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Abstract

Although randomized controlled trials (RCTs) are the gold standard for establishing the efficacy and safety of a medical treatment,
real-world evidence (RWE) generated from real-world data has been vital in postapproval monitoring and is being promoted for
the regulatory process of experimental therapies. An emerging source of real-world data is electronic health records (EHRs),
which contain detailed information on patient care in both structured (eg, diagnosis codes) and unstructured (eg, clinical notes
and images) forms. Despite the granularity of the data available in EHRs, the critical variables required to reliably assess the
relationship between a treatment and clinical outcome are challenging to extract. To address this fundamental challenge and
accelerate the reliable use of EHRs for RWE, we introduce an integrated data curation and modeling pipeline consisting of 4
modules that leverage recent advances in natural language processing, computational phenotyping, and causal modeling techniques
with noisy data. Module 1 consists of techniques for data harmonization. We use natural language processing to recognize clinical
variables from RCT design documents and map the extracted variables to EHR features with description matching and knowledge
networks. Module 2 then develops techniques for cohort construction using advanced phenotyping algorithms to both identify
patients with diseases of interest and define the treatment arms. Module 3 introduces methods for variable curation, including a
list of existing tools to extract baseline variables from different sources (eg, codified, free text, and medical imaging) and end
points of various types (eg, death, binary, temporal, and numerical). Finally, module 4 presents validation and robust modeling
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methods, and we propose a strategy to create gold-standard labels for EHR variables of interest to validate data curation quality
and perform subsequent causal modeling for RWE. In addition to the workflow proposed in our pipeline, we also develop a
reporting guideline for RWE that covers the necessary information to facilitate transparent reporting and reproducibility of results.
Moreover, our pipeline is highly data driven, enhancing study data with a rich variety of publicly available information and
knowledge sources. We also showcase our pipeline and provide guidance on the deployment of relevant tools by revisiting the
emulation of the Clinical Outcomes of Surgical Therapy Study Group Trial on laparoscopy-assisted colectomy versus open
colectomy in patients with early-stage colon cancer. We also draw on existing literature on EHR emulation of RCTs together
with our own studies with the Mass General Brigham EHR.

(J Med Internet Res 2023;25:e45662) doi: 10.2196/45662
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Introduction

Transforming real-world data (RWD) to real-world evidence
(RWE) has the potential to augment the clinical knowledge
gained from trial findings [1]. RWD offers a rich variety of
clinical data from a broad patient population that are often
infeasible to collect in traditional randomized controlled trials
(RCTs). Thus, RWE generated from a large population is
positioned to address questions of treatment effects across
subgroups where RCTs are often underpowered, infeasible, or
unethical [2-5]. In contrast to RCTs, which are designed to
answer a specific question regarding the effectiveness of an
intervention, many types of RWD are not structured for research.
For example, electronic health records (EHRs) are primarily
generated for clinical care and billing purposes, where useful
clinical information may be dispersed among large volumes of
data. Thus, to effectively use RWD, the data curation process
and data quality must be critically evaluated before generating
RWE for regulatory purposes [6].

The Food and Drug Administration defines RWD as data related
to patient health status or delivery of health care, such as
administrative claims, EHRs, and clinical or product registries
[7]. RWE is defined as the clinical evidence regarding the use,
benefits, or risks of a medical treatment derived from RWD [7].
To accelerate the use of RWE in the “discovery, development
and delivery” of medical treatments, the 21st Century Cures
Act and the subsequent Food and Drug Administration RWE
framework laid the groundwork for the use of RWD in
regulatory decision-making, including approvals for new
indications of approved drugs and postapproval requirements
[7-9].

EHRs have emerged as a primary source of RWD but present
considerable challenges in data quality and statistical analysis
for comparative effectiveness studies [10,11]. The release of
“Meaningful Use” criteria by the Department of Health and
Human Services greatly accelerated the adoption of EHRs
among providers [12,13]. Through programs such as Common
Data Models and Research Patient Data Repository, the
structured data formats in EHRs have become increasingly
standardized across health care systems and providers [14-16].
On the basis of these efforts, most existing RWE studies focused
on the use of structured EHR features. Bartlett et al [11]
investigated the feasibility of RCT emulation with both EHRs
and insurance claims and identified the lack of critical data as

the major limitation. Among 220 RCTs, 85% (187/220) were
deemed infeasible for replication with EHR data because of the
lack of readily usable structured data on (1) the inclusion and
exclusion criteria, (2) the intervention, (3) the indication, or (4)
the primary end point. However, this evaluation was based
solely on structured data, such as the International Classification
of Diseases (ICD) and current procedural terminology (CPT)
codes, which do not fully capture information on phenotypes,
procedural interventions, indication qualifiers, imaging results,
and functional disease scores required for RCTs [11]. Although
a few reporting guidelines regarding code-variable mapping
and time windows have been proposed to improve the
transparency and reproducibility of RWE [17,18], no clear data
curation or statistical analysis guidelines have been developed.
Harnessing unstructured data, such as clinical notes and images,
can provide a more granular view of a patient’s health status
that is not captured in structured data and can expand the
availability of critical data for RWE generation. The common
practice of using only structured EHR features mapped to
clinical variables through description matching has been reported
to have data quality issues and is inferior to mining unstructured
data using advanced techniques [19].

Although EHRs have significant potential to generate RWE,
the advances in medical informatics required to effectively
leverage the rich information in both structured and unstructured
data have not been widely adopted in the RWE community. In
recent years, natural language processing (NLP) tools have been
developed to extract information from various clinical notes
including signs and symptoms, laboratory test values, and tumor
progression. In addition, artificial intelligence (AI) has been
successful in medical imaging (eg, computed tomography and
magnetic resonance imaging) classification [20,21],
segmentation (locating the region of interest) [22,23], and
registration (merging information from multiple images) [24,25].
Despite these advancements in data curation technologies, there
is still a need for approaches to efficiently extract clinical
information that cannot be conveniently identified by codified
EHR features, such as cancer metastasis status.

Phenotyping methods that combine multiple EHR features have
been developed to improve the accuracy of disease status or
outcome definitions, with the goal of creating a cohort of
individuals with phenotypes for downstream studies. Advanced
machine learning methods for phenotyping are now available
to accurately and efficiently identify patients with specific
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medical conditions and clinical characteristics based on the
comprehensive information extracted from their EHR and the
temporal information of clinical events [26]. These technologies
can enable the reliable extraction of EHR data to generate RWE.
However, the existing methods are typically published in
technical journals that are unfamiliar to most medical
researchers. Moreover, deploying NLP, AI, and machine
learning methods requires substantial expertise and guidance
beyond what is typically available in most published studies
and open-source software. Therefore, it is critical to establish
a standard for presenting deployed data mining methods in a
transparent manner that enables external validation of their
performance. Finally, subsequent analyses should incorporate
robust statistical methods to minimize the bias from imperfect
data and confounders.

In this paper, we propose an integrated pipeline to improve the
resolution of EHR data for precision medicine research, bridging
the gap between technological innovation and application to
clinical studies. The pipeline addresses the unmet needs in RWE
generation by streamlining the curation of previously unavailable
variables and quality assurance steps, with an emphasis on the
transparency and reproducibility of the data creation process.
By incorporating new informatics tools and statistical methods
developed over the past 5 years, we summarize the technologies

and methods available for data curation and causal modeling
that will enable researchers to perform robust analysis with
high-resolution data from EHRs for RWE generation. Our
pipeline has four modules as follows: (1) creating metadata for
harmonization, (2) cohort construction, (3) variable curation,
and (4) validation and robust modeling (Figure 1). Compared
with existing practice in the RWE literature [27], our framework
has 2 major advantages. First, we expand the availability of
clinical variables by applying new technologies to unstructured
data sources in modules 1-3. In module 4, we provide double
assurance on the data quality with a validation against
gold-standard annotations and a robust statistical analysis
insensitive to data errors. To illustrate the application of the
pipeline, we revisit the emulation of the clinical outcomes of
surgical therapy (COST) Study Group Trial on
laparoscopy-assisted colectomy versus open colectomy for
patients with early-stage colon cancer as a running example
[28]. We provide a brief description of the use case in each
module, with expanded details in Multimedia Appendix 1
[28-44]. As 1 example cannot possibly cover all tools integrated
into the pipeline, we create a repository with links for paper and
codes of these tools organized according to the workflow of the
pipeline [45]. A summary of the methods is provided in Table
1.

Figure 1. The integrated data curation pipeline designed to enable researchers to extract high-quality data from electronic health records for real-world
evidence. EHR: electronic health record; RCT: randomized controlled trial.
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Table 1. Summary of methods in each step by their use.

MethodsUseStepModule

MetaMap [46], HPOb [47], NILEc [48],

cTAKESd [49]

Identify medical concepts from RCTa docu-
ments

Concept identificationData harmonization

PheWASf catalog [32], CCSg [50], RxNorm

[51], and LOINCh [52]

Grouping of structured EHReConcept matchingData harmonization

Expert curation [33,53], knowledge sources
[54-58], and EHR data [31,34,59-62]

Expansion and selection of relevant features
using knowledge source or co-occurrence

Concept matchingData harmonization

PheWAS catalog [32] or HPO [47]Filter patients with diagnosis codes relevant
to the disease of interest

Data martCohort construction

Unsupervised: anchor and learn [63], XPRESSi

[64], APHRODITEj [65], PheNorm [66], MAPk

[36], and sureLDAl [67]; semisupervised:

AFEPm [57], SAFEn [58], PSSTo [68], likeli-
hood approach [69], and PheCAP [70]

Identify patients with the disease of interest
through phenotyping

Disease cohortCohort construction

Phenotyping with temporal input [37]Identify indication conditions before treat-
ment

Indication and treatment
arm

Cohort construction

Phenotyping methods as listed out under cohort
construction: disease cohort

Extraction of binary variables through phe-
notyping

Extraction of baseline
variables or end points

Variable curation

EXTENDq [71] and NICEr [38]Extraction of numerical variables through

NLPp
Extraction of baseline
variables or end points

Variable curation

For organs [72], blood vessels [73], neural sys-
tems [74,75], nodule detection [76,77], cancer
staging [78], and fractional flow reserve [79,80]

Extraction of radiological characteristics

through medical AIs
Extraction of baseline
variables

Variable curation

Unsupervised [81,82], semisupervised [83,84],
and supervised [85,86]

Extraction of event time through incidence
phenotyping

Extraction of baseline
end points

Variable curation

SMMALu [87]Efficient and robust estimation of treatment
effect with partially annotated noisy data

Causal inference for

ATEt
Downstream analysis

aRCT: randomized controlled trial.
bHPO: human phenotype ontology.
cNILE: narrative information linear extraction.
dcTAKES: clinical text analysis and knowledge extraction system.
eEHR: electronic health record.
fPheWAS: phenome-wide association scans.
gCCS: clinical classification software.
hLOINC: logical observation identifier names and codes.
iXPRESS: extraction of phenotypes from records using silver standards.
jAPHRODITE: automated phenotype routine for observational definition, identification, training and evaluation.
kMAP: multimodal automated phenotyping.
lsureLDA: surrogate-guided ensemble latent Dirichlet allocation.
mAFEP: automated feature extraction for phenotyping.
nSAFE: surrogate-assisted feature extraction.
oPSST: phenotyping through semisupervised tensor factorization.
pNLP: natural language processing.
qEXTEND: extraction of EMR numerical data.
rNICE: natural language processing interpreter for cancer extraction.
sAI: artificial intelligence.
tATE: average treatment effect.
uSMMAL: semisupervised multiple machine learning.
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Integrated Data Curation and Modeling Pipeline for
RWE

Overview
We begin by providing a high-level description of the related
tools for each module of the pipeline. Next, we provide guidance
on the deployment of the tools. Throughout this section, we
frequently refer to gold-standard labels as the value or definition
of a clinical variable curated by domain experts through a
manual review of the EHR of selected patients.

Running Example
The COST Study Group Trial assessing laparoscopy-assisted
colectomy versus open colectomy in the overall survival of
patients with early-stage colon cancer was chosen as the target
trial [29,30]. The inclusion criteria were as follows: a clinical
diagnosis of adenocarcinoma of the colon, age of at least 18
years, and the absence of prohibitive abdominal adhesions. The
exclusion criteria were as follows: advanced local or metastatic
disease, rectal or transverse colon cancer, acute bowel
obstruction or perforation from cancer, and severe medical
illness. Inflammatory bowel disease, familial polyposis,
pregnancy, or concurrent or previous malignant tumor also
precluded enrollment. We showcased the pipeline by emulating
the RCT using EHR data up to January 1, 2020, from Mass
General Brigham [28].

Module 1: Creating Metadata for Harmonization

Background

Generating RWD relevant to a target RCT from EHR requires
first curating EHR features corresponding to indication,
intervention, end point, eligibility criteria, and patient
characteristics considered in the trial. Unfortunately, many
clinical variables involved in RCTs are not readily available in
EHRs. The first step of our pipeline, data harmonization
between the RCT study and EHR data, maps the clinical
variables of interest to 1 or more relevant sources of EHR data.
Our work is built on previous efforts to standardize structured
EHR data [14-16] but also combines advancements in NLP and
medical knowledge networks. The actual extraction of clinical
variables is described in module 3, in which potential
discrepancies among multiple sources are reconciled. In existing
RWE studies, exact details of how the mapping was performed
are rarely reported and often cannot be easily transported to
another EHR system. Domain experts might have manually
mapped inclusion or exclusion criteria, for example, if a patient
was on a specific treatment, which can be labor intensive. The
proposed procedure leverages NLP to improve the efficiency
and transparency of the mapping process, making it scalable
and portable for data harmonization.

We recommend the creation of the metadata needed for data
harmonization by the following 2 key steps.

Concept Identification

Identify the medical concepts associated with the clinical
variables from the RCT documents. This can be achieved by
converting relevant textual information regarding clinical
variables within the RCT documentation to established medical
concepts using existing clinical NLP tools such as MetaMap,

NILE (narrative information linear extraction), and cTAKES
(clinical text analysis and knowledge extraction system)
[46,48,49].

A medical concept can be represented by different names, for
example, “RA” and “rheumatoid arthritis” are used to refer to
the same medical concept—rheumatoid arthritis. The unified
medical language system (UMLS) [88] maintained by the
National Library of Medicine is a collection of biomedical
vocabularies that maps a concept to all the names from all the
source vocabularies that mean the same thing. The latest release
of the UMLS consists of over 4 million concepts that are each
represented by a concept unique identifier (CUI). For example,
both “rheumatoid arthritis” and the abbreviation “RA” are
mapped to the same CUI, C0003873. Different expressions for
a low fever, such as “low grade fever” and “mild pyrexia,” are
mapped to the same CUI, C0239574.

Using this map between concepts and terms, named entity
recognition, can identify medical concepts in the text extracted
from EHR, such as diseases, conditions, signs and symptoms,
or medications. Named entity recognition is available in many
existing clinical NLP software that use concept mapping in the
backend to identify the concepts that are relevant for the study
[49]. The dictionary of relevant medical concepts is used as the
input for the variable extraction step described in module 3 of
our pipeline.

Concept Matching

Match the identified medical concepts to both structured and
unstructured EHR data elements.

The identified CUIs, along with negation flags, offer an
immediate source for NLP features to be processed by machine
learning algorithms in modules 2 and 3. For example, if the
eligibility criterion includes patients with rheumatoid arthritis,
an NLP feature that counts the total number of mentions of the
corresponding CUI “C0003873” can be used as a mapped NLP
feature. However, as the mentions of relevant clinical variables
in unstructured text can be nonspecific, we recommend concept
matching to match the identified medical concepts to associated
structured EHR data, for example, ICD codes, whenever
possible. Grouping similar “structured variables” is helpful
because the relationships among structured EHR variables are
not reflected in existing hierarchical coding systems. Hong et
al [31] provided a standard way to group structured EHR, which
produced the mapping dictionary from the group names.
Specifically, 4 domains of codified data were considered:
diagnosis, procedures, laboratory measurements, and
medications. Clinical variables under any of the domains were
matched to the corresponding group using a group name search.
ICD codes were aggregated into phecodes to represent more
general diagnoses, for example, “MI” rather than “acute MI of
inferolateral wall,” using the ICD-to-phecode mapping from
PheWAS (phenome-wide association scans) catalog [32].
Multiple levels of granularity of phecode, including integer
level, 1-digit level, and 2-digit level, can be used depending on
the disease of interest. A popular alternative is the human
phenotype ontology (HPO) [47]. For procedure codes, including
CPT-4 (CPT 4th Edition), HCPCS (Healthcare Common
Procedure Coding System), ICD-9-CM (ICD, Ninth Revision,
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Clinical Modification) Procedure Codes, and ICD-10-PCS (ICD,
10th Revision, Procedure Coding System) (except for
medication procedures), clinical classification software
categories were assigned based on the clinical classification
software mapping [50]. For medication codes, the prescription
encodings in a single EHR system were aggregated to the
ingredient level RxNorm codes, the normalized names for
clinical drugs developed by the National Library of Medicine
[51]. For laboratory measurements, laboratory order encodings
were grouped into manually annotated laboratory concepts or
logical observation identifier names and codes (LOINC) [52].
The 4 domains of the grouped structured EHR variables provide
another part of the raw data for variable extraction.

It is important to note that some clinical variables, for example,
cancer stage and cancer recurrence, are poorly represented by
specific structured codes and cannot be mapped to structured
data. For example, cancer recurrence and cancer progression
are poorly structured in EHR despite their important role in
conveying a patient’s status. We recommend expanding the
mapping to lists of relevant variables. To learn the relevance of
medical variables from expert curation [33,53], knowledge
sources [54-58] (compiled from Wikipedia pages, journal papers,
the Merck Manual, etc), or EHR data [31,34,59-62], existing
studies have developed (1) dictionaries of relevant variables
[57,58]; (2) knowledge graphs with variables as vortex and
relevance as edge [33,53,89,90], in which neighboring vortexes
of the target variable form the dictionary of relevant variables;
and (3) semantic embeddings with angles reflecting relevance
and length reflecting frequency [34,54-56,59-61], from which
the dictionary of relevant variables is compiled with vectors of
small cosine similarities to the target variable. In addition,
extracting clinical variables from data requires tools that can
directly access raw text and image reports. We describe the
methods used to accommodate these settings in the variable
extraction section (module 3).

Running Example: Emulation of COST Study Group Trial
(Section S1)

We extracted sections 3.0 Patient Eligibility, 5.0 Stratification
Factors from the study protocol [30] and the first paragraphs in
the Methods and Results sections along with Table 1 from the
reporting paper [29]. From the extracted text, we used NILE to
identify the list of medical concepts [48]. Through an algorithm
matching text medical concepts to feature or grouping
descriptions [32,35], we obtained the list of EHR features
relevant to the RCT design. The comparison with previously
reported manual mapping [28] demonstrated the capability of
our scalable harmonization (Table S1 in Multimedia Appendix
1).

Module 2: Cohort Construction

Overview

The construction of the study cohort for RWE involves
identifying the patients with the condition or disease of interest
(often referred to as the phenotype), their time window for the
indication, and whether they underwent the interventions in the
RCT. EHRs contain a large amount of data; however, only a
subset is relevant to any given study. It is also necessary to

simultaneously safeguard against the risk of inadvertent use,
including unnecessary personal health identifiers when using
the data for analysis. To enable accurate condition or disease
identification while maintaining patient privacy, we recommend
a 3-phase cohort construction strategy that extracts the
minimally necessary data from the EHR, beginning with an
overly inclusive data mart that is used to develop the disease
cohort and then to establish the treatment arms.

Phase 1: Data Mart

The data mart is defined as the subset of patients from the entire
data warehouse who potentially meet the relevant criteria for a
study. In the context of generating RWE, we design the data
mart to include all patients with any indication of the disease
or condition of interest. To ensure inclusivity, researchers should
summarize a broad list of EHR variables with high sensitivity
and construct the data mart to capture patients with at least 1
occurrence of the listed variables. A typical choice is the
disease-specific phecode. Most phecodes are sensitive for
phenotypes of interest but are often nonspecific [70]. We
recommend validating the inclusiveness of the broad list by
obtaining a small set of gold-standard labels by reviewing patient
charts for the presence or absence of the phenotype sampled in
a case-control manner, for example, 20 patients selected from
the data mart and 20 patients selected from outside the data
mart. More details are provided in module 4. If the validation
indicates that the data mart definition is not broad enough and
patients with the phenotype are not identified, expansion to
relevant variables may be developed using the existing resources
described in module 1. Conversely, if the definition is overly
inclusive so that many patients without the phenotype are
captured, a narrower list can be constructed by going 1 level
down in the PheWAS catalog hierarchy or using more specific
ICD codes.

Phase 2: Disease Cohort

After the data mart is created, the next phase is to identify the
disease cohort consisting of the subset of patients within the
data mart who have the phenotype of interest. Identification of
the disease cohort is referred to as phenotyping in the
informatics literature and has been well studied over the last
decade [26,91,92]. Commonly used phenotyping tools can be
generally classified as either (1) expert guided (mostly rule
based) or (2) derived from machine learning methods.
Expert-guided approaches are simple to develop using clinical
and informatics knowledge that can be translated into a set of
rules based on EHR variables. However, expert-guided
approaches are difficult to generalize across diseases and
databases, as they must be constructed in a case-by-case manner
[93-95]. Machine learning–based approaches are further
classified as either weakly supervised, semisupervised, or
supervised based on the availability of gold-standard labels for
model training. A comprehensive review of this topic is
presented by Yang et al [26]. Weakly supervised machine
learning approaches have become increasingly popular because
they are trained without gold-standard phenotype labels, which
are time consuming to obtain. Instead, model training is based
on the so-called silver-standard labels. Silver-standard labels
are variables that can be readily extracted for all patients in the
database but are imperfect measurements of the underlying
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phenotype (eg, associated phecodes or CUIs). Examples of
existing weakly supervised approaches include the
anchor-and-learn approach [63], extraction of phenotypes from
records using silver standards (XPRESS) [64], automated
phenotype routine for observational definition, identification,
training and evaluation (APHRODITE) [65], PheNorm [66],
multimodal automated phenotyping (MAP) [36], and
surrogate-guided ensemble latent Dirichlet allocation (sureLDA)
[67]. Alternatively, semisupervised approaches augment the
silver-standard labels with a small set of gold-standard labels.
These approaches are more time consuming than weakly
supervised learning approaches because of the necessity of
labeled data, but they can be more accurate when the
silver-standard labels are poor measures of the underlying
disease (eg, psychological or behavioral conditions). Common
semisupervised approaches include AFEP (automated feature
extraction for phenotyping) [57], SAFE (surrogate-assisted
feature extraction) [58], PSST (phenotyping through
semisupervised tensor factorization) [68], likelihood-based
approaches [69], and PheCAP [70]. All these methods output
probabilities of the disease for each patient, rather than a
deterministic classification, which may be leveraged in
subsequent modules. Although supervised approaches have
decreased in popularity owing to their high demands for
gold-standard labeled data [96,97], they may be applied to new
or rare diseases without established silver-standard labels.

Phase 3: Treatment Arms and Timing

With the disease cohort, one may then proceed to determine
which patients received the treatments relevant to the indication
of interest. Most treatment information is well coded as part of
the structured EHR data in the medication and procedure codes.
For example, in-hospital procedures and medications are closely
recorded using designated structured codes. The indication
information, however, may require learning the temporal order
of the treatment initiation and the disease onset or progression.
For example, the first-line therapy for metastatic or recurrent
cancer is defined by the pattern “metastasis or recurrence, then
use of the chemotherapy before any other therapies” [98]. In
such cases, it is necessary to ascertain both the treatment
initiation time and the occurrence time of metastatic or recurrent
cancer to ensure the correct temporal order. Phenotyping
methods incorporating the temporal order of EHR variables
[37] are suitable for identifying patients matching the indication.
The treatment initiation time is then typically set as time zero
in the study, which is later used for variable curation in module
3.

Running Example: Emulation of COST Study Group Trial
(Section S2)

The data mart consists of 65,968 patients with diagnosis codes
mapped to phecode 153 (colorectal cancer) [32]. Using the total
occurrences of phecode 153, the total mentions of CUI
C0009402 (colorectal cancer), and the number of days of
medical encounters, we determined colorectal cancer status
through MAP [36]. The MAP scores achieve a 0.945 area under
the curve of receptor operating characteristics evaluated over
171 gold-standard labels. MAP>0.371 identified 28,859 patients
as colorectal cancer cases (specificity=0.95; sensitivity=0.70;
and positive predictive value=0.90). Colectomy and

laparoscopy-assisted colectomy were then identified using
procedure codes with descriptions containing “partial
colectomy.” We refined the treatment arms to match the
indications of the target RCT by obtaining the timings of the
initial colorectal cancer diagnosis and other surgical procedures.

Module 3: Variable Curation

Overview

The emulation of RCT with EHR data generally requires three
categories of data elements: (1) the end points measuring the
treatment effect, (2) the eligibility criteria defined to match the
RCT population, and (3) the confounding factors to correct for
treatment-by-indication biases inherent to RWD. In this section,
we describe the classification and extraction of the first 2 types
before addressing the confounding factors in module 4. Our
classification of variables is based on 3 rules: the format of the
variable source (phenotype, text, or image), its structure in EHR
(well or poorly structured), and the need to use phenotyping
algorithms to improve its resolution. Well-structured variables
have a clear mapping to organized EHR codes (eg, diseases
listed in the PheWAS catalog), whereas poorly structured ones
do not (eg, disease progression). Even for well-structured data
elements, there may be a need to improve the accuracy of a
clinical variable, such as the disease status discussed in module
2, owing to the noisiness of the EHR codes. We study the
eligibility criteria and confounding factors together, as they are
covered by the general pretreatment baseline variables.

Baseline Eligibility Criteria

The list of eligibility criteria is provided by the RCT protocol
and mapped to the corresponding EHR variables in module 1.
The list of variables available in the RCT data or reported in
the corresponding paper can then be used by the user to perform
population adjustment (eg, weighting or matching).

Baseline variables were classified into 3 types: phenotype
derived, text derived, and image derived. Phenotype-derived
variables have a clear correspondence with codified data, for
example, the onset of disease or past use of a medication. The
extraction of phenotype-derived variables is essentially
performed by using a phenotyping algorithm, as discussed in
Module 2: Phase 2 section. If a variable is well structured, its
EHR indicators may be used as silver-standard labels in
unsupervised or semisupervised phenotyping methods.
Otherwise, only supervised methods can be applied.

Extraction of the other 2 types of baseline variables may require
specific tools. Text-derived variables include numerical data
embedded in clinical notes with a tag such as a relevant concept
or code in the vicinity. EXTEND (extraction of EMR numerical
data) was developed to link the numbers to their tags and has
been applied to BMI, ejection fraction, vital signs, and
performance status (Eastern Cooperative Oncology Group or
Karnofsky Performance Scale) with high accuracy [71]. A
context-sensitive variant (NICE, NLP Interpreter for Cancer
Extraction) was developed to disambiguate common features
such as the stage of the disease of interest. NICE can also extract
radiological or genetic information, for example, tumor size
and mutation variant, from text reports along with a relevant
date if the note points to a past event [38]. RCTs tend to adopt
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rigorous radiological evaluation criteria for eligibility, for
example, diameter of cancer tumor in response evaluation
criteria in solid tumors (RECIST) [39]. However, such
evaluations were rarely measured and documented in real-world
radiological reports, as reported in other studies [40]. With the
advancement of image recognition technology, the extraction
of image-derived evaluation from imaging data in EHR has
become possible. Segmentation tools have been developed for
organs [72], blood vessels [73], and neural systems [74,75],
which may produce the physical measures. Diagnostic tools
have been developed for nodule detection [76,77], cancer staging
[78], and fractional flow reserve [79,80].

A preliminary emulation cohort can be constructed from the
extracted eligibility criteria. Users may use a relaxed or
conservative rule, depending on the anticipated sample size. In
module 4, further modifications will be applied to finalize the
emulation.

End Points

The extraction of end points varies depending on their type. We
classify the end points into 4 categories: death, binary,
time-to-event, and numerical. Death is singled out for its external
source.

Death information can be obtained by linking EHR to national
vital statistical databases. Caution should be exercised on
possible data leakage or informative censoring, even for
presumably reliable end points such as death. We noticed
missing death status from patients with terminal-stage cancer,
likely owing to out-of-state home hospice care. In this case, the
end point should be modified to in-hospital death or discharge
in a terminal condition. Discharge in terminal conditions can
be extracted as typical binary phenotypes by semisupervised
methods using EHR data from the last month before loss to
follow-up.

Binary end points are essentially a binary status of the presence
or absence of a clinical condition during or at the end of
follow-ups, for example, 1-year remission of the disease.
Therefore, they can be extracted by phenotyping methods using
the EHR data since treatment initiation. As many end points
consist of disease progression rather than diagnosis, they are
poorly structured. Therefore, semisupervised phenotyping
methods aggregating auxiliary information from other relevant
features may be preferred to balance the resources needed to
manually curate gold-standard labels via chart review and to
accurately define the final end point.

Time-to-event end points include many common primary end
points, for example, progression-free survival for cancer. The
longitudinal trajectories of EHR features (eg, diagnosis and
procedures) relevant to the event of interest provide information
on the event time through incidence phenotyping. Incidence
phenotyping can be tackled using various unsupervised [81,82],
semisupervised [83,84], and supervised [85,86] approaches.

Numerical end points, including ordinal end points such as
disease severity scores and real number end points such as tumor
size, are usually difficult to extract from EHR. Tools for
text-derived baseline variables provide an option for extraction,
but missing documentation in the real-world setting imposes

intrinsic difficulty. If a measurement is not captured at the
specific time of interest, some temporal tolerance should be
considered. Effort has been put into data-driven construction
of severity scores from EHR for depression, multiple sclerosis,
and stroke, in which a machine learning algorithm trained the
EHR severity score on a labeled subset with standard severity
scores derived from a registry, questionnaire, or NLP tool. For
diagnosis-related baseline variables and end points, if there are
no records on the diagnosis of interest, it typically indicates that
the patient was never diagnosed with the condition, and as a
result, it may be considered as a negative instance for the
phenotype.

Missing Data

Missing data is a common issue for RWD. Some information
may be absent in real-world medical records; thus, it is not even
available for manual abstraction. For diagnosis-related baseline
variables and end points, if there are no records on the diagnosis
of interest, it typically indicates that the patient was never
diagnosed with the condition, and as a result, it may be
considered as a negative instance for the phenotype. For text-
or image-derived baseline variables, numerical end points, or
laboratory testing results, the absence of extraction should be
marked as missing data. In downstream analyses, standard
strategies can be used to handle missing data, imputation, or
missing indicators. Caution should be exercised when dealing
with potential informative missingness. If the missing rate is
too high, compromise must be considered for the missing
variables such as discarding from baseline variables or finding
surrogates for end points. Sensitivity analyses can be performed
to ensure that the results are consistent across the different
strategies for handling missingness.

Running Example: Emulation of COST Study Group Trial
(Section S3)

We extracted the overall survival end points from the linked
death registry. To capture unreported death in the registry, we
constructed a score for treatment termination in the terminal
condition based on diagnosis and procedure codes in the last
month of EHR encounters. Most baseline variables are
phenotype derived; therefore, we extracted them through
phenotyping method–based mapping from module 1. We
extracted the cancer stage data through NICE [38]. We reported
the list of variables along with the extraction methods in Section
S3 in Multimedia Appendix 1.

Module 4: Validation and Robust Modeling

Overview

Inaccurate data curation and confounding can lead to biased
RWE. Even with reasonably accurate medical informatics tools
at disposal, remaining errors from data curation will be carried
over to downstream analyses, potentially causing bias in
treatment assessment. Confounding is a constant challenge in
assessing treatment with observational data [99], including the
routinely collected EHR. Confounding factors, variables that
affect both the treatment assignment and outcome, must be
properly adjusted. To minimize bias, the pipeline should include
(1) validation for optimizing the medical informatics tools in
modules 2 and 3, (2) robust statistical methods that produce
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consistent estimation of treatment effect from imperfect data
[87,100,101], and (3) comprehensive confounding adjustment
[28,102,103].

Validation and Tuning of Data Curation

First, we suggest validating the quality of data curation by
detecting any inconsistency between annotation and extraction.
When the validation of all variables is infeasible, priority should
be given to variables defining the following : (1) indication and
eligibility, (2) treatment arms, (3) end points, and (4) key
confounding variables. To ensure a sufficient detection chance,
we recommend the validation sample size formula (refer to
Section S4 in Multimedia Appendix 1 for derivation): Validation
size ≥ log(1 − detection chance)/log(1 − error tolerance).

Users can choose the detection chance and error tolerance
according to the context and report these parameters along with
validation results. With a 95% detection chance and 5% error
tolerance, a subset of at least 59 is required. The validation set
can be used for tuning the data curation when excessive error
is detected. To avoid overfitting, we recommend using 2
validation sets, one for tuning and the other for posttuning
revalidation.

Robust Analysis for Imperfect Data

Second, three annotations should be created for cohort emulation
and robust downstream analysis:

1. Indicator for indication, arm, and eligibility. In addition to
the levels for the treatment of interest, a level of exclusion
should be created for patients who are not eligible.

2. Actual end points consistent with any modification as in
module 3.

3. Other variables for population adjustments.

The size of this subset should be determined by the
recommended sample size of the supervised or semisupervised
methods used in downstream analysis. Annotations for variables
with validation errors are created for this larger set. We describe
a sampling scheme that efficiently recycles the annotation in
Section S4 in Multimedia Appendix 1.

Robust Adjustment for Confounding

The list of confounding factors, however, is seldom known a
priori. A common strategy in RWD treatment effect analysis is
to include many probable confounding factors and capture the
confounding with model selection techniques [28,102]. Here,
we provide a comprehensive list for identifying potential
confounding factors:

• Demographic data of the RCT are routinely described in
the paper reporting the results of the target RCT. A list can
be pulled from there.

• Some eligibility criteria– defining variables may have
multiple eligibility levels or values. They usually carry
clinical importance and are thus likely to affect both
treatment and outcome in real-world practice.

• General medical history is described by the disease and
symptom diagnoses, which include comorbidities. The

diagnosis codes at baseline grouped into integer-level
phecodes can be used.

• Disease history includes the disease severity, course of
progression, and past treatments. Both an expert-defined
approach and data-driven approach can be considered. The
expert-defined list may come from a domain expert or the
existing literature on related observational studies. The
data-driven list can be generated through dictionaries,
knowledge graphs and semantic embeddings similar to the
mapping of poorly structured data in module 1.

• Risk factors, variables affecting outcomes, contain all
confounders. A review of the literature on the disease will
provide a list of the identified risk factors.

• Calendar year of treatment initiation: if the treatment
initiation times in EHR cover a long time span or landmark
change in practice, the calendar year may become the
confounding factor [28].

Validation may not be necessary for the large number of
potential confounding EHR factors because they are sufficient
for explaining confounding even if they deviate from the
apparent description. In the downstream analysis, we
recommend the doubly robust estimation that produces an
accurate treatment assessment if either the mechanism of
treatment assignment (propensity scores) or outcome (outcome
regression) is properly modeled [104].

Running Example: Emulation of COST Study Group Trial
(Section S4)

We described the strategy to determine the validation sample
size and sample the validation set. To account for confounding
factors, we adjusted for clinically relevant variables such as
age, sex, cancer stage, tumor location, colon adhesion, procedure
subtypes, obesity, and a broad range of other comorbidities. We
adopted a doubly robust causal modeling strategy [104] that
combines (1) the regression adjustment approach via outcome
regression and (2) the propensity score weighting approach. To
account for temporal changes, we allowed the covariate effects
in both the outcome regression and propensity score models to
vary across the temporal periods but adopted a data-driven
cotraining strategy to select temporal trends as well as
confounding factors [41-43].

Guideline for Prespecification and Reporting

The creation of analysis-ready data plays an indispensable role
in generating RWE from EHRs, which is evident from its
substantial representation in our pipeline from harmonization
to validation. Discrepancies in the data creation process may
hinder the replication of RWE studies and the investigation of
generalizability and transferability. On the basis of the
components of the pipeline, we propose the guidelines for the
prespecification and reporting of data creation (Table 2). The
guidelines will supplement existing efforts advocating for a
transparent, prespecified statistical analysis plan [105] to
promote transparency and reproducibility of RWE.
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Table 2. Guidelines for prespecification and reporting of data creation.

RecommendationItem number

Data harmonization

1Target RCTa study design • Prespecification: Indicate the source of the study design document (protocol, reporting
paper, or others).

• Reporting: Describe the sections and tables from which the relevant variables are recog-
nized.

2RCT variable list • Prespecification: Specify the method for recognizing variables from the RCT document

and matching to relevant EHRb features.
• Reporting: Define all end points, interventions, eligibility criteria, and other baseline

characteristics recognized from the RCT document along with the matched EHR features.

Cohort construction

3Data mart • Prespecification: Specify the method for compiling the broad list of EHR features indicating
the condition or disease of interest.

• Reporting: List the EHR features, and state the algorithm to define inclusion in the data
mart.

• Reporting: Report the size of the data mart.

4Disease cohort • Prespecification: Specify the method for ascertaining the phenotype of the condition or
disease of interest.

• Reporting: Describe the input EHR features of the phenotyping algorithm.
• Reporting: State the phenotyping algorithm with chosen parameters.
• Reporting: Report the AUCc of prediction and the accuracy of the disease cohort.

5Treatment arms • Reporting: Explain how treatment initiation time is determined.
• Reporting: Explain how treatment arms are defined with the list of involved EHR features,

time windows, and the algorithm.

Variable curation

6End points • Prespecification: Specify the method for ascertaining the end points.
• Reporting: State the end point algorithm with chosen parameters.
• Reporting: Explain how the end point is defined.

7Baseline characteristics (eligi-
bility criteria and confounders)

• Prespecification: Specify the variable curation plans for each class of baseline characteris-
tics.

• Reporting: List the baseline characteristics considered in the RWEd and define how they
are created with input EHR features, time windows, groupings, and other transformation.

• Reporting: Explain how eligibility criteria will be matched according to the curated baseline
characteristics.

• Reporting: Present the summary statistics of the baseline characteristics in treatment arms
filtered by eligibility criteria.

8Additional confounders • Prespecification: List the other confounders considered in the RWE and define how they
are created with input EHR features, time windows, groupings, and other transformation.

9Missing data • Reporting: Describe how missing information on variables are handled.

Validation

10Sampling strategy • Prespecification: Specify the sampling strategy for the validation set.
• Reporting: Report the sizes and list of variables (in data mart, disease cohort, and arms)

of the validation.

11Data accuracy • Reporting: Report the agreement between gold-standard data from validation and curated
data.

• Reporting: Explain how inaccurate data are dealt with.

12Publication • Reporting: Export the final curation models for the condition or disease of interest, end
points, and other variables curated through machine learning methods.

aRCT: randomized controlled trial.
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bEHR: electronic health record.
cAUC: area under the curve.
dRWE: real-world evidence.

Discussion

Summary
The data curation and modeling pipeline described in the paper
demonstrates the wide-ranging potential applications of RWD
in clinical development. For instance, RWD can be used to
derive external or hybrid control arms or to conduct pragmatic
trials. In the former case, the external control arm can serve as
a benchmark for a single-arm design or can be used to augment
an existing RCT control arm to improve study bias. Specifically,
the proposed pipeline could (1) better identify patients who
meet the target trial eligibility criteria along with an assessment
of any discrepancy, (2) encourage harmonization between RCT
and RWD variables to allow for easier statistical adjustments,
(3) address missing data issues prevalent in RWD through
efficient imputation strategies, and (4) extract more relevant
variables by leveraging both structured and unstructured data.
Overall, our pipeline aims to develop a fit-for-purpose RWD
data set through robust and transparent data processing. This
pipeline can also be used to generate RWD for other purposes.
For instance, the RWD generated from EHRs can be used to
expand or update existing observational study cohorts, thereby
increasing the usability of RWD for applications such as safety.
Although RWD may not always be suitable for a specific study
of interest, our pipeline provides a roadmap for formatting RWD
that can generate RWE available for downstream applications
that can accelerate clinical development, ultimately leading to
better patient care.

Extension to Digital Twins
RWD is also recognized as a foundation for the creation of
digital twins [106], an emerging concept borrowed from
engineering to health care, which involves the creation of a
health care data–based replica of patient data collected from
digital technologies. This technique aims to improve precision
health care by modeling and forecasting outcomes under
available interventions based on data collected from digital
technologies [107], which are increasingly integrated into EHRs
[108]. Visionaries of digital twins advocate for automated data
processing by AI, given the anticipated complexity of future
digital health care data and the need for real-time
decision-making. The notation of digital twins has strong
resemblance with established concepts in causal inference, such
as potential outcomes [109] and virtual twins [110]. In essence,
digital twins in the precision health care setting will enable
personalized optimization of interventions according to their
forecasted outcomes derived from modeling of the outcome
mechanism [107], which is a by-product of the robust causal
modeling. The RWD generated by our data curation pipeline
can also be used to form digital twins, complementing the
existing precision medicine studies that relied on RCT data
[111]. For clinical development in general, this can further
improve the understanding of treatment heterogeneity and
inform the study design.

Conditions for Deploying the Data Curation Pipeline
To deploy the pipeline, certain conditions must be met. First,
the EHR infrastructure should allow for the mapping of local
codes to common ontologies for structured data such as ICD,
CPT, and RxNorm. Second, the available medical notes and
imaging data must provide sufficient information for medical
experts in the research team to annotate the key clinical
variables, ensuring the capture of the most routinely collected
clinical information by EHRs. Notably, some variables intended
for specific clinical trials, such as performance status, may not
be universally available. Data from a single institution may not
capture all relevant clinical information owing to well-known
data leakage issues in patients who receive care at multiple
centers or routinely take nonprescription medications [5,112].
Finally, the scalable extraction tools should have reasonable
performance for the key clinical variables. Otherwise, no
additional information can be obtained from the annotated
subset.

Limitations
For clinical development applications such as deriving external
control arms, comparable with existing guidance for traditional
RCTs, RWD-related statistical analysis plans should be
prespecified and discussed with relevant regulatory agencies.
Similarly, data curation plans should also be prespecified to
ensure the reliability (data accuracy, completeness, provenance,
and traceability) and relevance for supporting regulatory
decisions. The proposed data curation process addresses these
requirements by using a scalable framework for phenotyping
and variable or outcome extraction. However, the following
limitations of the scalable data curation process should be
considered: (1) treatments that are relevant to RCTs but not
typically administered in routine clinical practice, such as
preapproval treatments and placebo, can be unavailable in RWD.
(2) It is generally difficult to emulate RCT comparing an
effective novel therapy with clearly inferior treatments owing
to the treatment-by-indication bias. (3) Medication dose and
regimen administration patterns can be inadequately documented
in EHRs, making it challenging to emulate RCTs comparing
doses or administration patterns of the same medication. (4) It
may be difficult to extract certain RCT-specific clinical
outcomes of interest, such as RECIST, from EHRs because they
are not widely documented in routine patient care. (5) RWD
documenting discrete medical encounters may not always
precisely capture the temporal information of medical events
that occur between visits. (6) Patients may undergo transfer
between different health care systems, leading to potential
disruptions in their treatment and incomplete capture of clinical
end point information. (7) Imperfect extraction of key variables,
such as confounding variables and clinical inclusion or exclusion
criteria, can induce population or confounding biases. Potential
solutions for part of the limitations include the following: (1)
to consider alternative EHR metrics for RCT-specific clinical
outcomes if they can be validated. (2) analysis of interval
censoring data should be considered to characterize events
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between visits. (3) data consortium can be established across
different health care systems may reduce data leakage. (4)
domain experts can identify the crucial variables for a given

study and aid in validation to minimize the bias from imperfect
key variables.
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NILE: narrative information linear extraction
NLP: natural language processing
PSST: phenotyping through semisupervised tensor factorization
RCT: randomized controlled trial
RECIST: response evaluation criteria in solid tumors
RWD: real-world data
RWE: real-world evidence
SAFE: surrogate-assisted feature extraction
sureLDA: surrogate-guided ensemble latent Dirichlet allocation
UMLS: unified medical language system
XPRESS: extraction of phenotypes from records using silver standards
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