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Abstract

Background: Neurodegenerative diseases (NDDs) are prevalent among older adults worldwide. Early diagnosis of NDD is
challenging yet crucial. Gait status has been identified as an indicator of early-stage NDD changes and can play a significant role
in diagnosis, treatment, and rehabilitation. Historically, gait assessment has relied on intricate but imprecise scales by trained
professionals or required patients to wear additional equipment, causing discomfort. Advancements in artificial intelligence may
completely transform this and offer a novel approach to gait evaluation.

Objective: This study aimed to use cutting-edge machine learning techniques to offer patients a noninvasive, entirely contactless
gait assessment and provide health care professionals with precise gait assessment results covering all common gait-related
parameters to assist in diagnosis and rehabilitation planning.

Methods: Data collection involved motion data from 41 different participants aged 25 to 85 (mean 57.51, SD 12.93) years
captured in motion sequences using the Azure Kinect (Microsoft Corp; a 3D camera with a 30-Hz sampling frequency). Support
vector machine (SVM) and bidirectional long short-term memory (Bi-LSTM) classifiers trained using spatiotemporal features
extracted from raw data were used to identify gait types in each walking frame. Gait semantics could then be obtained from the
frame labels, and all the gait parameters could be calculated accordingly. For optimal generalization performance of the model,
the classifiers were trained using a 10-fold cross-validation strategy. The proposed algorithm was also compared with the previous
best heuristic method. Qualitative and quantitative feedback from medical staff and patients in actual medical scenarios was
extensively collected for usability analysis.

Results: The evaluations comprised 3 aspects. Regarding the classification results from the 2 classifiers, Bi-LSTM achieved
an average precision, recall, and F1-score of 90.54%, 90.41%, and 90.38%, respectively, whereas these metrics were 86.99%,
86.62%, and 86.67%, respectively, for SVM. Moreover, the Bi-LSTM–based method attained 93.2% accuracy in gait segmentation
evaluation (tolerance set to 2), whereas that of the SVM-based method achieved only 77.5% accuracy. For the final gait parameter
calculation result, the average error rate of the heuristic method, SVM, and Bi-LSTM was 20.91% (SD 24.69%), 5.85% (SD
5.45%), and 3.17% (SD 2.75%), respectively.

Conclusions: This study demonstrated that the Bi-LSTM–based approach can effectively support accurate gait parameter
assessment, assisting medical professionals in making early diagnoses and reasonable rehabilitation plans for patients with NDD.

(J Med Internet Res 2023;25:e46427) doi: 10.2196/46427
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Introduction

Background
Neurodegenerative diseases (NDDs) have an insidious onset,
long duration, and limited effective treatment options and
primarily affect middle-aged and older individuals. NDDs also
result in substantial economic losses annually. A survey in
Sweden [1] reported that the total cost of developing Parkinson
disease per person was at €13,800 (US $14,763.50) per year. A
study by Yang et al [2] revealed a US prevalence of
approximately 1 million individuals diagnosed with Parkinson
disease in 2017 and a total economic burden of US $51.9 billion.
Gait change, present in the early stages of nearly all NDDs [3],
could play a crucial role in early diagnosis if accurately assessed.
Early diagnosis allows potential patients to modify their lifestyle,
seek active medication, and slow disease progression, thus
improving their quality of life [4,5].

Current NDD diagnosis predominantly relies on standardized
scales [6-9], which exhibit considerable error. The quality of
patient-physician communication and manual scale recording
can affect disease quantification. It has been demonstrated that,
even for specialist neuroscientists focusing on movement
disorders, diagnostic accuracy error rates have reached
approximately 20% [10]. For instance, the Unified Parkinson’s
Disease Rating Scale [6] has been widely used because of its
simplicity and established clinical validation. These methods
generally rely on clinicians’ expertise to assess patients’
symptoms and assign scores accordingly. However, these scales
are subject to interrater variability and potential observer bias
and can be influenced by physicians’ subjective experiences.
Although widely adopted, these limitations highlight the need
for more accurate, objective, and reliable assessment methods
that can reduce human error and improve the diagnostic process
for NDDs.

To satisfy this need, numerous studies are exploring progressive
sensors or advanced artificial intelligence algorithms as auxiliary
assessment methods, which can be divided into contact and
noncontact approaches. Contact methods use gait-related tasks
using wearable-based inertial measurement unit sensors [11] or
optical matching with marker points on the human body [12],

resulting in intrusiveness [13-15] and potentially preventing
patients from exhibiting their problems in a relaxed state.
Noncontact methods, relying on computer vision [16-19] or
signals [20], improve this situation. Therefore, we chose Kinect
(Microsoft Corp) [21] for data collection because of its
noninvasive nature, real-time data capture capability,
cost-effectiveness, and ability to capture rich 3D skeletal data.
These advantages make Kinect a suitable choice for gait analysis
in both clinical and research settings.

Before this study, the most common approach to achieving this
objective involved heuristic methods [22-25]. Latorre et al [26]
compared various heuristic methods, finding that using ankle
speed to locate the heel strike and toe-off and obtain the gait
parameter could yield the highest accuracy for gait parameter
calculation among heuristic methods. Despite their simplicity,
these methods have not been widely recognized by physicians
owing to their unsatisfactory assessment performance. In our
opinion, they are flawed in at least 3 aspects (Textbox 1).

Considering these limitations, there is a clear need for a more
comprehensive and accurate approach to gait assessment that
addresses these shortcomings and better supports the early
diagnosis of NDDs.

Inspired by these drawbacks, we developed our method by
combining multiple spatiotemporal features, carefully
constructing gait cycles, and leveraging timing information.
Simultaneously, we aimed to use machine learning advantages
to overcome the heuristic weaknesses. To the best of our
knowledge, our approach is the first to use machine learning to
obtain accurate gait parameter results based on the precise gait
semantic segmentation. Specifically, we initially used Kinect
to capture the raw skeleton information and designed 32
spatiotemporal features accordingly. We then pioneered a
2-stage approach to gait assessment. The first stage combined
features to train classifiers for the gait states of each frame. The
second stage extracted the gait semantics based on predicted
gait states and obtained the legitimate sequence of gait semantics
by filtering gait semantics. The legitimate sequence of gait
semantics enabled the further calculation of accurate gait-related
parameters.

Textbox 1. Flaws of the heuristic methods.

Overreliance on a single fixed feature

• Heuristic methods often depend on just 1 feature for gait analysis, which may not capture the complexity of gait patterns in patients with
neurodegenerative diseases. This reliance on a single feature makes it challenging to assess the overall gait performance accurately.

Inability to achieve precise segmentation of gait semantics

• Heuristic methods often struggle to segment gait cycles accurately, which is crucial for understanding the subtle changes in gait patterns associated
with neurodegenerative diseases. This limitation can lead to inaccuracies in the assessment of gait performance and hinder early diagnosis.

Underuse of timing information

• Heuristic methods do not make full use of the timing information present in gait data. Incorporating temporal features is essential for understanding
the dynamics of gait patterns and detecting potential abnormalities. By neglecting the temporal aspect, these methods may miss critical information
that could improve the accuracy of gait assessment.
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Objectives
In this study, we primarily focused on validating the
effectiveness of our proposed noncontact gait analysis method
using Kinect technology and machine learning for the early
diagnosis of NDDs. In addition, we aimed to assess the usability
of our method to ensure that it can be easily adopted in clinical
settings for more accurate and efficient gait analysis. By
addressing both validation and usability aspects, our research
aimed to offer a comprehensive solution for the early diagnosis
of NDDs, which can potentially improve the quality of life of
affected individuals.

Methods

Overview
The overview of our method is illustrated in Figure 1, with steps
1 to 3 representing the preprocessing stage, involving data
collection and labeling. Step 4 involved training the
frame-to-frame classifier, whereas steps 5 to 7 involved selecting
the appropriate gait cycles. Finally, in step 8, the parameters
were calculated based on the outcome of step 7.

Figure 1. The overview of our algorithm. LD: left foot down; LU: left foot up; GPM: gait pair mechanism; RD: right foot down; RU: right foot up.

Recruitment
A total of 41 participants were recruited from a hospital: 30
(73%) male and 11 (27%) female participants. Data collection
was conducted safely under the direction and supervision of
physicians in compliance with the local ethics policy, with
informed consent obtained from all participants. All data
collected in this study were secondary analyses of previously
collected research data, and the original informed consent
obtained during the primary data collection process included
provisions for secondary analysis without the need for additional
consent. Participants’privacy and confidentiality were protected
throughout the study. All collected data were deidentified, and

any potentially identifying information was removed before
analysis. Measures were taken to ensure that the data were stored
securely, and access to the data was limited to authorized
members of the research team. The age range of the data set
was 25 to 85 years, and the average age was 57.51 (SD 12.93)
years. The age distribution is shown in Table 1. By studying a
sample with a wide age distribution, we could better assess the
applicability and accuracy of our approach in patients of
different ages. More specific statistical values of actual gait
parameters in the data set are shown in Table 2. The distribution
of the data set was differentiated; thus, it was feasible to take
this data set into use for our training and evaluation.

Table 1. Age distribution of the participants (N=41).

Participants, n (%)Age range (years)

2 (5)25-35

5 (12)35-45

6 (15)45-55

16 (39)55-65

11 (27)65-75

1 (2)75-85
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Table 2. Statistics of the actual parameters of the data set.

MaximumThird quartileMedianFirst quartileMinimumGait parameter (unit)

1.4281.0460.9790.8950.540Speed (m/s)

1.4371.1291.0250.9260.497LeftStride (m)

1.3341.1131.0240.9430.498RightStride (m)

1.6771.1861.0360.9470.510LeftStrideSpeed (m/s)

1.4831.1691.0490.9350.521RightStrideSpeed (m/s)

0.6930.5710.5270.4640.163LeftStep (m)

0.7060.5230.4930.4370.278RightStep (m)

154.677134.620125.067112.26489.570LeftCadence (steps/min)

143.690133.074125.974116.06187.901RightCadence (steps/min)

1.3521.0390.9670.8950.812LeftCycle (s)

1.3331.0670.9560.8940.808RightCycle (s)

37.95830.36329.37827.20320.910LeftSwing (%)

35.67431.46429.62827.63122.850RightSwing (%)

79.09072.79770.62269.63762.042LeftStance (%)

77.15072.36970.37268.53664.326RightStance (%)

54.59343.99240.86739.07627.825DoubleSupport (%)

3.5192.9232.5552.3611.495LeftSwingSpeed (m/s)

3.5892.8302.5342.2361.598RightSwingSpeed (m/s)

Procedure
We used the Azure Kinect [17], a 3D camera developed by
Microsoft, positioned 0.65 m from the ground to record the gait
data. A walking area of 5 m in length was established in front
of the Kinect. Participants were asked to walk back and forth 3
times in a natural walking posture, including actions of standing
still, moving forward, and turning around, as shown in Figure

2. Data collection started when the participant was standing still
at the starting point and stopped when they completed the final
turnaround and stood still again. The length of the video
depended on the walking status of each participant, typically
taking approximately 20 seconds for participants without NDDs
and longer for those exhibiting gait patterns associated with
NDDs. After data collection, each frame of the video was
annotated using an open-source annotation tool [27].

Figure 2. A decomposition of gait states during a walking round trip.

Data Annotation

Overview
To label each frame in the data sequence, we defined 5 types
of labels and provided an explanation for their use. We also
introduced the concept of gait semantics and described how to
precisely locate them from labeled frames. On the basis of these
semantics, we were able to calculate the gait parameters.

Label Definition
We defined 5 states for a complete gait cycle: standstill(S), left
swing(L), double support(D), right swing(R), and turnaround(T)
(as shown in Figure 3). This was done because a gait cycle is a
dynamic process that combines both feet’s movements. If we
only focus on the left or right foot, a gait cycle consists of left
foot swing, left foot support, right foot swing, and right foot
support. However, there is a brief cross when the left and right
foot move continuously, when both feet are in the landing state,
that is different from a standstill. Medically, this phenomenon
is referred to as double support.
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Figure 3. The division of gait states during straight ahead.

Gait Semantic Definition
We visualized the labels of a piece of gait data, with each frame
corresponding to a unique label to mark the current gait state
(shown in Figure 4). We defined 7 gait semantics that served
as localizers for state transitions of gait: gait start (Gaitstart), left
foot up (Lup), left foot down (Ldown), right foot up (Rup), right
foot down (Rdown), turnaround start (Turnstart), and turnaround
end (Turnend). These semantics were obtained by slicing the
successive gait states and calculated as per equations 1 to 7.
Precise localization of these semantics is crucial for calculating
the final gait parameters.

Ldown: (statei=D) ∧ (statei− 1=L) (1)

Rdown: (statei=D) ∧ (statei− 1=R) (2)

Lup: (statei=L) ∧ (statei− 1=D) (3)

Rup: (statei=R) ∧ (statei− 1=D) (4)

Turnstart: (statei=T) ∧ (statei− 1≠T) (5)

Turnend: (statei≠T) ∧ (statei− 1=T) (6)

Gaitstart: (statei≠S) ∧ (statei− 1=S) (7)

In these equations, statei and statei− 1 indicate the gait state of
the ith and (i − 1)th frame, respectively.

Figure 4. Schematic diagram of the state of the gait process. Ldown: left foot down; Lup: left foot up; Rdown: right foot down; Rup: right foot up;
Turnstart: turnaround start; Turnend: turnaround end.

Feature Design and Extraction
We designed features that considered spatiotemporal motion
and relative position between skeletal points. The lower body
consists of 9 pivotal points: the “pelvis,” “left hip,” “right hip,”

“left knee,” “right knee,” “left ankle,” “right ankle,” “left foot,”
and “right foot.” The temporal feature contains the speed of
these points in the 3 directions (x, y, and z). The 32 features
listed in Textbox 2 constitute the overall feature tensor of 1 data
frame.
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Textbox 2. Spatial, temporal, and movement features used in our method.

Temporal

• Joint speed (3 × lower body joint [x, y, and z])

Spatial

• Distance between people and the camera (1)

Movement

• Distance between the knees (1)

• Distance between the pelvis and the feet (2)

• Angle of waist rotation (1)

Algorithm

Overview
Our algorithm consists of 2 stages. In the first stage, we
constructed a classifier for single-frame gait label prediction
based on the features (as mentioned in the Feature Design and
Extraction section). We explored a non–time-series classifier
(support vector machine [SVM] [28]) and a time-series classifier
(bidirectional long short-term memory [Bi-LSTM] [29]) to
determine the most suitable option for the current application
scenario. In the second phase, gait semantics were identified
and located, and available gait cycles were selected using our
proposed gait pair mechanism (GPM; detailed description in
the Segmentation, GPM, and Calculation section) to calculate
precise gait parameters.

Preprocessing
Each gait label was associated with a single frame, whereas the
Azure Kinect captured data at a rate of 30 frames per second,
yielding 30 gait labels per second. In SVM, individual frames
served as inputs for training and prediction processes.

Conversely, for the Bi-LSTM, motion sequences were input
into the model maintaining a fixed sequence length (seq_len=5
in practice). Subsequently, each participant’s gait process was
partitioned into sequences, which were supplemented with
integer 0 in instances where the sequences were insufficient in
length. Following randomization of all sequences, they were
introduced into the Bi-LSTM classifier to facilitate the training
process.

Frame Classification
For the first-stage classifier selection, we evaluated both the
non–time-series SVM and the time-series Bi-LSTM classifiers.

Non–Time-Series Classification

We used the SVM classifier with a radial basis function kernel
as the representative for non–time-series classifiers for the
reasons outlined in Textbox 3.

In summary, we chose SVM as a nonserial model because of
its strong generalization ability, high flexibility, and successful
application to real-world problems. These characteristics make
SVM a suitable nonserial model for this study.

Textbox 3. Reasons for using support vector machine (SVM) as the representative for non–time-series classifiers.

SVMs have a strong generalization capability [28]

• SVMs provide better generalization performance based on the principle of structural risk minimization. This means that SVMs can produce
relatively good results when the model is applied to new, unseen data.

SVMs are highly flexible [30]

• SVMs can use different kernel functions to handle both linear and nonlinear problems. This allows SVMs to adapt to various data distributions
and provide better classification performance.

Successful applications of SVMs to real-world problems [31]

• SVM has demonstrated its superior performance in many real-world problems in areas such as image classification and text classification. This
shows that SVM has high practicality and can be well adapted to various problems.

Time-Series Classification

We used Bi-LSTM as the representative for time-series
classifiers for the reasons outlined in Textbox 4.
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Textbox 4. Reasons for using bidirectional long short-term memory (Bi-LSTM) as the representative for time-series classifiers.

Long short-term memory (LSTM) [32]

• LSTM is a special type of recurrent neural network (RNN) that captures long-term dependencies and solves the gradient disappearance or gradient
explosion problem faced by traditional RNNs when dealing with long sequences. LSTM has been shown to have superior performance in many
time-series tasks, especially when dealing with sequential data with complex dependencies.

Bidirectional model

• Bi-LSTM is a variant of LSTM that captures contextual relationships in sequences by learning both forward and backward information. This
allows Bi-LSTM to better understand the patterns and dependencies in a gait sequence, ultimately improving the prediction of gait labels for
each frame [33].

Maturity and wide application

• Bi-LSTM has achieved remarkable results in many fields (eg, speech recognition [33] and medicine [34]), demonstrating its capability in processing
time-series data. Moreover, as a large amount of experience has been accumulated on Bi-LSTM in previous research, there are many resources
to draw from for implementation and optimization.

Although we are aware that other temporal models (eg, gated
recurrent unit [35], 1D convolutional neural network [36], and
transformer [37]) may have advantages in some aspects, based
on a combination of performance, implementation difficulty,
and existing experience, we believe that Bi-LSTM is an
appropriate choice.

In choosing the classifiers for this study, we considered several
factors, such as the effectiveness in capturing the complex
patterns in gait analysis, computational complexity, and ease
of deployment. First, by comparing different types of classifiers,
we can gain a more comprehensive understanding of their
strengths and limitations when tackling real-world gait analysis
problems. This will help us provide valuable insights for future
research and provide references for other researchers in the field
of gait analysis. Second, although Bi-LSTM may outperform
SVM in some aspects, we still need to demonstrate this
empirically. In fact, SVM may have a better performance in
some cases. For example, SVM has better robustness and
effectiveness in handling high-dimensional data with lower
generalization errors. Therefore, using SVM as a control group
can help us verify the practical advantages of Bi-LSTM in this
application area.

Segmentation, GPM, and Calculation

Overview

Obtaining precise gait semantic locations is essential for accurate
parameter calculations. However, it is not enough; it is required
that the gait semantics used for the calculations are correct. In
more detail, if 2 consecutive gait states are incorrect owing to
noise in the data, then the gait semantics generated by these gait
states must be wrong even if they are extremely precise.
Unfortunately, noise in the data is inevitable, so the
aforementioned scenario is very likely to occur. To avoid the

catastrophic consequences for the calculation results, it requires
filtering out the subset that can be used for calculation from the
known gait semantics. Hence, in this section, we propose an
inspection method called GPM to ensure that all the gait cycles
used for calculation are available.

Gait Segmentation

The first step is to locate the gait semantics from the labels
predicted by the classifier.

Available Gait Cycles

The smallest unit we used to calculate gait parameters was the
gait cycle, and to ensure the accuracy of the calculation, data
located in the turnaround interval were ignored. This means
that we only took data from straight intervals to construct gait
cycles. Each complete and correct gait cycle should be
composed of 4 consecutive gait semantics, for example, Lup to
Ldown to Rup to Rdown. The starting position of this chain could
be any semantic, and we list more examples of available gait
chains in Figure 5. GPM is responsible for ensuring that only
the correct gait cycle is retained. For instance, if a gait cycle
contains an incorrect gait semantic sequence such as Lup to
Rdown, then the gait cycle will be discarded directly. Finally,
after traversing the entire data sequence, we obtained all the
available gait cycles in this data sequence, which were used for
parameter calculation.

Some parameters must be calculated based on adjacent gait
cycles (eg, equation 8), but they may have no neighbor (the
GPM discards adjacent gait cycles). Therefore, we built a gait
cycle dictionary for each data sequence (shown in Table 3)
during the GPM operations to record. The key to the dictionary
is a number that increases from 0, and the value is a gait cycle
linked list.
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Figure 5. The legitimate sequence of gait semantics. The gray squares represent specific gait semantics. Starting from any gray square, the subsequent
gait semantics defined in the direction of the arrow are legal.

Table 3. The dictionary built for maintaining the relative relationship between gait cycles during the gait pair mechanism.

AvailableValueKey

YesLdown
a to Rup

b to Rdown
c to Lup

d0

YesLdown to Rup to Rdown to Lup1

NoLdown to Rup to Rup2

YesLup to Ldown to Rup to Rdown3

NoLup to Ldown to Rup to Lup4

aLdown: left foot down
bRup: right foot up
cRdown: right foot down
dLup: right foot up

Parameter Calculation

The parameters we calculated referred to gait standard
parameters [38], which are shown in Table 4 in detail. After
obtaining the available gait cycles through GPM, in each cycle,
we can calculate swing time, height, and swing speed. In 2
identical cycles of the interval, we can obtain stride length,
stride speed, and cycle time. Similarly, in the left and right
cycles of the interval, we can obtain step length, double support
time, and cadence. In addition, it is possible to determine the
proportion of swing time, stance time, and double support time
in the cycle using cycle time. We formulated the calculation of
all parameters related to the left foot (equations 8-16), and the
situation of the right foot was completely symmetrical.

Practically, the first and last gait semantics are not contained
in any gait cycle as the gait is unstable at the start and end
locations. Moreover, to make the calculation result reflect the
condition of the gait process, we took the mean value of each
parameter as the final gait parameter result. We obtained the
walking speed by dividing the distance between the start and
end points by the total time.

In these equations, G(i) represents the gait cycle with key=i in
the dictionary (shown in Table 3), and distance(⋅) is the
Euclidean distance between 2 ankles. T(⋅) is the method that
obtains the time of the given gait semantic.

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)
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Table 4. The definition of all gait parameters that we intended to calculate.

DefinitionParameter (unit)

Average speed during straight travelSpeed (m/s)

The distance between the 2 landings of the left footLeftStride (m)

The distance between the 2 landings of the right footRightStride (m)

Average speed during a left strideLeftStrideSpeed (m/s)

Average speed during a right strideRightStrideSpeed (m/s)

The distance between the landing of the left foot and the last landing of the right footLeftStep (m)

The distance between the landing of the right foot and the last landing of the left footRightStep (m)

Frequency of left footstepLeftCadence (steps per min)

Frequency of right footstepRightCadence (steps per min)

Left stride cycle timeLeftCycle (s)

Right stride cycle timeRightCycle (s)

Percentage of swing phase time in the left stride periodLeftSwing (%)

Percentage of swing phase time in the right stride periodRightSwing (%)

Percentage of stance phase time in the left stride periodLeftStance (%)

Percentage of stance phase time in the right stride periodRightStance (%)

Percentage of double support phase time in stride periodDoubleSupport (%)

Average speed during a left swingLeftSwingSpeed (m/s)

Average speed during a right swingRightSwingSpeed (m/s)

Evaluation
The evaluation covers 3 aspects: verifying the effectiveness of
the classifiers, gait semantic segmentation, and gait parameter
calculation.

10-Fold Cross-Validation
This is a commonly used and effective method for model
evaluation. All the experiments in this study were conducted
through 10-fold cross-validation. Specifically, it is conducted
by dividing the data set into 10 parts of the same size and each
time selecting 1 part as the test set (different from all the
previous test sets) and the rest as the training set, thereby
training and evaluating an independent model. In total, 10
independent model evaluations were averaged to reflect the
overall performance of the model.

Classification Evaluation
For the classification task, the common evaluation indicators
are precision, recall, and F1-score (equations 17-20).

(17)

(18)

(19)

(20)

In these equations, i indicates that the current ith class is
considered positive. TP, TN, FP, and FN denote of true positive,
true negative, false positive, and false negative, respectively,
where true or false means whether the predicted label is
consistent with the ground truth and positive or negative
indicates whether the current category is the class of interest.
In the multiclassification problem, when a category is regarded
as positive, all the other categories are regarded as negative.
After calculating the precision and recall of each category, the
final precision, recall, and F1-score were weighted based on the
sample number of each category.

Gait Segmentation Evaluation
Let us assume that we obtain K gait semantics in a gait data
sequence and this data sequence contains n frames in total. If
the kth semantic point is located on the jth frame according to
our algorithm but the ground truth location is the jth frame, then
a hyperparameter t (representing the tolerance degree of location
bias) is introduced to determine whether we would regard this
semantic point as a mistake or an acceptable bias.
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(21)

In these equations,   (⋅) denotes the indicator function, which
means that, if j is in the range of (j’ − t, j’ + t), its value would
be equal to 1; otherwise, it would be equal to 0.

Gait Parameter Calculation Evaluation
If we needed to calculate a total of N gait parameters, then, for

the ith parameter to be calculated, we would use Vp
(i) to represent

the value finally calculated by our algorithm. We could also

figure out its corresponding precise value Vg
(i) using the ground

truth. After that, depending on Vp
(i) and Vg

(i), we could estimate
the mean error and mean SD of all N gait parameters of these
participants (equations 22 and 23).

(22)

(23)

Feedback Collection

Subjective Feedback
To verify the feasibility of this study’s method in field medical
scenarios, we conducted in-depth interviews with a diverse
group of participants, including 15 patients diagnosed with
specific NDDs at various stages, 5 family members of the
patients, and 5 health care workers experienced in NDD
diagnosis. During the interviews, we collected a total of 6
conversation records from patients and their family members
as well as 4 conversation records from health care workers. The
interviews aimed to gather their insights and opinions on the
acceptance of and preference for our proposed method compared
with the traditional scale-based method, focusing on their
subjective perceptions, experiences, and expectations in terms
of usability, comfort, and overall satisfaction.

Quantitative Feedback
We developed a comprehensive evaluation system comprising
several quantitative metrics: accuracy, convenience,
practicability, invasiveness, and reliability. Each metric was
scored on a scale ranging from 1 to 5, allowing for a detailed
comparison between our proposed method and the traditional
scale-based method. For this evaluation, patients were
responsible for providing scores for convenience and
invasiveness, reflecting their personal experience with each
method. Meanwhile, physicians assessed accuracy,
practicability, and reliability, offering a professional perspective
on the effectiveness of each method in a clinical setting.

The patients involved in our quantitative and qualitative analyses
were treated at the neurology departments of class 3A hospitals
with which we collaborate. The physicians participating in our
quantitative and qualitative analyses were practicing neurologists
at these class 3A hospitals. We randomly selected 100
anonymous participants from multiple hospitals to complete
this questionnaire, with a mix of 7 (7%) physicians and 93 (93%)
patients, ensuring a diverse and representative sample.

Ethics Approval
The Medical Review Ethics Committee of Peking Union
Medical College Hospital approved the study (reference
HS-3076).

Results

Classification and Gait Segmentation
The comparison of the results of the 2 classifiers is demonstrated
in Figure 6. The horizontal axis represents the number of
cross-validations, and the vertical axis indicates the
corresponding metric values (precision, recall, and F1-score).
In 10 tests, the Bi-LSTM model predicted labels with an average
precision of 90.54%, average recall of 90.41%, and average
F1-score of 90.38%. In contrast, SVM yielded results of 86.99%,
86.62%, and 86.67% for precision, recall, and F1-score,
respectively. The detailed confusion matrix for SVM and
Bi-LSTM in the experiment is shown in Figures 7A and 7B.
Moreover, the Bi-LSTM achieved an accuracy of 93.2% in gait
segmentation evaluation (described in the Gait Segmentation
Evaluation section, with the default tolerance set to 2), whereas
the SVM only reached 77.5%.

Figure 6. Performance comparison between the bidirectional long short-term memory (Bi-LSTM) and support vector machine (SVM) classifiers. (A)
Precision; (B) Recall; (C) F1-score.
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Figure 7. (A) Confusion matrix of support vector machine (SVM); (B) Confusion matrix of bidirectional long short-term memory (Bi-LSTM).

Gait Parameter Calculation Results
As the heuristic method proposed in the study by Latorre et al
[26] demonstrates the best parameter calculation, in this section,
we compare it with our proposed methods and display the results
in Figure 8.

The heuristic method had an average error of 20.91% (SD
24.69%). The SVM and Bi-LSTM methods yielded average
error rates of 5.85% (SD 5.45%) and 3.17% (SD 2.75%),
respectively. Regarding the SD error, the heuristic method,
SVM, and Bi-LSTM had values of 24.69%, 5.45%, and 2.75%,
respectively.

Figure 8. Parameter calculation errors for the heuristic method, support vector machine (SVM), and bidirectional long short-term memory (Bi-LSTM).
(A) Average error; (B) Error SD.

Feedback
We deployed the trained model in a hospital setting to collect
subjective and quantitative feedback. Feedback providers
included patients with varying degrees of NDDs, their family
members, and physicians.

Subjective Feedback From Patients and Relatives
The feedback from patients and relatives is presented in Textbox
5.
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Textbox 5. Subjective feedback from patients and relatives.

Question: “How was your father diagnosed with Parkinson’s?”

• Answer: “A long time ago, I noticed that my father was a little unsteady in walking. We thought it was a previous lumbar spondylosis attack and
didn’t consider neurological diseases. It was too much trouble for the elderly to queue up at the hospital, so we procrastinated. Now, the situation
has worsened, and he needs assistance to walk.”

Question: “How would you rate this new assessment method that we have implemented?”

• Answer: “This innovative approach only requires me to follow the landmarks and walk a few laps. Previous tests were time-consuming and
laborious and I had to wear some equipment that made me uncomfortable. Today’s testing method was mentally relaxing.”

Question: “Can you share your feeling about this gait assessment method?”

• Answer: “I feel somewhat self-conscious about the way I walk, but your creation allows me to complete the test quickly, sparing me from enduring
a lengthy assessment process.”

Question: “What do you think is the biggest difference between this assessment and the tests you have done before?”

• Answer: “Simplicity and convenience. I think the idea you provided is significant; there’s no need to wear devices, and testing is done quickly.
Perhaps we can complete these assessments at home in the future. I look forward to your further results.”

Question: “Do you like the format of our assessment?”

• Answer: “I like it, I think the report is generated very fast, faster than the ones I did before.”

Question: “Do you think the results of our equipment are trustworthy?”

• Answer: “Why not? AI is developing rapidly and taking over human work in many fields. To be honest, I’m more willing to trust your digital
devices than the manual scale tests used before.”

Subjective Feedback From Physicians
The feedback from physicians is presented in Textbox 6.

Textbox 6. Subjective feedback from physicians.

Question: “Do you think our assessment method has advantages over the scale method, and can our method replace the scale method in your
opinion?”

• Answer: “In the past, we often needed to evaluate the patient’s video and manually make the scale. But I feel that the data provided by your
assessment method is much more accurate than handcrafted scales. I personally believe that our work would be much less stressful if we could
use your results consistently in the future.”

Question: “Do you think our method has helped you in any substantial way in your work?”

• Answer: “Making scales requires us to have a lot of communication with patients. This device can improve this situation and avoid the omissions
that occur when we evaluate patient parameters ourselves.”

Question: “Do you think our assessment method provides you with enough information to complete a complementary diagnosis?”

• Answer: “Of course, it provides a lot of parameters and indicators to consider, which is sufficient for us.”

Question: “What do you think are the shortcomings of our algorithm during use?”

• Answer: “When the patient is overdressed or wearing dark clothing all over the body, the results sometimes do not make sense.”

Quantitative Feedback
The results for each metric are presented in Tables 5 and 6.
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Table 5. The distribution of quantitative scores collected from 100 participants for our method.

Weighted average
score

Score of 5, n (%)Score of 4, n (%)Score of 3, n (%)Score of 2, n (%)Score of 1, n (%)Metric

4.866 (86)1 (14)0 (0)0 (0)0 (0)Accuracy (n=7)

4.9589 (96)3 (3)1 (1)0 (0)0 (0)Convenience (n=93)

4.715 (71)2 (29)0 (0)0 (0)0 (0)Practicability (n=7)

1.090 (0)1 (1)1 (1)3 (3)88 (95)Invasiveness (n=93)

4.293 (43)3 (43)1 (14)0 (0)0 (0)Reliability (n=7)

Table 6. The distribution of quantitative scores collected from 100 participants for the conventional scale-based method.

Weighted average
score

Score of 5, n (%)Score of 4, n (%)Score of 3, n (%)Score of 2, n (%)Score of 1, n (%)Metric

2.430 (0)1 (14)2 (29)3 (43)1 (14)Accuracy (n=7)

1.490 (0)5 (5)7 (8)17 (18)64 (69)Convenience (n=93)

3.431 (14)2 (29)3 (43)1 (14)0 (0)Practicability (n=7)

4.0841 (44)29 (31)14 (15)7 (7)2 (22)Invasiveness (n=93)

3.291 (14)2 (29)2 (29)2 (29)0 (0)Reliability (n=7)

Discussion

Principal Findings

Results Comparison
Regarding the classification results (Figures 6 and 7), the
Bi-LSTM model outperformed the SVM model in all 3 aspects
(average precision, average recall, and average F1-score). In
the parameter calculation aspect, both SVM and Bi-LSTM
demonstrated distinct advantages over the heuristic method.
Bi-LSTM showcased superior performance with the lowest
average error (3.17%, SD 2.75%). The comparative experiments
conducted in this section illustrated that (1) the integration of
spatiotemporal features, semantic segmentation, and GPM is
effective, addressing the weaknesses prevalent in heuristics,
and (2) the time-series model yielded more impactful results,
with Bi-LSTM exhibiting the best performance.

Prediction Rationality
The validity of the predictions generated by both the SVM and
Bi-LSTM models was evaluated. This was achieved by
generating predictions for a given data sample, as shown in
Figure 9.

Apparently, the SVM results have many intermittent jumps. In
addition, the classification and gait segmentation results show
that SVM performs poorly on gait semantic segmentation
evaluation (77.5% when tolerance is 2), albeit demonstrating
decent performance on precision, recall, and F1-score on
classification (86.99%, 86.62%, and 86.67%, respectively). On
the basis of these observations, we offer the following insights.

From the gait semantic perspective, intermittent jumps indicate
abrupt transitions between different gait states, which is
incongruous with a person’s natural walking pattern. Therefore,
the SVM prediction reasonability has significant room for
improvement.

The growing discrepancy in semantic location accuracy between
SVM and Bi-LSTM underscores that reliance on the 3 common
indicators (precision, recall, and F1-score) can obscure SVM’s
substantial weakness in distinguishing gait semantic locations.
The number of key semantics is much lower than the total
number of frames, implying that, even if key points are
inaccurately predicted, the large frame cardinality could
compensate for SVM’s accuracy, thus concealing SVM’s errors
in predicting gait semantics.

In contrast, Bi-LSTM is very stable on both frame accuracy
indexes and key semantic segmentation accuracy. Although the
figure shows that the outcome of Bi-LSTM still has a small
defect, it will not affect the final parameter calculation as the
data in the turning interval will not be covered for the final
calculation (introduced in the Segmentation, GPM, and
Calculation section).

In theory, Bi-LSTM allows the model to integrate information
from the preceding and succeeding frames, resulting in a stable
model that is resistant to abrupt gait state transitions. Conversely,
SVM relies solely on single-frame features without contextual
information, causing the prediction result to be susceptible to
sudden gait state transitions and a lack of robustness for the
state transition of long-term data. In general, in the task of gait
assessment, an algorithm based on the Bi-LSTM model is a
more appropriate choice.
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Figure 9. The visual comparison of real labels and predicted gait state labels by support vector machine (SVM) and bidirectional long short-term
memory (Bi-LSTM; the circled areas represent the prediction errors). (A) Real labels; (B) SVM predicted labels; (C) Bi-LSTM predicted labels.

Feedback Analysis
In this section, feedback from patients and their families is
denoted by the prefix P, whereas physician feedback is indicated
by the prefix D.

P1 highlighted the difficulty in recognizing early-stage NDDs
as they are easily confused with other conditions, which
underscores the importance of our research.

P2, P3, P4, and P5 indicated that this study offers an effective
way to prevent patient discomfort during gait testing. It boasts
high accuracy and rapid testing and encourages a natural gait
pattern during testing, thereby ensuring accurate assessment
results. P6 underscored the shortcomings of the traditional
scale-based tests, suggesting that our method is more reliable
from a user perspective. D1 and D2 indicated that our method
provides a more efficient and labor-saving assessment strategy
that could potentially reduce bias in their judgment. D3
suggested that our method offers comprehensive information,
enabling a multifaceted analysis. D4 pointed to an issue with
the Kinect’s performance during data collection when patients
are heavily or darkly dressed, which limits our model’s
performance.

The overall distribution in Tables 5 and 6 demonstrates that our
algorithm was generally favorably rated by both patients and
physicians, faring better than traditional scale-based approaches.
The high convenience (4.95) and reliability (4.29) ratings for
our method suggest a low acceptance and lack of confidence in
the current scale-based approach. In addition, the rating for
invasiveness (1.09 for our method vs 4.08 for the scale-based
method) indicates that the scale-based approach may be
perceived as intrusive because of the extensive communication
required between physicians and patients during the data
collection process, potentially infringing on patient privacy. In
contrast, our method was considered more respectful of patients’
feelings.

Comparison With Prior Work
In previous work, although there are also related works that
apply the high-end results of digital devices to the evaluation
of gait parameters in NDD, these have either focused on using
wearable devices [13-15,39] such as sensors to directly obtain
various gait parameters of patients or used bulky and expensive
optical [40] equipment to complete accurate gait calculations.
The low precision and invasiveness of the former and the

expense of the latter have become obstacles to “promoting AI
for the auxiliary diagnosis and treatment of NDD.” In addition,
some heuristics [22-26] that may generalize at scale in hospital
scenarios also provide solutions, and we compared our algorithm
with the heuristics that perform optimally on this task. The
comparison of results shows that our method outperforms the
best heuristics by >15% in terms of both the average error and
average SD error of the parameters. Taken together, our method
has the following advantages over previous methods: (1) we
combined composite spatiotemporal features extracted from
human lower limbs in motion; (2) we adopted a time
series–based deep learning model to make it possible to
comprehensively use the semantic information in the context;
(3) we relied on precise gait semantics to calculate gait
parameters and strictly limited the gait cycles involved in the
calculation through the GPM mechanism; (4) we used a single
Kinect to complete data collection and accurate prediction,
which reduced the cost; and (5) we adopted a noncontact
assessment method throughout the process to provide
participants with better emotional care and ensure that their
behavioral patterns were as consistent as possible with those of
the state of nature.

Limitations
Our study has the following limitations. First, the scale of data
used for training and testing the model consisted of 41 samples.
Although each sample contained thousands of frames that could
be used for training and testing and we tried to make the
distribution of the data set as differentiated as possible, it is still
challenging to guarantee that it contains all gait patterns.
Nonetheless, we can increase the scale of the data set or train
an ensemble model for more precise assessments. We are
currently collaborating with more hospitals to collect a broader
range of gait data. Second, the data noise caused by the
limitations of the Kinect itself cannot be overcome by our
algorithm. Third, we do not provide direct evidence of the
specific value of the improvement in the accuracy of this method
compared with the traditional scale-based measurement.

Although we offer precise, uniform gait parameters with
controlled errors compared with the traditional scale-based
method, the issue lies in the fact that we can only guarantee the
accuracy of the parameters, whereas the physician’s assessment
of the patient’s symptoms (eg, degree of memory degradation)
that are not captured by the parameters remains dependent on
the physician’s own standard. Therefore, this study aimed to
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assist physicians in their decision-making by eliminating as
many measurement errors as possible rather than provide a fully
automated, manual alternative to diagnosis.

In addition, the data set is imbalanced regarding sex (30/41,
73% male participants vs 11/41, 27% female participants), which
might affect the model’s performance. Moreover, we have not
yet explored the potential correlations between age and sex and
the input parameters of the classifiers. This can be explored as
a future research direction.

Conclusions
Gait assessment results as a crucial indicator of NDD can aid
physicians in providing a more accurate early disease diagnosis.
However, existing methods often present various drawbacks:
traditional scales are time-consuming and prone to high error
rates; contact assessments are invasive; optical instruments,
though accurate, are costly; and heuristic methods, although
simple and straightforward, fail to meet clinical requirements
in terms of accuracy. Consequently, we proposed a contactless
gait assessment method that leverages the advanced results of
deep learning, combines rich spatiotemporal features, and
incorporates timing information from data to achieve a highly
accurate gait assessment (with an average error of only 3.17%

[SD 2.75%] and a 15% reduction in the error margin compared
with previous heuristic optimal methods). This study shows the
feasibility and rationality of using deep learning to assist
physicians in the early diagnosis of NDDs and targeted
rehabilitation. Our method can serve as a diagnostic support
system, benefiting physicians and patients alike through its low
equipment costs, portable deployment, accurate results, and
minimal invasiveness.

Despite the promising results, our study has some limitations.
First, the sample size in our study may not be large enough to
generalize our findings to the broader population of patients
with NDDs. Second, the algorithm may not perform as well
when dealing with patients wearing dark or bulky clothing,
which may affect the accuracy of the Kinect-based data
collection.

In future research, we plan to explore the application of our
method in a broader range of NDDs while promoting it in more
hospitals to provide convenience for patients and physicians.
In addition, we aim to investigate how to integrate our approach
with other diagnostic tools to provide a more comprehensive
assessment, thereby further enhancing the early diagnosis and
management of NDDs.
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