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Abstract

Background: The growing public interest and awareness regarding the significance of sleep is driving the demand for sleep
monitoring at home. In addition to various commercially available wearable and nearable devices, sound-based sleep staging via
deep learning is emerging as a decent alternative for their convenience and potential accuracy. However, sound-based sleep
staging has only been studied using in-laboratory sound data. In real-world sleep environments (homes), there is abundant
background noise, in contrast to quiet, controlled environments such as laboratories. The use of sound-based sleep staging at
homes has not been investigated while it is essential for practical use on a daily basis. Challenges are the lack of and the expected
huge expense of acquiring a sufficient size of home data annotated with sleep stages to train a large-scale neural network.

Objective: This study aims to develop and validate a deep learning method to perform sound-based sleep staging using audio
recordings achieved from various uncontrolled home environments.

Methods: To overcome the limitation of lacking home data with known sleep stages, we adopted advanced training techniques
and combined home data with hospital data. The training of the model consisted of 3 components: (1) the original supervised
learning using 812 pairs of hospital polysomnography (PSG) and audio recordings, and the 2 newly adopted components; (2)
transfer learning from hospital to home sounds by adding 829 smartphone audio recordings at home; and (3) consistency training
using augmented hospital sound data. Augmented data were created by adding 8255 home noise data to hospital audio recordings.
Besides, an independent test set was built by collecting 45 pairs of overnight PSG and smartphone audio recording at homes to
examine the performance of the trained model.

Results: The accuracy of the model was 76.2% (63.4% for wake, 64.9% for rapid-eye movement [REM], and 83.6% for
non-REM) for our test set. The macro F1-score and mean per-class sensitivity were 0.714 and 0.706, respectively. The performance
was robust across demographic groups such as age, gender, BMI, or sleep apnea severity (accuracy 73.4%-79.4%). In the ablation
study, we evaluated the contribution of each component. While the supervised learning alone achieved accuracy of 69.2% on
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home sound data, adding consistency training to the supervised learning helped increase the accuracy to a larger degree (+4.3%)
than adding transfer learning (+0.1%). The best performance was shown when both transfer learning and consistency training
were adopted (+7.0%).

Conclusions: This study shows that sound-based sleep staging is feasible for home use. By adopting 2 advanced techniques
(transfer learning and consistency training) the deep learning model robustly predicts sleep stages using sounds recorded at various
uncontrolled home environments, without using any special equipment but smartphones only.

(J Med Internet Res 2023;25:e46216) doi: 10.2196/46216
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Introduction

Growing knowledge that sleep plays a vital role in maintaining
well-being and good health, both physical and mental, increases
public interest and awareness regarding the importance of sleep
to health. Therefore, the demand for knowing and taking care
of one’s own sleep increases, so does the demand for sleep
monitoring [1,2]. The gold-standard test for monitoring and
quantifying sleep is polysomnography (PSG), which typically
requires 1 night of sleep at a sleep center with various biosignals
recorded, such as the electroencephalogram (EEG; brain wave
activity), electrooculogram (EOG; eye movement activity),
electromyogram (EMG; muscle activity), electrocardiogram
(ECG; heartbeat activity), and respiratory signals. After the
overnight recording, the sleep data are reviewed by human
experts to score sleep stages, arousals (ie, brief awakening), and
respiratory and movement events. While PSG remains the most
accurate diagnostic tool for sleep, it is too expensive and
inconvenient to be used for a general population on a daily basis.
In addition, a standard PSG taken in a laboratory environment
may not reflect one’s habitual sleep at home [3-6]. An easy and
convenient method is thus required to enable home-based daily
sleep monitoring for the general population [1,2].

Various commercial sleep trackers are available (ie, wearable
or nearable devices), mostly using accelerometer for activity
and movements, ECG or photoplethysmogram for heart rate
variability, piezoelectricity or radar for respiratory movements,
or EEG for brain activity [7-13]. However, because of their
inconvenience and high cost, people do not vigorously use these
devices. Recently, sound-based sleep staging has emerged as a
new alternative, relying on recognizing sound patterns of
respiratory and body movements [14-20]. The advantage of
using sounds is that sleep can be measured remotely without
contact [17-20]. Among the various studies performed in this
regard, a deep learning model (SoundSleepNet) predicted sleep
stages using smartphone audio recordings with good accuracy
[20], showing the potential of sound-based sleep staging using
smartphones.

However, sound-based sleep staging models have been
developed and tested only in laboratory environments such as
in a hospital [14-20]. Unfortunately, feasible sleep sounds are
mostly recorded during PSG in hospitals, while PSG requires
a controlled environment (ie, a quiet and soundproof room where
the examinee stays alone). It also remains questionable as to
whether a sound-based sleep staging model can work well in
home environments, as diverse and dynamic background noise

is present in home environments (eg, home appliances, pets,
roommates, and outdoor noise such as traffic noise). Therefore,
it is more difficult to train a model to predict sleep stages using
home sounds, which are full of uncontrolled noise, compared
with using hospital sounds. Consequently, a specific training is
needed to derive a model to work at home.

An obstacle in this regard is that deep learning models require
thousands of ground truth (ie, PSG for sleep measure) to be
trained; however, large amounts of home PSG data are not yet
available. Thus, introduction of advanced techniques may help
bypass the step of collecting large-sized home PSG data. One
technique that may be useful is transfer learning. It allows a
model trained by hospital sounds to learn to predict sleep stages
for home sounds [21-24]. Another useful technique is
consistency training, using which a model can be trained with
hospital sounds augmented by adding home noise. It makes a
model learn to predict sleep stages regardless of the presence
of home noise [25,26].

Meanwhile, validation of sleep trackers at home is important
[1,2]. Most sleep trackers have only been validated in laboratory
environments [7-10,14-20] because it requires a lot of effort to
prospectively collect home PSG data [1,2]. However, the
performance should be addressed specifically in “home
environments” to really serve as daily home sleep trackers [1,2].

In this study, we propose a deep learning model adopting
advanced training techniques for sound-based sleep staging at
home, an uncontrolled environment full of noise. The
performance of the proposed model was examined by level 2
PSGs conducted at home.

Methods

Sleep Sound Data Sets

Overview of the Data Sets
This study used 3 different data sets: a hospital PSG data set
(level 1 PSG and audio recording for 812 nights) and a home
smartphone data set (smartphone audio recordings without PSG
for 829 nights) for training, and a home PSG data set (level 2
PSG and matched smartphone audio recordings for 45 nights)
as the test data set.

Hospital PSG Data Set
This is a clinical data set from the sleep center of Seoul National
University Bundang Hospital (SNUBH) collected between 2019
and 2020, which includes PSG and matched audio data [20].
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As the data set was retrospectively collected from PSGs
previously conducted, additional informed consents were not
available. All data were anonymized.

Home Smartphone Data Set
Adult volunteers were recruited and screened through an internet
survey and audio recordings were collected between June and
November 2022. Informed consent was obtained from each
participant by an electronic form. Audio recording at night was
self-conducted by each participant using his or her own
smartphone at home following predefined instructions. Various
models of smartphone were used, ranging from Android (OS
version later than 8.0; Google LLC/Alphabet Inc) to iOS devices
(OS version later than 15; Apple Inc). The participants were
asked to place the phone 0.5-1 m from their head. Using phone
models owned by the participants for data collection simulates
the real scenario, while recordings from various phones help

the model to adapt to different microphone settings (see
Multimedia Appendix 1 for additional information regarding
how the participants were selected for the study).

Home PSG Data Set
Adult volunteers were recruited at the sleep center of the
SNUBH and home PSG tests were performed together with
audio recordings between June and November 2022. Written
informed consents were obtained from each participant. A
portable PSG setup was made by sleep technicians at the center
and an iPhone 11 was provided for audio recording. Participants
were asked to sleep at home during PSG, with the provided
smartphone placed on a side table or mattress, with a 0.5-1.0-m
distance from their head.

The demographics of the participants in each data set are
presented in Table 1. Additional details of the 3 data sets are
described in Multimedia Appendix 1.

Table 1. Demographics of the 3 data sets.

Home PSG (testing) data
set (n=45)

Home smartphone (training) data set
(n=829)

Hospital PSGa (training) data set
(n=812)

Demographics

44.7 (15.8)36.2 (9.7)52.7 (13.6)Ageb (year), mean (SD)

19 (42.2)330 (39.8)562 (69.2)Male, n (%)

24.0 (3.9)23.2 (4.3)25.9 (4.1)BMIb (kg/m2), mean (SD)

11.8 (16.4)—d23.3 (23.0)AHIb,c, mean (SD)

22 (48.9)—193 (23.8)AHI<5, n (%)

11 (24.4)—182 (22.4)5≤AHI<15, n (%)

7 (15.6)—207 (25.5)15≤AHI<30, n (%)

5 (11.1)—230 (28.3)30≤AHI, n (%)

——72 (8.9)Rapid-eye movement sleep behavior disorder,
n (%)

——26 (3.2)Restless legs syndrome, n (%)

——220 (27.1)Insomnia, n (%)

aPSG: polysomnography.
bContinuous variable.
cAHI: apnea-hypopnea index.
dNot available.

Polysomnography
For PSG, standard sensors and channels were used (eg,
6-channel EEG, 2-channel EOG, chin EMG, ECG, 2-leg EMGs,
respiratory effort, airflow, and oxygen saturation). Level 1 PSG
was performed at the hospital under monitoring by sleep
technologists. For level 2 PSG, after experienced sleep
technologists from SNUBH hooked up participants with
recording electrodes and equipment for each test, the participants
went home to conduct their test at home. The main difference
between level 1 and level 2 PSG is the presence of technologists
and real-time monitoring during the recording [27]. After the
PSG recording, sleep technologists reviewed each study and
manually annotated the study for sleep stages, followed by
confirmation by a sleep specialist, in accordance with the

American Academy of Sleep Medicine scoring manual [28].
Each 30-second epoch of PSG was scored as 1 of 5 sleep stages,
namely, wake, rapid-eye movement (REM), non-REM (NREM)
stage 1 (N1), 2 (N2), and 3 (N3).

Data Preprocessing
All audio data were cut into 30-second epochs, preprocessed
by adaptive noise reduction and Mel spectrogram conversion,
and matched with the corresponding PSG labels to train and
verify the model [20]. In addition, pitch shifting was applied as
a simple data augmentation technique. Ground truth labels were
only available for the 2 data sets for which PSGs were conducted
concurrently, namely, the hospital PSG data set for training and
the home PSG data set for test.
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Deep Neural Network Architecture

Training Overview
To fairly demonstrate the effects of the training techniques
proposed in this paper, we adopted the SoundSleepNet model
and its trained network parameters that performed well in
hospital environments [20]. The network processed 40 input
Mel spectrograms of sound data, each representing one
30-second sleep epoch, and output sleep-stage predictions of
the 20 middle epochs (40 to 20). By adopting a well-trained
model, performance difference is guaranteed to arise from only
the additional training techniques, not from the network
architecture.

Training Components
The proposed model, dubbed HomeSleepNet, was trained by 3
training components (Figure 1A).

The first component was supervised learning [29,30], where
the large-sized hospital PSG data set was used to train the
HomeSleepNet model to make correct predictions of sleep stages
from the input Mel spectrograms in hospital environments.

The second component was transfer learning [21-24], where
Mel spectrograms from both hospital and home were used.
Using a domain discriminator, the feature extractor was trained
to transfer the sleep staging knowledge from the hospital domain
to the home domain.

The third component was consistency training [25,26], for which
2 augmented hospital sound inputs were needed. Consistency
training helps the HomeSleepNet model to perform sleep staging
reliably in the presence of home noise.

The 3 training components were executed concurrently to
preserve the effects of each component. The details of each
training component are described in the following sections.

Figure 1. Training and inference of HomeSleepNet. (A) Training phase with 3 training components. On the left side, the data input for each training
component was marked; on the right side, the impact of each component to the training is visually explained. Three training components are (1) supervised
learning that trained the feature extractor and classifier to correctly predict sleep stages with Mel spectrogram inputs in hospital environments; (2)
transfer learning that transferred sleep staging knowledge from hospital to home environments using a domain discriminator; (3) consistency training
that helped the model make robust predictions despite the home noise presence. (B) HomeSleepNet in the inference phase after training is completed.
All training blocks were removed, and only the feature extractor and classifier remained for the classification task. Lc: cross-entropy loss; La: auxiliary
loss; Ljs: Jensen-Shannon consistency loss; Ld: binary cross-entropy loss; NREM: nonrapid-eye movement; PSG: polysomnography; REM: rapid-eye
movement.

Supervised Learning for Sleep Staging in Hospital
Environments
The purpose of the supervised learning for HomeSleepNet is
to train the network with preprocessed Mel spectrograms and
matched sleep-stage ground truths from the hospital PSG data
set so that the network can predict sleep stages using the input
Mel spectrogram data in hospital environments.

The supervised learning component was used to train 2
subnetworks: a feature extractor and a classifier (Figure 1A).

The feature extractor uses Mel spectrograms of hospital sound
data as input and extracts temporal and frequency features
related to respiratory and sleep activity patterns. The classifier
receives the features and predicts sleep stages of each Mel
spectrogram. As a result, we train both the feature extractor and
the classifier by minimizing the cross-entropy loss that measures
the difference between the sleep-stage ground truth and the
network predictions.
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Transfer Learning via Unsupervised Domain Adaptation
Transfer learning for HomeSleepNet was executed by
unsupervised domain adaptation (UDA) [21]. The goal of UDA
is to make a model originally trained with a source domain
(hospital environments) perform similarly for a target domain
(home environments). One popular direction of UDA is to
extract common features (ie, domain-invariant features) between
data from the source domain and the target domain so that the
model can perform well regardless of the domain of the input
data [22-24].

Following Ganin et al [22], we added a domain discriminator
comprising simple convolutional layers followed by several
fully connected layers (Figure 2). The feature extractor generates
features from input Mel spectrograms, and the domain
discriminator predicts the original domain of the features
(hospital domain or home domain). Hospital PSG sound data
and home smartphone sound data were used as inputs from the
2 domains. The training itself, however, does not require

sleep-stage labels but only the domain ground truth of each
input data. A binary cross-entropy loss, which indicates the
difference between the domain prediction and the domain
ground truth, was used to train both subnetworks. We used an
adversarial training algorithm [22,24], in which the domain
discriminator is trained to be more accurate (i.e., minimize the
loss), while the feature extractor is trained to make the domain
discriminator less accurate (i.e., maximize the loss) by extracting
features that confuse the domain discriminator. In the end, the
domain discriminator can no longer recognize the input domains
from the extracted features, which means the extracted features
are “domain invariant.” Therefore, the well-trained classifier
(Figure 1) can correctly predict the sleep stages regardless of
the original domain.

In addition to the adversarial training, an auxiliary loss, which
consists of conditional entropy and virtual adversarial training
[24], was applied (Figure 1A) to reserve the classifying
performance after domain adaptation.

Figure 2. Training procedure of transfer learning (unsupervised domain adaptation). Mel spectrograms from hospital and home domains are used as
training data. The feature extractor will extract only domain-invariant features when the domain discriminator is not able to classify the input domains.
Ld is the binary cross-entropy loss function representing the difference between the domain prediction and the domain ground truth. CNN: convolutional
neural network; FC: fully-connected layer; PSG: polysomnography.

Consistency Training Using Augmented Data
In this study, we applied consistency training [25] to train the
model to output consistent predictions on hospital data,
regardless of the presence of home noise. Data augmentation
was used for this purpose by artificially adding home noise to
the original hospital data to simulate sounds recorded at home.
The feature extractor and classifier were trained through
consistency training to predict the same sleep stage for the
augmented data as they do for the original data.

In detail, to create the augmented data, home noise audio was
converted into a Mel spectrogram and added into the Mel
spectrogram of hospital data with randomly generated phases
and signal-to-noise ratio value ranging from –10 dB to 10 dB
(Figure 3A). Noise audios were downloaded from Freesound
(Music Technology Group) [31], an open database of sounds
that can be used for scientific research. We used audio tags

about home environments (such as home appliances, room noise,
air conditioner, fan) to filter out the unrelated audio files and
form a home noise data set. In total, 8255 sound clips,
preprocessed identically to the sleep sound audio, were used
for this research. More information on how the noise clips were
filtered and downloaded is presented in Multimedia Appendix
1.

For consistency training (Figure 3B), we created 2 augmented
noisy samples from the original hospital data xS by applying the
noise adding process with 2 different types of home noise data.
The hospital data xS and the 2 augmented samples were then
fed into the feature extractor and classifier to obtain 3
corresponding predictions. We then adapted Jensen-Shannon
divergence loss [26] as the consistency loss that measures the
difference between the 3 predictions. By minimizing this
consistency loss, the resulting model is able to generate robust
and consistent predictions, even in the presence of home noise.
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Figure 3. Framework of consistency training. (A) The process of creating an augmented Mel spectrogram from hospital data and home noise data. The
augmented data retain breathing patterns in the clean hospital data and noise features in the home noise data. (B) The consistency training procedure.
Consistency loss Ljs is minimized to make identical predictions on hospital data and augmented data. PSG: polysomnography; SNR: signal-to-noise
ratio.

Training Settings
Pretrained network parameters from SoundSleepNet [20] were
used to initialize the parameters of HomeSleepNet. The training
used the Adam optimizer with a fixed learning rate of 0.0002
within 20 training epochs. The aggregated training algorithm
using the 3 components is presented in Multimedia Appendix
1. In the inference phase after training, only feature extractor
and classifier subnetworks remained for the sleep staging task
(Figure 1B).

Evaluation Methods
We evaluated HomeSleepNet in 4 different ways using the home
PSG data set.

First, the main outcome was the sleep staging performance for
the 3-stage classification (wake, REM, and NREM) with
evaluation metrics of accuracy, Cohen κ, macro F1-score, and
mean per-class sensitivity. Accuracy shows the overall quality
of the model prediction; Cohen κ evaluates the interrater
reliability between HomeSleepNet predictions and PSG sleep
stages; macro F1-score evaluates the model while considering
the data imbalance; mean per-class sensitivity evaluates the
model predictions for each sleep stage. For all 4 metrics, the
higher the score, the better the performance. Performance for
the 4-stage (wake, light sleep, deep sleep, and REM) and 2-stage
(wake and sleep) classifications was also reported. In 4 stages,
N1 and N2 were classified as light sleep and N3 was defined
as deep sleep. The principal component analysis (PCA) plots
[32] were presented to show clusters in the feature space of the
model. Using the output of the last hidden layer in
HomeSleepNet, PCA was used to extract the most representative
features of each input data in a 2D format. These extracted 2D

features are then illustrated on a 2D coordinate plane. If there
appear sleep-stage clusters in the plane, it means that the
predictions from HomeSleepNet are reliable.

Second, multiple sleep metrics were compared between
predictions of HomeSleepNet and manual annotations of PSGs.
The presented sleep metrics were total sleep time, sleep onset
latency, sleep efficiency, wake after sleep onset, REM latency,
and portions of each sleep stage, which were all calculated per
night. Total sleep time is the total time asleep, calculated by
adding all 30-second epochs annotated or predicted as sleep (ie,
N1, N2, N3, and REM). Sleep onset latency is the length of
time between lights off and the first epoch scored as sleep. Sleep
efficiency is calculated as total sleep time divided by the total
time spent in the bed (in our case, the recording time). Wake
after sleep onset is the total wake time between the first sleep
and the last sleep epoch of the night. REM latency is the length
of time between the first sleep epoch and the first REM sleep
epoch. Portions of each sleep stage were calculated by the sum
of each stage divided by the recording time per night. The
agreement between the 2 measurements was presented by the
Bland-Altman plots.

Third, to investigate performance according to demographic
characteristics, we divided the test data set into groups regarding
age, gender, BMI, and apnea-hypopnea index (AHI).
Performance of HomeSleepNet was evaluated on each group,
respectively.

Lastly, an ablation study was conducted to show the contribution
of each training component in HomeSleepNet. Specifically,
from the original SoundSleepNet model, we trained 2 additional
variant models: one with added transfer learning only and
another with added consistency training only. As a result, our
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final model HomeSleepNet was compared against its 3 variants:
(1) SoundSleepNet, (2) SoundSleepNet with transfer learning,
and (3) SoundSleepNet with consistency training.
SoundSleepNet was only derived from supervised learning (the
first training component) using the hospital PSG data set,
without any additional techniques for training or input of home
sound data [20].

Ethical Considerations
The use of the 3 data sets (hospital PSG data set, home
smartphone data set, and home PSG data set) was approved by
the Institutional Review Board of Seoul National University
Bundang Hospital (SNUBH; approval number B-2205-755-308).
All participants signed the written consents before the data
recording was performed. All the recorded data were
anonymized for privacy and confidentiality protection of the
participants.

Results

Sleep Staging Performance
HomeSleepNet showed a good performance for the 3-stage
classification with an overall accuracy of 76.2%. Specifically,
it correctly predicted 63.4% of wake, 83.6% of NREM sleep,
and 64.9% of REM sleep (Figure 4). Other metrics also showed
a reasonable performance for both macro F1-score (0.714) and
mean per-class sensitivity (0.706). Only Cohen κ was not as
high, with a value of 0.557 (Table 2). For the 2-stage
classification, all 4 metrics showed an even better performance.
Accuracy of sleep-wake prediction was high, up to 88.5%. Both
macro F1-score and mean per-class sensitivity were around 0.8

and Cohen κ increased to 0.610. For the 4-stage classification,
the performance was not as good, with an accuracy of 59.4%.

Figure 5 shows the whole-night sleep-stage predictions from
the baseline model SoundSleepNet and our proposed
HomeSleepNet for 2 participants. The first participant was a

44-year-old male with BMI of 24.1 kg/m2 and AHI of 47.5, and
the second participant was a 65-year-old female with BMI of

23.6 kg/m2 and AHI of 1.8. According to the analysis on
different demographic groups (discussed later), sound-based
sleep staging for the first participant is expected to be easier
than that for the second participant. Indeed, SoundSleepNet
performed reasonably well for the first participant, although it
misclassified 2 REM blocks in the middle and in the end of the
sleep. However, for the second participant, SoundSleepNet did
not perform well, predicting most epochs as wake which were
wrong. By contrast, HomeSleepNet was able to successfully
predict most sleep stages and captured the sleep transitions for
both participants.

In Figure 6, we present PCA plots [32] from the last hidden
layer outputs of our proposed HomeSleepNet and the baseline
SoundSleepNet models. We randomly selected 800 sleep epochs
from each class for visualization (2400 sleep epochs in total),
due to limited computing resources. The feature space is better
organized with more clearly divided clusters in HomeSleepNet
compared with SoundSleepNet. In the feature space of
SoundSleepNet, data points from each class were widely
scattered, especially those from the REM stage. This finding
also supported the superior sleep staging ability of
HomeSleepNet over SoundSleepNet using sounds recorded
from home environments.

Figure 4. Confusion matrices showing performance of HomeSleepNet on the home PSG data set: (A) 4-stage classification, (B) 3-stage classification,
and (C) 2-stage classification. Light: N1+N2; Deep: N3; NREM: N1+N2+N3. NREM: nonrapid-eye movement; REM: rapid-eye movement; PSG:
polysomnography.
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Table 2. Sleep staging performance of HomeSleepNet on the Home PSGa data set.

Accuracy, %Mean per-class sensitivityMacro F1-scoreCohen κClassification type

59.40.6100.5820.4164 Stageb

76.20.7060.7140.5573 Stagec

88.50.7890.8050.6102 Staged

aPSG: polysomnography.
bWake, light (N1+N2), deep (N3), and rapid-eye movement sleep.
cWake, rapid-eye movement, and nonrapid-eye movement (N1+N2+N3) sleep.
dWake and sleep (N1+N2+N3+rapid-eye movement).

Figure 5. Comparison of whole-night sleep stage predictions among manual annotations of PSG (top), predictions of HomeSleepNet (middle), and

predictions of SoundSleepNet (bottom) for 2 participants: (A) Male, 44 years old, BMI 24.1 kg/m2, AHI 47.5; (B) Female, 65 years old, BMI 23.6

kg/m2, AHI 1.8. The highlighted red regions indicate different predictions compared with the sleep stages from PSG. NREM: nonrapid-eye movement;
PSG: polysomnography; REM: rapid-eye movement.
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Figure 6. Feature space visualization using principal component analysis with 2 different models: (A) the baseline SoundSleepNet and (B) the proposed
HomeSleepNet. NREM: nonrapid-eye movement; REM: rapid-eye movement.

Sleep Metrics Comparison
The sleep metrics calculated using the 3-stage predictions from
HomeSleepNet were compared with those derived from manual
annotations of PSGs (Table 3). For most sleep metrics, the mean
predicted values were similar to the mean values from PSG,
and the differences were relatively small. Bland-Altman plots
also showed consistent agreement between the sleep metrics
derived from HomeSleepNet and PSG (Figure 7). The line of
equality in all graphs is located within the range of a 95% CI

of the mean difference or close to the border, which suggests
that there was no significant systematic difference between the
2 methods. Although HomeSleepNet presented lower averaged
sleep onset latency compared with PSG, the gap was attributed
to incorrect predictions for a few outliers with unusually long
sleep onset latencies (eg, 5 hours). When excluding the outliers,
the mean predicted sleep onset latency was similar to that of
PSG. For more information, please refer to Multimedia
Appendix 1.

Table 3. Comparison of sleep metrics between HomeSleepNet and a portable PSGa device.

Difference, mean (SD); 95 percentile
confidence interval

HomeSleepNet, mean (SD); 95 percentile
confidence interval

Portable PSG, mean (SD); 95 per-
centile confidence interval

Sleep metrics

12.0 (44.1); –0.9 to 24.8387.0 (74.9); 365.1 to 408.9375.0 (75.0); 353.1 to 396.9Total sleep time (minutes)

–13.8 (36.2); –24.4 to –3.212.6 (27.9); 4.4 to 20.726.4 (53.9); 10.6 to 42.1Sleep onset latency (min-
utes)

2.4 (9.3); –0.3 to 5.283.5 (15.6); 79.0 to 88.181.1 (16.3); 76.3 to 85.8Sleep efficiency (%)

1.8 (53.7); –13.9 to 17.565.1 (67.3); 45.5 to 84.863.3 (56.9); 46.7 to 79.9Wake after sleep onset
(minutes)

–7.0 (81.1); –30.7 to 16.773.1 (61.6); 55.1 to 91.280.1 (52.7); 64.7 to 95.5REMb latency (minutes)

0.7 (10.3); –2.4 to 3.719.8 (12.6); 16.1 to 23.519.1 (7.3); 17.0 to 21.3REM (%)

1.8 (13.2); –2.1 to 5.763.7 (14.9); 59.4 to 68.161.9 (11.6); 58.6 to 65.3NREMc (%)

–2.4 (9.3); –5.2 to 0.316.5 (15.6); 11.9 to 21.018.9 (16.3); 14.2 to 23.7Wake (%)

aPSG: polysomnography.
bREM: rapid-eye movement.
bNREM: nonrapid-eye movement.
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Figure 7. Bland-Altman plots of common sleep metrics: Total sleep time (TST), sleep onset latency (SOL), sleep efficiency (SE), wake after sleep
onset (WASO), REM latency (RL), and each sleep stage portion in the 3-class setting. The x-axis represents the mean value of the 2 methods and the
y-axis represents the difference values. The solid line indicates mean difference and the dash-single dotted line is the line of equality (y=0). The dashed
lines indicate the 95% limit of agreement, and the shaded regions are the 95% CI of the mean difference. NREM: nonrapid-eye movement; PSG:
polysomnography; REM: rapid-eye movement.

Performance on Different Demographic Groups
Among the 3 age groups, performance tended to slightly increase
as age reduced (Multimedia Appendix 1). The performance of
HomeSleepNet was better for men than for women. The
performance was similar between the high and low BMI groups.
Regarding AHI, the performance was better in people with
moderate-to-severe sleep apnea (AHI≥15) than in people with
no or mild sleep apnea (AHI<15). Overall, HomeSleepNet
showed a robust performance in all groups, with all accuracies
higher than 73%. More detailed results can be found in Table
S2 in Multimedia Appendix 1.

Ablation Study
The comparison of the sleep staging performance between
HomeSleepNet and its 3 variants is presented in Table 4. As
expected, the original SoundSleepNet model showed the worst
performance in all evaluation metrics. Although adding only
transfer learning to SoundSleepNet did not significantly improve
the accuracy, transfer learning resulted in balancing the
predictions between the classes, as the mean per-class sensitivity
increased from 0.65 to almost 0.68. By contrast, adding
consistency training to SoundSleepNet enhanced accuracy by
4.3%; besides, there were slight improvements in other metrics
as well: 0.01 in mean per-class sensitivity, 0.038 in macro
F1-score, and 0.05 in Cohen κ. HomeSleepNet, using both
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transfer learning and consistency training, achieved the best
performance with an increased accuracy of 7% from
SoundSleepNet as well as considerable improvements in other

metrics: around 0.1 in Cohen κ, 0.08 in macro F1-score, and
0.056 in mean per-class sensitivity.

Table 4. Ablation study comparing HomeSleepNet with its multiple variants.a

Accuracy, %Mean per-class sensitivityMacro F1-scoreCohen κModel variants

69.20.6500.6320.454SoundSleepNet

69.30.6790.6480.477SoundSleepNet + transfer learning only

73.50.6600.6700.501SoundSleepNet + consistency training only

76.20.7060.7140.557HomeSleepNet

aAll results were based on the 3-stage classification.

Discussion

Principal Findings
Our finding shows that sound-based sleep staging can perform
well not only in the hospital but also in individuals’ home
environments. Our proposed deep learning model,
HomeSleepNet, was designed specifically for home sleep
monitoring by adopting transfer learning and consistency
training. We collected numerous home sound data and selected
a large variety of home noise data from an open database, and
we utilized them together with a labeled hospital sound data set
for transfer learning and consistency training, respectively. The
significance of HomeSleepNet is that it enables sound-based
sleep staging with a good performance in home environments
where a lot of background noise exists.

Comparison With Prior Work
To the best of our knowledge, this is the first study to tackle the
sound-based sleep staging problem in home environments. Early
sound-based sleep staging studies were limited by the need for
professional recording equipment [17,18] or short recording
distances [19]. SoundSleepNet was a breakthrough in
sound-based sleep staging, using sounds recorded from a
distance of 1 m with only smartphone microphones, a more
practical approach that still yielded good performance [20].
Although SoundSleepNet demonstrated the potential of using
smartphone audio recordings for sleep staging, its real-world
performance for home use remains unknown. The model was
trained and tested on sounds recorded in a hospital environment
and its ability to accurately classify sounds in a real-world,
nonclinical setting is yet to be fully evaluated.

Therefore, this study aimed to develop a specifically designed
model for home use. HomeSleepNet achieved an overall
accuracy of over 75% in differentiating between wake, REM,
and non-REM sleep using home sound data. This level of
accuracy is similar to previous methods that used hospital sound
data, which typically had lower levels of background noise
[17,19,20]. For example, SoundSleepNet showed an accuracy
of 79.8%, macro F1-score of 0.749, and a mean per-class
sensitivity of 0.757 for the 3-stage classification using hospital
data [20]. However, as can be seen in the ablation study, the
same model failed to work well on home-based sounds, showing
an accuracy of 69.2%, macro F1-score of 0.632, and a mean

per-class sensitivity of 0.650 for the 3-stage classification,
showing a significant decrease in performance.

Even for the gold-standard test, PSG, the interrater agreement
of manual scoring between technologists is approximately
82%-83% for 5 sleep stages [33,34]. Regarding other methods,
the mean per-class sensitivity for 4 sleep stages was 0.480-0.632
among the commercial sleep trackers and 0.655 for
SoundSleepNet [20]. The mean per-class sensitivity of 0.610
should thus be considered acceptable, especially when using
home sounds that are full of uncontrolled noise.

Difference Between Hospital and Home Environments
In the real world, home-based sound data from users will be
recorded by their own smartphones. A huge variety of input
from home-based sounds is expected, reflecting the diversity
of smartphone models, home environments, and background
noise. By contrast, the data obtained in hospitals were collected
under controlled conditions (noise isolation and designated
devices for audio recording). The decreased performance of
SoundSleepNet on home data confirms that sounds recorded
from hospitals and home should be considered as different data
domains. This reinforces the theory that a good performance in
a controlled environment may not warrant practical use in the
real world [3-6]. Although the performance of HomeSleepNet
on home data might not be as reliable as its performance on
hospital data, considering the challenges of using home sound
data for sleep staging (ie, more noisy data and lack of ground
truth), the robust performance of HomeSleepNet using
home-based sound data is of great importance.

Transfer Learning and Consistency Training
It is important to note that HomeSleepNet was trained without
home PSGs. Instead, 2 specific techniques, transfer learning
and consistency training, were added to solve the problem of
the lack of ground truth for home data. When comparing transfer
learning and consistency training, with regard to improvement
of performance on home data, adding consistency training to
SoundSleepNet showed a greater improvement than adding
transfer learning. We have two hypothesis for this phenomenon.
First, we allowed participants to use their own smartphones to
record home-based sounds to better reflect real-world data. In
this study, we broadly grouped all home-based sound data using
different devices into 1 domain for these to be distinguishable
from hospital data. However, the home smartphone data set
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itself is actually heterogenous; technically, each type of
smartphone used for audio recording can be considered an
independent domain because of its own configuration. Grouping
heterogeneous data into 1 target domain might impair the
domain adaptation training. Second, adapting the model from
controlled data (collected by 1 designated microphone in the
hospital) to uncontrolled home data (collected through various
types of smartphones) might have reduced the performance of
the transfer learning. However, adding both transfer learning
and consistency training showed a better performance than
adding only consistency training, implying that transfer learning
also had positive effects on performance. Therefore, it can be
concluded that both transfer learning and consistency training
contribute to the enhanced performance of sleep staging in
HomeSleepNet, with each method employing unique
mechanisms to assisting the network training.

In general, transfer learning and consistency training can be
applied to any deep learning model for better performance across
various target domains. When either sleep sound data or
background noise data from a target domain are sufficiently
available, the proposed training methods can be used to benefit
a sound-based sleep staging model. Examples of the target
domains are sounds recorded in other environments or sounds
recorded by other devices (eg, other types of smartphones, smart
speakers, or smart televisions).

Limitations
There are several limitations to our research. First, the
performance of the proposed model was based on data that were
collected with the condition that people slept alone in the room.
The presence of multiple people or accompanying pets may
cause overlapping or interruption of the sleep sounds and reduce
the performance for sleep staging. Second, the majority of home
smartphone data were collected from young healthy adults.
Third, the test set might not be big enough to test performance
under all diverse cases. Fourth, the HomeSleepNet model has
difficulty differentiating light and deep sleep, a limitation shared
by sound-based sleep staging methods [14,19,20].

Conclusions
To the best of our knowledge, this is the first sound-based sleep
staging study to utilize sounds recorded in individual home
environments. The performance was validated by comparing
with PSGs recorded concurrently at home. By adopting the 2
techniques for training — one that transfers learning from a
hospital data to home audios, and another that ensures
consistency in the presence of home noise — the proposed
model is able to accurately predict sleep stages using home
sounds. Our proposed model expands the use of sound-based
sleep staging from in-laboratory sounds to home sounds full of
uncontrolled noise. Daily sleep monitoring using the simple
audio recording function of smartphones is feasible. An easy
and convenient noncontact sleep tracker may encourage
individuals to track their own sleep, which may further modify
their awareness of and behaviors for sleep.
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