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Abstract

Background: Deep learning (DL) prediction models hold great promise in the triage of COVID-19.

Objective: We aimed to evaluate the diagnostic test accuracy of DL prediction models for assessing and predicting the severity
of COVID-19.

Methods: We searched PubMed, Scopus, LitCovid, Embase, Ovid, and the Cochrane Library for studies published from
December 1, 2019, to April 30, 2022. Studies that used DL prediction models to assess or predict COVID-19 severity were
included, while those without diagnostic test accuracy analysis or severity dichotomies were excluded. QUADAS-2 (Quality
Assessment of Diagnostic Accuracy Studies 2), PROBAST (Prediction Model Risk of Bias Assessment Tool), and funnel plots
were used to estimate the bias and applicability.

Results: A total of 12 retrospective studies involving 2006 patients reported the cross-sectionally assessed value of DL on

COVID-19 severity. The pooled sensitivity and area under the curve were 0.92 (95% CI 0.89-0.94; I2=0.00%) and 0.95 (95% CI
0.92-0.96), respectively. A total of 13 retrospective studies involving 3951 patients reported the longitudinal predictive value of

DL for disease severity. The pooled sensitivity and area under the curve were 0.76 (95% CI 0.74-0.79; I2=0.00%) and 0.80 (95%
CI 0.76-0.83), respectively.

Conclusions: DL prediction models can help clinicians identify potentially severe cases for early triage. However, high-quality
research is lacking.

Trial Registration: PROSPERO CRD42022329252; https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD
42022329252

(J Med Internet Res 2023;25:e46340) doi: 10.2196/46340
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Introduction

COVID-19 is a novel, highly contagious disease caused by
SARS-CoV-2 [1]. COVID-19 has caused an unprecedented
global pandemic in terms of size, transmission, severity, and
mortality [2]. As of October 28, 2022, more than 62.6 million
cases had been confirmed, including over 6.56 million deaths
(World Health Organization [WHO] report) [3]. The dramatic
increase in patients with COVID-19 has overwhelmed health
care systems worldwide. A critical step in the management of
patients with COVID-19 is the accurate assessment and
prediction of disease severity, which helps health care providers
prioritize resources and improve outcomes [4]. However, early
and accurate assessment and prediction of patient severity is a
major challenge for physicians.

To help physicians improve the efficiency and accuracy of
assessing and predicting the severity of patients, artificial
intelligence technology has important applications in this field
[5]. With the rapid development of deep learning (DL), more
powerful graphics processors have been used in medical image
analysis [6]. Some excellent DL frameworks, such as ResNet
[7], U-Net [8], DenseNet [9], ScanNet [10], and CapsNet [11],
have proven to be useful tools in COVID-19 diagnosis and
prediction [12]. Previous systematic reviews have demonstrated
that DL-based imaging analysis is more effective than manual
analysis in detecting and differentiating COVID-19 [13,14] and
in predicting the risk of patient mortality [15,16]. Although
these studies illustrate the accuracy of DL in diagnosing
COVID-19 and predicting mortality [17], no systematic review
has confirmed that DL is effective in assessing and predicting
the severity of COVID-19.

The “prediction models” contain both diagnostic prediction
models and prognostic prediction models. Diagnostic prediction
models are used to assess COVID-19 severity cross-sectionally,
whereas prognostic prediction models are used to predict disease
severity longitudinally [18]. We conducted this systematic
review and meta-analysis to summarize the value of DL
prediction models in assessing and predicting COVID-19
severity. These findings will contribute to the application of DL
in assessing and predicting the severity of COVID-19 patients.

Methods

Study Design
The review was performed according to the PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses)
guidelines and flowchart [19,20] and the PRISMA diagnostic
test accuracy checklist (Multimedia Appendix 1) [21]. It was
registered in the PROSPERO database (registration number:
CRD42022329252).

Search Strategy and Selection Criteria
We searched PubMed, Scopus, LitCovid, Embase (using the
OVID platform), and the Cochrane Library (CENTRAL) from
December 1, 2019, to April 30, 2022. The search included terms
related to COVID-19, DL, and disease severity (Textbox S1 in
Multimedia Appendix 2). In addition, another person
independently collected literature through citation searches.

After removing duplicates, 2 reviewers (CW and YT)
independently performed an initial screening of titles and
abstracts using Endnote X9 (Clarivate) software and then
independently assessed articles against the inclusion criteria
using Zotero software (Corporation for Digital Scholarship).
Disagreements were resolved by discussion and, where
necessary, by third-party adjudication.

The inclusion criteria were (1) evaluating the assessment or
predictive value of DL algorithms on disease severity in patients
with COVID-19; (2) disclosing the code of the DL algorithm
or detailing the parameters used by the model, such as training
epochs, learning rate, batch, optimizer, validation strategy, and
so forth; (3) reconstructing a 2×2 confusion matrix from
sensitivity, specificity, positive predictive value, and negative
predictive value; and (4) peer-reviewed articles. Reviews,
protocols, and editorials were excluded. Studies that did not
clearly indicate the source of the patient data sets were also
excluded.

Quality Assessment
The QUADAS-2 (Quality Assessment of Diagnostic Accuracy
Studies 2) criteria assessed the risk of bias in 4 domains: patient
selection, index test, reference standard, and flow and timing.
However, QUADAS-2 cannot be evaluated against predictive
models for diagnosis or prognosis [22], and to refine this, we
further introduced the PROBAST (Prediction Model Risk of
Bias Assessment Tool) [23], which is well suited to address DL
predictive models for binary outcomes [24]. Furthermore,
PROBAST assessed the risk of bias in 4 other domains:
participants, predictors, outcomes, and analysis.

Data Analysis
Statistical analysis was performed with STATA (version 17.0)
using the MIDAS module [25] and the METAPROP module
[26]. Postestimation procedures for model diagnostics and
empirical Bayesian predictions were used to assess heterogeneity

using the I2 statistic. The following metrics were used: 0%-40%
(not important heterogeneity), 30%-60% (moderate
heterogeneity), 50%-90% (substantial heterogeneity), and
75%-100% (considerable heterogeneity) [27]. Deek funnel plots
were tested for publication bias using an asymmetry test. If
P<.10, publication bias may be present. Using bivariate
mixed-effects logistic regression modeling [25], forest plots
were used to compare the sensitivity and the specificity of DL
models for assessing and predicting disease severity in patients
with COVID-19. Summary receiver operating characteristic
(SROC) curves were adopted to assess overall diagnostic
accuracy. The Fagan nomogram was used to explore the
relationship between pretest probability, likelihood ratio (LR),
and posttest probability. LR dot plots, divided into 4 quadrants
based on the strength of the evidence threshold, were used to
determine the exclusion and confirmation of the DL model.
Finally, subgroup analyses were performed to examine whether

the estimated sensitivity, specificity, and associated I2 (when
each subgroup included 4 or more studies) differed by a number
of moderators. Details are provided in Textbox S2 in Multimedia
Appendix 2.
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Results

Search Outcome
A total of 1154 titles and abstracts were identified in the initial
search. According to this study’s inclusion and exclusion

criteria, 1044 articles were excluded. In addition, 110 studies
were reviewed for full text, of which 23 met all inclusion criteria
(Figure 1).

The PRISMA 2020 flowchart for new systematic reviews
included searches of databases, registers, and other sources [20].

Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flowchart of the review process and study selection.

Study Characteristics
All studies were retrospective and used completely different
data sources. Eleven of these studies classified the stage as
severe or critical according to the guidelines for diagnosis and
treatment of COVID-19 infection from the National Health
Commission of the People’s Republic of China [28-38].
However, except for the study in which disease was determined
by scoring the image parameters [39,40], all other studies
defined severe patients as having at least one of the following

criteria: respiratory rate ≥30 breaths/min, oxygen saturation
≤93% at rest, PaO2/FiO2 ≤300 mmHg, significant progression
of pulmonary lesions (>50%) within 24-48 h, mechanical
ventilation, intensive medical care, or shock. Details of the
criteria for severe patients in different studies, study type, and
the design characteristics of the DL model are provided in
Tables S1 and S2 in Multimedia Appendix 2. Table 1
summarizes the characteristics of the included studies and the
diagnostic test accuracy of the DL prediction model.
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Table 1. Characteristics of the studies included in the meta-analysis.

2×2 Truth table:
true positive /
false negative /
true negative /
false positive

Partition/No.
of patients
(severe) /
area under
curve

Model performance: optimiz-
er / validation strategies /
interpretability

Input: no medical
imaging

Input: imaging

dataa
Deep learning modelStudy

Assessment

67 / 7 / 20 / 5ETh / 99
(74) / 0.93

Mini-batch + Adam / cross-
validation (10-fold, 100 rep-

etitions) / N/Ag

Age, LYCc, NECd,

PaO2
e, SaO2

f
Chest CTbUNetCai et al 2020

[28]

31 / 4 / 61 / 1ITj / 97(35) /
0.90

N/A / cohort validation /
quantitative results

NoneChest CTANNiCarvalho et al
2020 [39]

30 / 2 / 144 / 20ET / 196
(32) / 0.97

N/A / N/A / N/ANoneChest CT2D UNet + ResNet-
34

Li et al 2020
[29]

35 / 5 / 51 / 14ET / 105
(40) / 0.89

N/A / cross-validation (5-
fold) / N/A

NoneInitial chest
CT

ResNet-34Xiao et al 2020
[37]

12 / 1 / 26 / 1IT / 40 (13) /
0.99

N/A / cross-validation (10-
fold) / N/A

NoneChest CTDenseNet-201Yu et al 2020
[30]

91 / 7 / 48 / 4IT / 150 (98)
/ 0.96

Adam / radiologist valida-
tion / GSInquire

NoneCXRkCOVIDNetAboutalebi et al
2021 [40]

8 / 1 / 77 / 13ET / 98(8) /
0.97

Grid search / cross-valida-
tion (5-fold) / N/A

Cardiovascular or
cerebrovascular dis-

eases, COPDl, dia-

Chest CTUNet++Feng et al 2021
[38]

betes, hs-Cardiac tro-
ponin I, hypertension,

LDHm

49 / 2 / 190 / 1IT / 191(51)
/ 0.99

SGDn / cross-validation (5-
fold) / N/A

None3D chest CTUNetHe et al 2021
[31]

6 / 1 / 49 / 2IT / 58 (7) /
0.92

Adam + binary cross-en-
tropy / cross-validation (5-
fold) / gradient-weighted
class activation mapping

CRPo, SaO2, respirato-
ry rate, systolic blood

pressure, WBCp count

3D CTResNet-50 + Incep-
tionV3 +
DenseNet121 +
ANN

Ho et al 2021
[41]

47 / 3 / 173 / 6IT / 229 (50)
/ 0.98

Adam / cross-validation (10-
fold) / predicted label + visu-
alization of the attention
mechanism

NoneChest CTCNNqLi et al 2021
[32]

34 / 1 / 60 / 0IT / 95 (35) /
0.98

Adam + root mean square
propagation / cross-valida-
tion (5-fold) / selector con-
trol box testing data set

NoneCXRVGG-19 + ResNet-
50 + DenseNet-121
+ InceptionV3

Udriștoiu et al
2021 [42]

95 / 12 / 470 / 19IT / 596
(107) / N/A

Root mean square propaga-
tion / cross-validation (5-
fold)/ N/A

NoneChest CTDenseNet-161Ortiz et al 2022
[43]

Prediction

50 / 13 / 148 / 41ET / 252
(63) / 0.88

Adam / cross-validation (10-
fold, 10 repetitions) / N/A

Age, albumin, alanine
aminotransferase, as-
partate aminotrans-

Chest CTInceptionV3 +
DenseNet-121 +
VGG-16

Ning et al 2020
[33]

ferase, brain natriuret-
ic peptide, CD4+ T
cell, calcium, creati-
nine, CRP, eosinophil
count, globulin, γ-
Glutamyl transpepti-
dase, LYC, monocyte
count, NEC, platelet,
procalcitonin, sex,
sodium, total biliru-
bin, urea, WBC count
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2×2 Truth table:
true positive /
false negative /
true negative /
false positive

Partition/No.
of patients
(severe) /
area under
curve

Model performance: optimiz-
er / validation strategies /
interpretability

Input: no medical
imaging

Input: imaging

dataa
Deep learning modelStudy

9 / 2 / 42 / 12ET / 65 (11)
/ 0.92

N/A / cross-validation (5-
fold) / N/A

NoneInitial chest
CT

ResNet-34Xiao et al 2020
[37]

126 / 32 / 238 /
36

IT / 432
(158) / 0.91

SGD + Adam / cross-valida-

tion (5-fold) / SHAPs
Age, albumin, activat-
ed partial thromboplas-
tin time, CRP, indirect
bilirubin, LDH, LYC,
NEC, platelet count,
respiratory rate, SaO2,
temperature, thrombin

time, Na+, K+, HCO3
–

Chest CTUNet + FCNr +
DeepLabv3 +
ResNet-18

Zhang et al
2020 [44]

IT: 117 / 37 / 175
/ 34; ET: 40 / 14
/ 68 / 11

IT / 363
(154) / 0.89
ET / 133
(54) / 0.86

Adam / cross-validation (5-
fold) / gradient-weighted
class activation mapping

Albumin, aspartate
aminotransferase,
brain natriuretic pep-

tide, CD3+CD4+T
cells count, CRP, crea-
tinine, fever, γ-Glu-
tamyl transpeptidase,
hypertension, tro-
ponin, WBC count

Chest CT3D ResNetFang et al 2021
[34]

6 / 2 / 79 / 11ET / 98 (8) /
0.88

Grid search / cross-valida-
tion (5-fold) / N/A

Cardiovascular or
cerebrovascular dis-
eases, COPD, dia-
betes, hs-Cardiac tro-
ponin I, hypertension,
LDH

Chest CTUNet++Feng et al 2021
[38]

IT: 62 / 22 / 241
/ 41; ET: 91 / 34
/ 245 / 105

IT / 366 (84)
/ 0.85; ET /
475 (125) /
0.79

N/A / cohort validation /
N/A

Age, cardiovascular
disease, chronic kid-
ney disease, chronic
liver disease, COPD,
creatinine, CRP, dia-
betes, fever, hyperten-
sion, LYC, malignant

tumor, sex, SpO2
t,

WBC count

CXRUNet + VGG-11 +
EfficientNet-B0

Jiao et al 2021
[45]

38 / 8 / 78 / 32IT / 156 (46)
/ 0.88

Adam + binary cross-en-
tropy / cohort validation /
N/A

NoneCXRDenseNet-121Kwon et al
2021 [46]

31 / 13 / 80 / 26IT / 150 (44)
/ 0.76

N/A / cross-validation (5-
fold) / logistic regression

Age, platelet count,
SaO2, sex, urea

Chest CTResNet50 + Effi-
cientNetB0 + UNet

Lassau et al
2021 [47]

36 / 9 / 130 / 21IT / 196 (45)
/ 0.90

N/A / cross-validation (10-
fold) / N/A

Age, CD4+ T cell
count, CRP, LDH

Chest CTVNetShi et al 2021
[35]

325 / 111 / 288 /
96

IT / 820
(436) / N/A

Adam + SGD / cross-valida-
tion (10-fold, 20 repetitions)
/ N/A

Age, D-dimer, dia-
betes, LDH, sex,
SaO2, WBC count

CXRUNet + ResNet-50Soda et al 2021
[48]

26 / 5 / 71 / 5IT / 107 (31)
/ 0.95

Optuna + SGD / Cross-vali-
dation (10-fold) / SHAP
analysis

Age, creatinine, crea-
tine kinase

Chest CT3D CNNChieregato et al
2022 [49]

55 / 15 / 51 / 19IT / 140 (70)
/ 0.76

N/A / cross-validation (10-
fold) / statistical analysis of
clinical data

Hematocrit, LYC,
NEC, platelet count,
red blood cell count

Chest CTMask R-CNN +
ANN

Chen et al 2022
[36]
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2×2 Truth table:
true positive /
false negative /
true negative /
false positive

Partition/No.
of patients
(severe) /
area under
curve

Model performance: optimiz-
er / validation strategies /
interpretability

Input: no medical
imaging

Input: imaging

dataa
Deep learning modelStudy

33 / 12 / 146 / 18IT / 209 (45)
/ 0.86

N/A / cohort validation /
N/A

Age, cancer, cardio-
vascular disease,
chronic kidney dis-
ease, chronic liver
disease, COPD, dia-
betes, fever, hyperten-
sion, HIV, LYC, sex,
WBC count

Chest CTEfficientNetWang et al
2022 [50]

aImaging data include total lesion volume, volume change, proportion of lesions, mean density, edge clarity, pleural distance, form, mean lesion volume,
MOICT, lesion range score, number of segments involved, CT/CXR severity score, consolidation, and ground-glass opacification.
bCT: computed tomography.
cLYC: lymphocyte count.
dNEC: neutrophil count.
ePaO2: partial pressure of oxygen.
fSaO2: oxygen saturation.
gN/A: not available.
hET: external test.
iANN: artificial neural network.
jIT: internal test.
kCXR: chest x-ray.
lCOPD: chronic obstructive pulmonary disease.
mLDH: lactate dehydrogenase.
nSGD: stochastic gradient descent.
oCRP: C-reactive protein.
pWBC: white blood cell.
qCNN: convolutional neural network.
rFCN: fully connected neural network.
sSHAP: Shapley Additive Explanations.
tSpO2: oxygen saturation

Outcomes of DL Models for COVID-19 Severity

Cross-Sectional Assessment
A total of 12 studies with 2006 patients reported the assessment
value of DL models for disease severity. The pooled sensitivity

and specificity were 0.92 (95% CI 0.89-0.94; I2=0.00%) and

0.95 (95% CI 0.90-0.98; I2=87.66%), respectively (Figure 2).

The diagnostic odds ratio, the positive likelihood ratio (LR+),

and the negative likelihood ratio (LR–) were 217 (95% CI
89-532), 18.8 (95% CI 9.3-38.0), and 0.09 (95% CI 0.06-0.12),
respectively. In the SROC curve (Figure 3), the area under the
curve of DL models for assessing disease severity was 0.95
(95% CI 0.92-0.96), indicating a high diagnostic value.

Based on the Pretest Probability of Disease [25], we set the
pretest probability to 27%. At this point, true positive accounted

for 87% when patients were diagnosed with severe COVID-19
by the DL model, and false negative accounted for 3% when
the diagnosis was nonsevere disease (Figure 4). DL models for
assessing disease severity produced a conclusive change in
probability from pretest to posttest (Figure 5) [51].

The first column of this nomogram represents the pretest
probability, the second column represents the likelihood ratio,
and the third column shows the posttest probability. The pretest
probabilities were set to 27% and 35%, respectively. The posttest
probability of DL models for the assessment of severe cases
was 87% when the Pretest Probability of Disease was above
the cut-off value. The posttest probability was 3% when the
Pretest Probability of Disease was below the cutoff value. The
posttest probability of DL models for the prediction of severe
cases was 70% when the Pretest Probability of Disease was
above the cutoff value. The posttest probability was 13% when
the Pretest Probability of Disease was below the cutoff value.
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Figure 2. Forest plots in sensitivity and specificity of DL models. (A) Assessing disease severity in patients with COVID-19. The pooled sensitivity
and specificity were 0.92 (95% CI 0.89-0.94) and 0.95 (95% CI 0.90-0.98), respectively [28-32,37-43]. (B) Predicting disease severity in patients with
COVID-19. The pooled sensitivity and specificity were 0.76 (95% CI 0.74-0.79) and 0.82 (95% CI 0.78-0.86), respectively [33-38,44-50].
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Figure 3. The SROC graph for the studies. (A) The AUC of deep learning (DL) models for assessing disease severity was 0.95 (95% CI 0.92-0.96).
(B) The AUC of DL models for predicting disease severity was 0.80 (95% CI 0.76-0.83). AUC: area under the curve; SENS: sensitivity; SPEC: specificity;
SROC: summary receiver operating characteristic.

Figure 4. Fagan nomogram of deep learning (DL) models for assessing and predicting disease severity in patients with COVID-19. The first column
of this nomogram represents the pre-test probability, the second column represents the Likelihood Ratio, and the third shows the posttest probability.
The pre-test probabilities were set to 27% and 35%, respectively. (A) The post-test probability of DL models for the assessment of severe cases was
87% when the Pretest Prob of Disease was above the cut-off value. The post-test probability was 3% when the Pretest Prob of Disease was below the
cut-off value. (B) The post-test probability of DL models for the prediction of severe cases was 70% when the Pretest Prob of Disease was above the
cut-off value. The post-test probability was 13 % when the Pretest Prob of Disease was below the cut-off value.
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Figure 5. Likelihood ratio dot plot of deep learning (DL) prediction models. (A) The summary point of DL models for assessing severe cases was in
the left upper quadrant (LR+ >10 and LR– <0.1: exclusion and confirmation) [51]. (B) The summary point of DL models for predicting severe cases
was in the right lower quadrant (LR+ <10 and LR– >0.1: no exclusion or confirmation). LRN: negative likelihood ratio; LRP: positive likelihood ratio;
LUQ: left upper quadrant; RLQ: right lower quadrant; RUQ: right upper quadrant.

Longitudinal Prediction
A total of 13 studies with 3951 patients reported the predictive
value of DL models for disease severity. The pooled sensitivity

and specificity were 0.76 (95% CI 0.74-0.79; I2=0.00%) and

0.82 (95% CI 0.78-0.86; I2=82.32%), respectively (Figure 2).

The diagnostic odds ratio, the LR+, and the LR– were 15 (95%
CI 11-21), 4.3 (95% CI 3.4-5.4), and 0.29 (95% CI 0.25-0.33),
respectively. In the SROC curve (Figure 3), the area under the
curve of the DL models for predicting disease severity was 0.80
(95% CI 0.76-0.83).

Based on the Pretest Probability of Disease [25], we set the
pretest probability at 35%. At this point, if admitted patients
were judged by the DL model to be progressing to severe
COVID-19, the probability of TP was 70%, and if they were
judged not to progress to severe disease, the probability of FN
was 13% (Figure 4). The likelihood ratio plot (Figure 5) shows
that the DL models used to predict disease severity produced
small changes [51].

Methodological Quality

QUADAS-2
Regarding the QUADAS-2 risk of bias assessment (Figure 6),
we found 9 studies with a high risk of bias
[29,31,32,35-37,39,41,43], 16 studies with an unclear risk of
bias [28-32,34-38,40-42,46,48,50], and 5 studies with a
completely low risk of bias [33,44,45,47,49]. In particular, 5 of
the included studies did not report details of patient selection
[29,31,32,35,43], and 4 provided unclear information on patient
selection [30,40,48,50], resulting in a high and unclear bias in
patient selection. Moreover, the threshold was not prespecified
in one study [39], leading to a high risk of bias in the index test,
and 8 studies provided unclear information on how to perform
the index test [30,34-38,42,46], leading to an unclear risk of
bias. Furthermore, one study interpreted the results of reference
standards when the results of the index test were known [41],
leading to a high risk of bias in the reference standard, and
another did not explain this [28], which was considered to be
an unclear risk of bias. In addition, 4 studies used reference
standards for indicator tests [36,39,43], or did not include all
patients in the study [37], resulting in high process and time
bias. The other 9 articles did not provide clear information,
resulting in unclear [29-32,40,41,46,48,50].
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Figure 6. Methodological assessment by QUADAS-2 and PROBAST. (A) Proportion of risk of bias for all domains and proportion of applicability
concerns in 3 domains. (B) Summary of the risk of bias for each study. Green, blue, and red circles represent a low, unclear, and high risk of bias,
respectively. (C) Tabular presentation for PROBAST results. The “+” indicates low ROB (risk of bias) or low concern regarding applicability, “-”
indicates high ROB or high concern regarding the applicability, and “?” indicates unclear ROB or unclear concern regarding the applicability.

PROBAST
After evaluating the predictive models using PROBAST (Figure
6), we found 14 [28-32,35,37,39,40,42,43,46,49,50], 6
[33,36,38,41,45,48], and 3 studies [34,44,47] with high, unclear,
and low risk of bias, respectively. Moreover, 2 [38,39], 11
[32,33,35,36,40,41,43,45,46,49,50], and 10 studies

[28-31,34,37,42,44,47,48] were of high, unclear, and low
concern for applicability, respectively. However, only 3 studies
[34,44,47] had both a low risk of bias and a low concern about
applicability. In terms of the risk of bias, the selection of
predictors based on univariate analysis was the main source of
risk, causing 11 high risks [28-32,35,37,39,40,43,49] and 5
unclear risks [33,36,38,45,46]. In contrast, for applicability, the
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main concern was with the predictor variables, causing 1 high
concern [38] and 7 unclear concerns [33,36,43,45,46,49,50].

We found the overall quality of the included studies to be poor,
with only 2 studies having a low risk of bias in both QUADAS-2
and PROBAST [44,47].

Publication Bias
Two funnel plots were also used to assess the publication bias
for each of the 23 studies that met the inclusion criteria. Deek
funnel plots are shown in Figure S1 in Multimedia Appendix
2. According to Sterne [52], when publication bias is very low,
the points are distributed symmetrically around the true effect.
Publication bias was low in studies reporting the assessed value
of DL models for disease severity (P=.61) and the predictive
value of DL models for disease severity (P=.22).

Subgroup Analyses
We performed the subgroup analyses in 6 areas, including data
partition (internal test or external test), data sources (single
benchmark or multiple benchmark), training method (pretrained
or customized), DL model networks (ResNet or other networks),
input parameters (image parameters only or clinical and image
parameters), and image (computed tomography [CT] or x-ray),
to effectively understand how the different 6 types affected the
performance of the algorithm for COVID-19 assessment and
prediction.

In sensitivity, from univariable meta-regression and subgroup
analyses (Figure S2 in Multimedia Appendix 2), we can learn
that all domains influenced the heterogeneities of sensitivity
for assessing and predicting disease severity, but none of the 6
influenced the DL model for assessing and predicting
COVID-19 severity (Table 2), as their heterogeneities were very

low (I2=0.00%).

In terms of data partitioning, the specificity of the internal test
and external test data sets for assessing disease severity was
0.98 and 0.85, respectively, with significant heterogeneity
between groups (P<.001). On the other hand, subgroups based
on sources (P=.001), training method (P=.01), input parameter
(P=.02), or image (P<.001) may have intergroup heterogeneity
in the specificity of prediction. Among them, the specificity of
0.90 for a single source was higher than that of 0.80 for a
multicenter. Furthermore, the customized training method
achieves a specificity of 0.87, while the pretraining method
achieves only 0.80. Additionally, the specificity of the parameter
that included both clinical and image data was 0.83, while the
parameter that included only image data was 0.73. Finally, the
specificity of the DL model using x-ray was 0.78, which was
significantly lower than the specificity of the model using CT,
which was 0.84. Detailed results of the subgroup analyses are
shown in Table 2, and corresponding plots are presented in
Figure S3 in Multimedia Appendix 2.
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Table 2. Results of sensitivity analysis.

P value (HBG of
specificity)

I2 (%)Specificity (95% CI)P value (HBGa of
sensitivity)

I2 (%)Sensitivity (95% CI)Studies, nCategories

Assessment

<.001.30Data partition

50.960.98 (0.96-0.99)0.000.94 (0.91-0.96)8Internal test

18.380.85 (0.80-0.89)0.000.91 (0.86-0.95)4External test

.93.31Data sources

87.540.94 (0.85-0.99)0.000.94 (0.91-0.98)4Single

84.930.94 (0.89-0.98)0.000.92 (0.89-0.95)8Multiple

.33.11Training method

79.680.92 (0.81-0.98)0.000.90 (0.85-0.94)5Pretrained

86.900.95 (0.91-0.98)0.000.94 (0.91-0.96)7Customized

.60.46DLb model networks

88.560.93 (0.81-0.99)4.580.94 (0.90-0.99)4ResNet

79.380.95 (0.91-0.98)0.000.92 (0.90-0.95)8Other networks

.12.34Input parameter

85.320.95 (0.91-0.98)0.000.93 (0.91-0.96)9Only image pa-
rameter

N/A0.89 (0.78-0.96)N/Ac0.90 (0.84-0.96)3Clinical and im-
age parameter

.10.23Image

94.320.93 (0.89-0.97)0.000.92 (0.89-0.95)10CTd

N/A0.98 (0.94-1.00)N/A0.95 (0.91-0.99)2X-ray

Prediction

.52.68Data partition

82.850.83 (0.78-0.87)0.000.77 (0.74-0.79)10Internal test

82.600.80 (0.73-0.87)0.000.75 (0.70-0.81)5External test

.001.21Data sources

N/A0.90 (0.86-0.94)N/A0.82 (0.73-0.90)2Single

79.750.80 (0.76-0.84)0.000.76 (0.74-0.78)11Multiple

.01.19Training method

83.960.80 (0.75-0.84)0.000.76 (0.73-0.78)10Pretrained

N/A0.87 (0.84-0.90)N/A0.80 (0.74-0.85)3Customized

.62.53DL model networks

79.850.80 (0.75-0.86)0.000.76 (0.73-0.79)5ResNet

85.840.82 (0.77-0.88)0.000.77 (0.74-0.81)8Other networks

.02.20Input parameter

N/A0.73 (0.67-0.80)N/A0.82 (0.73-0.92)2Only image pa-
rameter

84.960.83 (0.79-0.87)0.000.76 (0.73-0.78)11Clinical and im-
age parameter

<.001.24Image

70.060.84 (0.81-0.88)0.000.78 (0.75-0.81)10CT

N/A0.76 (0.73-0.78)N/A0.75 (0.71-0.79)3X-ray
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aHBG: heterogeneity between group.
bDL: deep learning.
cN/A: not available.
dCT: computed tomography.

Discussion

Model Performance
Among the DL models included in the systematic review, CT
was used more frequently than x-ray: CT was used in 10 of the
DL models assessing COVID-19 severity and in 10 of the
models predicting severity. However, there is no significant
difference in their impact on model performance.

After evaluating sensitivity, specificity, and LR together [53],
we found that DL achieved higher sensitivity and specificity in
assessing the severity of COVID-19 compared to using CT [54]
or neutrophil-lymphocyte ratio (NLR) alone [55]. However, DL
models for longitudinal prediction of disease severity failed to
exclude and confirm patients. Although the DL model was
significantly superior to thrombocytopenia in predicting disease
progression [56], the results with NLR resembled the ones
obtained using DL [57,58].

Predictor Variables
The parameters used in the DL model should be derived from
predictor variables that are known predictors in the scientific
literature, thus limiting overfitting [59]. However, only 4 of the
23 articles used this approach to select predictor variables
[41,44,45,47]. Of the remaining articles, 10 adopted univariate
variables [29-32,37,39,40,42,43,46], and 9 used variables with
significant levels in clinical analyses [28,33-36,38,48-50].
However, univariate variables or variables with significant levels
in clinical analyses may not be suitable as candidate predictors
[60]. We specified a list of candidate predictors (Table S3 in
Multimedia Appendix 2), which were summarized in a
systematic literature review of prognostic factors affecting
COVID-19 prognosis. However, the number of predictors needs
to be determined by the sample size [61]. Too many predictor
variables may, on the one hand, prevent the model from
providing valid estimates in new patients [62] and may include
variables that are not relevant to the outcome and lead to test
bias [62,63]. This unfavorable situation occurred in 5 of our
included studies [33,38,44,49,50].

Data Sets
Model exploitation requires both a training set (ie, a
developmental data set) and a validation set (ie, an internal
validation data set) [64]. Once the predictive model is complete,
an external test set (ie, an external validation data set) is strongly
recommended to evaluate the performance of the model [65],
but only 7 articles have done so [28,29,33,34,37,38,45]. The
internal test set generated by temporal partitioning (ie, the
temporal validation data set) is considered effective as an
intermediate between the validation set and the external test set
[18]. This approach was used in 3 of the 18 studies that used
internal test sets [45-47]. However, the remaining 15 generated
internal test sets with random splitt ing

[30-32,34-36,39-44,48-50], which was considered inefficient
[64].

Heterogeneity
The DL prediction model has relatively low heterogeneity with
respect to sensitivity but considerable heterogeneity with respect
to specificity. As a result of the sensitivity analysis (Table 2),
for specificity, the heterogeneity in assessment comes mainly
from the data partitioning, whereas the heterogeneity in
prediction comes from 5 aspects: data partitioning, data sources,
training method, DL model networks, and image. However,
there is no significant difference in these 5 aspects, which may
be related to the low performance of the vertical prediction
model.

The specificity of the external test data set was significantly
lower than that of the internal test data set, suggesting that the
study warrants external validation [18]. Although there may be
intergroup heterogeneity in the specificity of COVID-19 severity
prediction based on subgroups of sources, training methods,
input parameters, or images, they are all unevenly distributed
within their subgroups. Therefore, the impact of these 4 aspects
on the specificity of DL prediction models needs to be further
investigated. In DL model networks, Komolafe et al [53] found
a difference between ResNet and other network models in
detecting COVID-19, whereas our study found no significant
difference in sensitivity or specificity between ResNet and other
network architectures in diagnosing and predicting the severity
of COVID-19 (Table 2). This result suggests that, unlike in
disease detection, changing the network architecture alone may
have little significant impact on DL performance and that factors
such as subgroups of sources, training methods, input
parameters, and images need to be taken into account.

Limitations
The study has several limitations. First, all included studies
were retrospective, which may introduce bias due to missing
information and unavailable confounders [66]. Second, all of
these studies lacked large-scale clinical data. Third, although
the effect of 6 aspects on the DL model to assess and predict
severity was investigated, no further analysis of specific clinical
factors, such as NLR and disease process spectrum, was
performed [18]. Finally, only 7 articles used external tests
[28,29,33,34,37,38,45], and no studies explicitly cited the
TRIPOD (Transparent Reporting of a Multivariable Prediction
Model of Individual Prognosis or Diagnosis) [64].

Conclusions
The meta-analysis showed a remarkably high performance of
the DL model for assessing COVID-19 severity and good
predictive values for disease severity. However, high-quality
studies are lacking. We hope that more researchers will take
advantage of the upcoming TRIPOD-AI (Transparent Reporting
of a Multivariable Prediction Model of Individual Prognosis or
Diagnosis–Artificial Intelligence) to standardize their studies
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on DL or machine learning prediction models [67]. Significantly,
the predictive performance of DL for COVID-19 severity leaves
much to be desired. This suggests that future studies will require
a more rigorous and scientific approach. We suggest using
multiple clinical factors that have been confirmed by clinical
studies to be associated with COVID-19 severity as predictor
variables, dividing the development data set and internal

validation data sets according to the time of admission of
patients with COVID-19, and using data from other hospitals
to assess the performance of the model. However, there is no
denying that DL can help clinicians quickly identify patients
that are severely ill and detect potentially serious cases early,
leading to earlier treatment and more efficient health care
systems.
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