), median (IQR)

.0071.60 (1.19-2.14)1.67 (1.22-2.26)1.66 (1.21-2.25)Thyroid-stimulating hormone (mIU/L),
median (IQR)

<.0011.71 (1.56-1.87)1.67 (1.52-1.83)1.68 (1.52-1.83)Total triiodothyronine (nmol/L), median
(IQR)

.012109.60 (17.60)111.02 (17.23)110.76 (17.30)Total tetraiodothyronine (nmol/L), mean
(SD)

<.0014.76 (4.46-5.09)4.60 (4.30-4.92)4.63 (4.32-4.96)Free triiodothyronine (pmol/L), median
(IQR)

aNAFLD: nonalcoholic fatty liver disease.
bNC: normal control.

Dose Relationship Between BMI, WC, Apo-B,
Triglyceride, and NAFLD
Based on the results of multivariate logistic regression, we
further explored the relationship between BMI, WC, Apo-B,
triglyceride, and NAFLD prevalence. RCS is a common method
to explore whether there is a nonlinear association between the
independent and dependent variables [34]. In addition, an akaike
information criterion was used to screen for the number of knots.
We adjusted for confounding factors and performed a

nonlinearity test before analyzing the dose-response relationship.
From the dose-relationship plot (Figure 3), a nonlinear
relationship between BMI, WC, and triglyceride and NAFLD
(overall P<.05, nonlinear P<.05) was found, and the risk of
NAFLD increased rapidly when BMI, WC, Apo-B, and

triglyceride were greater than 22.66 kg/m2, 81.04 cm, 0.68 g/L,
and 1.1 mmol/L, respectively. The association between Apo-B
and NAFLD was linear (overall P<.05, nonlinear P>.05), and
the risk threshold concentration was 0.69 mmol/L.
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Figure 3. Dose-response relationships between variables and nonalcoholic fatty liver disease (NAFLD). Apo-B: apolipoprotein-B; TG: triglyceride;
WC: waist circumference.

Development and Validation of Predictive Models
XGBoost-RFE enables machine learning algorithms to
continuously reduce the number of features and validate the
model performance, ultimately achieving the optimal number
of features for screening [24]. LASSO is a common method of
data dimensionality reduction (without considering multiple
colinearities between variables), which compresses the

regression coefficients of insignificant variables to 0 by
constructing a penalty function, thereby screening the
characteristic variables. XGBoost-RFE combined LASSO was
used for screening risk predictors of NAFLD (Figure 4). A total
of 11 nonzero characteristic variables were screened as
predictors for the construction of the 5-year NAFLD risk
prediction model (Figure 4C).
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Figure 4. Screening of characteristic predictors. (A) Characteristic variable screening based on XGBoost-RFE. (B) Characteristic variable screening
based on LASSO (lambda: 1SE). (C) XGBoost-RFE combined LASSO. AUROC: area under the receiver operating characteristic; LASSO: least absolute
shrinkage and selection operator; RFE: recursive feature elimination; SE: standard error; XGBoost: extreme gradient boosting.

To ensure that each machine model achieved the best
performance, we further optimized their hyperparameters
(Multimedia Appendix 3). In the training set, 10-fold
cross-validation was used to assess the predictive value of the

models. As depicted in Figure 5, CatBoost exhibited the highest
clinical predictive value, with an AUROC curve of 0.810 (95%
CI 0.768-0.852), followed by random forest, with an AUROC
curve of 0.800 (95% CI 0.762-0.838).
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Figure 5. Clinical predictive value of 6 machine learning models (10-fold cross-validation) in the training set. SVM: support vector machine; XGBoost:
extreme gradient boosting.

Further, we validated the stability and generalization ability of
the 6 predictive models in the internal and external validation
sets. Logistic regression models demonstrated the best clinical
predictive performance in internal and external validation sets,
with AUROC curves of 0.778 (95% CI 0.759-0.794) and 0.806
(95% CI 0.788-0.821), respectively (Figure 6). From Table 3,
it is evident that the logistic regression model exhibited
favorable performance in terms of accuracy, precision, F-1 score,
and recall in both the internal and external validation sets. In
terms of calibration, XGBoost outperformed the other models
based on both the internal and external validation sets, with
Brier scores of 0.181 and 0.191, respectively (Figure 7). Since

the logistic regression model demonstrated the best clinical
predictive value in both the internal and external validation sets,
we ultimately chose it as the optimal model and demonstrated
it with a dynamic nomogram (Figure 4). For example, when a
healthy individual is aged 67 years old and has a BMI of 22.86

kg/m2, WC of 86 cm, WBC of 5.7 × 109/L, ALT of 51 U/L,
gamma-glutamyl transpeptidase (GGT) of 63 U/L, uric acid
(UA) of 473 μmol/L, triglyceride of 3.21 mmol/L, HDL of 1.12
mmol/L, and Apo-B of 0.73 g/L, we could infer that their risk
of developing NAFLD after 5 years is 65.8% (Figure 8).
Thereafter, we developed a web-based calculator to facilitate
the prediction model’s application [35].
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Figure 6. Receiver operating characteristic (ROC) curve of 6 machine learning models in internal and external validation sets. (A) internal validation
set; (B) external validation set. AUROC: area under the receiver operating characteristic; XGboost: extreme gradient boosting.

Figure 7. Calibration curve. (A) Internal validation set. (B) External validation set. SVM: support vector machine; XGBoost: extreme gradient boosting.
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Figure 8. Nomogram for predicting the 5-year risk of developing nonalcoholic fatty liver disease (NAFLD). ALT: alanine aminotransferase; Apo-B:
apolipoprotein-B; GGT: gamma-glutamyl transpeptidase; HDL: high-density lipoprotein; RBC: red blood cell count; TG: triglyceride; UA: uric acid;
WBC: white blood cell count; WC: waist circumference.

Table 3. Performance parameters of the 6 machine learning prediction models in the internal and external validation sets.

RecallF-1 scorePrecisionAccuracyPredictive models

Internal validation

0.7050.6360.6370.700Logistic regression

0.6550.5710.5990.621Decision tree

0.7070.6290.6360.688Support vector machine

0.6970.6170.6280.674Random forest

0.6980.6310.6320.697CatBoost

0.7030.6260.6330.685XGBoosta

External validation

0.6280.6480.7660.801Logistic regression

0.6410.6540.6850.774Decision tree

0.5040.4390.8790.759Support vector machine

0.5570.5650.7720.781Random forest

0.6160.6330.7460.793CatBoost

0.6090.6230.7380.789XGBoost

aXGboost: extreme gradient boosting.
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Discussion

Principal Findings
Since 2010, we have conducted a 5-year follow-up study of
6196 participants with health checkups. During the follow-up
period, a total of 1155 (18.64%) participants were newly
diagnosed with NAFLD. Multivariate logistic regression analysis
revealed that 17 variables, including BMI, WC, Apo-B, and
triglyceride were independent risk factors for NAFLD. Next, 6
machine learning models were constructed and subjected to
hyperparameter optimization. Ultimately, the logistic regression
model showcased the best clinical predictive value in the internal
and external validation sets, with an AUROC of 0.778
(0.759-0.794) and 0.806 (0.788-0.821), respectively.
Additionally, a web-based calculator was developed to assist
in the clinical operability of the predictive model.

A recent global meta-analysis showed that the global prevalence
of NAFLD after 2016 was 37.8% (between 32.4% and 43.3%),
while the annual incidence of new NAFLD was 46.9 (36.4-57.5)
per 1000 individuals [36]. The prevalence of NAFLD in China,
the largest middle-income country, was 32.9% (between 28.9%
and 36.8%) [37], which was lower than the global prevalence.
In addition, the latest research indicated that the incidence of
NAFLD in China was 5.2% (between 3.9% and 6.5%) [37].
Sun et al [38] showed a 5-year incidence of NAFLD of 14.4%
in the population that is not obese. Our study revealed that the
5-year incidence of NAFLD in Zhejiang, China, was 18.64%
and the approximate annual incidence was 3.73%, which was
lower than the national average. It is known that obesity is
strongly associated with many metabolic diseases, including
NAFLD. However, NAFLD can also be observed in individuals
who are not obese [39]. The prevalence of lean NAFLD varies
widely (5% to 45%) due to varying standards of obesity in
different countries and regions [40]. In this study’s NAFLD
population, the distribution was 37.58% (n=434) lean, 52.21%
(n=603) overweight, and 10.21% (n-118) obese.

Multivariate logistic regression analysis showed that BMI, WC,
DBP, FBG, triglyceride, HDL, and Apo-B were independent
risk factors for NAFLD. All are indicators associated with
metabolic syndrome, which suggests that NAFLD is a
metabolic-related disease. In addition, recent expert consensus
indicates that metabolic dysfunction–associated fatty liver
disease (MAFLD) is a better reflection of pathogenesis than
NAFLD [41]. Along with the obesity and diabetes epidemic,
the disease burden of NAFLD is expected to increase 2- to 3-fold
by 2030 in Western countries and Asia [1]. The association of
triglyceride, HDL, and Apo-B with NAFLD is consistent with

previous reports [42-44]. Further, we found a dose-dependent
relationship between BMI, WC, Apo-B, triglyceride, and

NAFLD; when they were greater than 22.65 kg/m2, 81.04 cm,
1.09 mmol/L, and 0.69 g/L, respectively, an increased risk of
NAFLD was observed.

Along with the continuous updating of medical technology, all
kinds of medical data are being generated at high speeds [45].
While it is a challenge to mine the data for clinical decisions,
in recent years, the emergence and rapid development of
machine learning algorithms have facilitated this [17]. Machine
learning enables computers to learn from complex clinical big
data and solve real-world problems in health care [46].

Our study holds significant clinical significance. This could be
one of the first studies to conduct 5-year NAFLD risk prediction
based on machine learning methods in a prospective cohort
study. Early prevention is better than aggressive treatment. As
a chronic progressive liver disease, NAFLD is difficult to
reverse once it has occurred. This predictive model can identify
individuals at high risk of NAFLD from a healthy population
5 years in advance, providing a significant advantage in the
early prevention, diagnosis, and treatment of the disease.
Furthermore, the prediction model can not only benefit less
medically developed areas but also guide the clinical decisions
of physicians, further optimizing health care resources. Finally,
convenient web-based calculators provide a medium for the
clinical generalization of predictive models.

Limitations
This may be one of the few tools available for 5-year NAFLD
risk prediction in healthy populations. Inevitably, there are some
limitations to this study. First, NAFLD was diagnosed by
ultrasound methods, and the results may differ somewhat from
the actual situation. Second, the prediction model was
constructed based on the Chinese population, and whether it
applies to other ethnic groups remains to be validated. Third,
the collection of clinical data was not comprehensive enough,
and potential predictive factors may have been overlooked. In
future studies, we will continue to examine and modify the
prediction model in clinical practice in collaboration with
multiple centers.

Conclusions
In conclusion, based on a long-term follow-up study in Ningbo,
China, we found a 5-year incidence of NAFLD of 18.65% in
health checkups. Further, we developed and externally validated
a 5-year NAFLD risk prediction model, which is important for
the reduction and prevention of adverse liver prognostic events.
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Abbreviations
ALT: alanine aminotransferase
Apo-A1: apolipoprotein-A1
Apo-B: apolipoprotein-B
AST: aspartate aminotransferase
AUROC: area under the receiver operating characteristic
DBP: diastolic blood pressure
FBG: fasting blood glucose
GGT: gamma-glutamyl transpeptidase
HDL: high-density lipoprotein
LASSO: least absolute shrinkage and selection operator
LDL: low-density lipoprotein
MAFLD: metabolic dysfunction–associated fatty liver disease
NAFLD: nonalcoholic fatty liver disease
RBC: red blood cell count
RCS: restricted cubic splines
RFE: recursive feature elimination
SBP: systolic blood pressure
SMOTE: Synthetic Minority Oversampling Technique
UA: uric acid
VIF: variance inflation factor
WBC: white blood cell count
WC: waist circumference
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