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Abstract

Background: For an emergent pandemic, such as COVID-19, the statistics of symptoms based on hospital data may be biased
or delayed due to the high proportion of asymptomatic or mild-symptom infections that are not recorded in hospitals. Meanwhile,
the difficulty in accessing large-scale clinical data also limits many researchers from conducting timely research.

Objective: Given the wide coverage and promptness of social media, this study aimed to present an efficient workflow to track
and visualize the dynamic characteristics and co-occurrence of symptoms for the COVID-19 pandemic from large-scale and
long-term social media data.

Methods: This retrospective study included 471,553,966 COVID-19–related tweets from February 1, 2020, to April 30, 2022.
We curated a hierarchical symptom lexicon for social media containing 10 affected organs/systems, 257 symptoms, and 1808
synonyms. The dynamic characteristics of COVID-19 symptoms over time were analyzed from the perspectives of weekly new
cases, overall distribution, and temporal prevalence of reported symptoms. The symptom evolutions between virus strains (Delta
and Omicron) were investigated by comparing the symptom prevalence during their dominant periods. A co-occurrence symptom
network was developed and visualized to investigate inner relationships among symptoms and affected body systems.

Results: This study identified 201 COVID-19 symptoms and grouped them into 10 affected body systems. There was a significant
correlation between the weekly quantity of self-reported symptoms and new COVID-19 infections (Pearson correlation
coefficient=0.8528; P<.001). We also observed a 1-week leading trend (Pearson correlation coefficient=0.8802; P<.001) between
them. The frequency of symptoms showed dynamic changes as the pandemic progressed, from typical respiratory symptoms in
the early stage to more musculoskeletal and nervous symptoms in the later stages. We identified the difference in symptoms
between the Delta and Omicron periods. There were fewer severe symptoms (coma and dyspnea), more flu-like symptoms (throat
pain and nasal congestion), and fewer typical COVID symptoms (anosmia and taste altered) in the Omicron period than in the
Delta period (all P<.001). Network analysis revealed co-occurrences among symptoms and systems corresponding to specific
disease progressions, including palpitations (cardiovascular) and dyspnea (respiratory), and alopecia (musculoskeletal) and
impotence (reproductive).

Conclusions: This study identified more and milder COVID-19 symptoms than clinical research and characterized the dynamic
symptom evolution based on 400 million tweets over 27 months. The symptom network revealed potential comorbidity risk and
prognostic disease progression. These findings demonstrate that the cooperation of social media and a well-designed workflow
can depict a holistic picture of pandemic symptoms to complement clinical studies.
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Introduction

The global COVID-19 pandemic caused by SARS-CoV-2 has
resulted in more than 630 million infections and 6.59 million
deaths as of October 31, 2022 [1]. The pandemic is still ongoing,
and its catastrophic impact may continue to grow and last for
years. To deepen the understanding of this disease, relevant
studies have been increasingly emerging, and their aims vary
from determining molecular structures [2,3] to developing drugs
and vaccines [4-6]. Concurrently, clinicians have endeavored
to analyze clinical symptoms to guide therapeutic strategies [7].
Public health officials have also tried to investigate the
prevalence of symptoms to use the findings to provide precise
prevention and control strategies for both people and
governments [8,9].

As a popular communication tool and public discussion
platform, social media, such as Twitter, has permeated every
aspect of our daily lives. Twitter has 396.5 million users
globally, and at least 500 million tweets are sent daily [10].
Especially during the pandemic, social media played an essential
role in information generation, dissemination, and consumption
[11,12], yielding rich information about the pandemic.
Therefore, there has been emerging COVID-19–related research
based on big data from social media. Such studies include topics
in infodemics, public attitudes, detection or prediction of
confirmed cases, and government responses to the pandemic
[13-15]. However, they mainly focused on thematic analysis
[16,17] or sentiment analysis [18,19], and only a few studies
analyzed the symptoms and their epidemic-related
characteristics. For example, Huang et al [20] identified 485
related posts of COVID-19 infections seeking help on Sina
Weibo in the early days of the pandemic. They found that fever
was the most common symptom and ground-glass opacity was
the most common pattern on chest computed tomography. Luo
et al [21] applied a deep learning model that was pretrained by
clinical text on tweets to extract various symptoms. Guo et al
[22] extracted 36 symptoms from 30,732 tweets, including
typical symptoms like sore throat, loss of taste, and loss of smell.
Alanazi et al [23] and Sarker et al [24] analyzed symptom
prevalence in the early stage of the pandemic based on tweets
from about 200 COVID-19 users. Recently, Sarabadani et al
[25] mined 58 physiological and 3 psychological symptoms
from Reddit posts and analyzed their onsets and durations.
Although these studies attempted to use social media for
COVID-19 symptom studies, they mainly aimed at symptom
identification, and commonly conducted distribution and trend
analyses in the early months of the pandemic, rather than
long-term and comprehensive investigations. The potential
differences between self-reporting on social media and the
electronic health records (EHRs) of medical institutions have
been poorly investigated and discussed, although such findings
may improve our understanding of the actual prevalence and
evolution of symptoms in an emergent pandemic. In addition,

in-depth research on interrelationships among COVID-19
symptoms and affected body parts is missing from the literature.

Current understandings of COVID-19 symptoms are primarily
established on clinical data from medical institutions [26-28],
such as EHRs. However, nearly 80% of patients with
asymptomatic or mild-symptom infections are not promptly or
never clinically diagnosed and treated [29-31], leading to
potential missing information for mild and early symptoms. In
addition, privacy policies on patient data have slowed
cross-institutional cooperation and thorough studies of the
pandemic on a large scale [32]. Due to limited data size and
sample diversity, current COVID-19 symptom network analyses
only include a few typical symptoms. For example,
Fernández-de-Las-Peñas et al [33] included 1969 patients and
conducted a network analysis with 22 symptoms to support the
relevance of headache as a key onset symptom in the acute
COVID-19 phase. Millar et al [34] developed a symptom
network that only consists of 28 nodes to identify distinct
symptom subphenotypes. It is therefore challenging to construct
a holistic network of comprehensive symptoms and affected
systems.

To address these research gaps, we propose an efficient
workflow for tracking and analyzing the general prevalence
status and relationships of COVID-19 symptoms using social
media. The key contributions of this paper are as follows:

1. Develop a comprehensive hierarchical symptom lexicon
that handles social media colloquialism and maps symptoms
to their affected systems, including 10 affected systems,
257 symptoms, and 1808 descriptions.

2. Propose a novel workflow to investigate the symptom
characteristics of an emergent pandemic using social media,
including an overall analysis of quantity and distribution,
a longitudinal analysis of symptom prevalence with time
and virus strains, and a co-occurrence network of the
pandemic symptoms and affected systems.

3. Conduct the first dynamic prevalence status and network
analysis of COVID-19 symptoms using large-scale and
long-term social media data, which will reveal the
prevalence difference between Delta and Omicron, and
construct a comprehensive symptom network to uncover
the co-occurrence relationships.

Methods

Overall Workflow
We designed a pipeline to identify and study the characteristics
and co-occurrences of COVID-19 symptoms using Twitter. The
overall workflow is visualized in Figure 1. It consists of 3 main
parts. First, text preprocessing and rule-based filtering, which
performs initial data collection, text preprocessing, and tweet
filtering using a lexicon. Second, overall analysis of quantity
and distribution, which conducts trend analysis on the number
of COVID-19 cases and the number of tweets with self-reported
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symptoms. It also depicts the overall distribution and detailed
frequency of identified symptoms and affected systems. Third,
prevalence status and comorbidity network analysis, which
further explores the dynamic evolution of symptom prevalence

regarding time and virus variants and constructs a co-occurrence
network to reveal in-depth relationships among symptoms and
affected body systems.

Figure 1. Overall workflow.

Data Collection
We selected nonretweeted English tweets related to COVID-19
using unique tweet identifiers from a widely used open-source
COVID-19 tweet database [35,36]. The tweets were identified
by Twitter’s trending topics and selected keywords associated
with COVID-19, such as COVID-19 and SARS-CoV-2. We
downloaded 471,553,966 target tweets across 27 months, from
February 1, 2020, to April 30, 2022, using Twitter’s application
programming interface (API).

Symptom Lexicon
Based on current literature, we built a comprehensive and
hierarchical COVID-19 symptom lexicon containing synonyms
of symptoms and the affected body parts [24,37-40]. The
primary sources included the standard symptom corpus compiled
by Wang et al [37] and Goss et al [38] based on EHRs, the
COVID-19 symptom corpus compiled by Sarker et al [24], and
the COVID-19 symptom keywords used by Lopez-Leon et al
[39] and Mao et al [40]. Specifically, we manually checked each
symptom and enriched them with colloquial variants frequently
found on social media. Since Twitter users often use
personalized colloquialisms rather than formal terms to describe
their symptoms, the same symptom can have many referents.
As a result, we considered tense, person deixis, singular/plural
forms, spelling mistakes, etc, for each symptom when curating
the lexicon. We used the formal names defined in the

SNOMED-CT (Systematized Nomenclature of Medicine
Clinical Terms) [41] and added the varied forms of the proper
names as their alternative names. For example, in our lexicon,
the symptom “hearing loss” (proper name in SNOMED-CT)
has descriptions (mostly personalized colloquial descriptions)
such as “deafness,” “difficulty hearing,” and “loss of hearing.”

In addition, we grouped symptoms according to the affected
organs and systems into 10 families [42,43] as follows:
cardiovascular, digestive, integumentary, musculoskeletal,
nervous, reproductive, respiratory, urinary, sensory, and
systemic. The final symptom lexicon contained 10 affected
organs/systems, 257 symptoms, and 1808 synonyms
(Multimedia Appendix 1).

Text Preprocessing and Rule-Based Filtering
To identify tweets with self-reported symptoms for subsequent
analysis, we designed a 3-step method that can be roughly
summarized into filtering tweets with strict COVID-19
keywords, text cleaning, and matching of self-reported
symptoms (Multimedia Appendix 2).

Trend Analysis on the Quantity of New
COVID-19–Related Tweets
We compared weekly numbers of new COVID-19 tweets to
new cases in countries with the most Twitter users. A survey
on Statista shows that as of January 2021 [44], the top 4
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countries that have the most Twitter users and use English as
their primary language are the United States, the United
Kingdom, the Philippines, and Canada (Multimedia Appendix
3). We used new COVID-19 cases in these countries reported
by the World Health Organization (WHO) as a rough
representation of new COVID-19 cases (Multimedia Appendix
4). We calculated weekly numbers of new tweets for both before
and after the filtering. We also computed their Pearson
correlation coefficient with the number of new cases to examine
whether there was a statistically significant association between
COVID-19 severity and public response.

Overall Distribution and Dynamic Frequency Analysis
of Symptoms
Based on the COVID-19 symptom lexicon, we counted
occurrences of each symptom by matching their synonyms
against the filtered tweet data sets. Multiple mentions of the
same symptom in one tweet were counted as one. To explore
dynamic changes in symptom distribution with time, we
calculated each symptom’s weekly frequency, normalized by
the number of all self-reporting tweets. We also calculated the
normalized frequency for each affected system.

Comparison of the Symptom Prevalence Status
Between Different Strains
COVID-19 has several variants that present different epidemic
characteristics [45], such as the highly transmissible B.1.617.2
(Delta) variant [46,47] and B.1.1.529 (Omicron) variant [48],
which have led to rapid global rises in cases. In this section, we
compare self-reported symptom frequencies between the Delta
and Omicron variants. We extracted tweets from June 1, 2021,
to November 27, 2021, when Delta was the globally dominant
variant [42,49,50] to represent Delta. Similarly, we extracted
tweets from December 20, 2021, to April 30, 2022 [42] to
represent Omicron.

We extracted symptoms from the 2 groups of tweets and selected
those with ≥1% frequency as common symptoms. Then, we
used the chi-square test to calculate odds ratios (ORs) for Delta
versus Omicron to assess the approximate prevalence differences
of these common symptoms in the 2 periods. Since a patient
can get infected with Delta in the Omicron-dominated period,
this method calculates the odds of detecting a symptom among
infected participants during the Delta-dominated period
compared to the Omicron period.

Network Analysis
A COVID-19 patient may have multiple symptoms and report
them simultaneously. Based on the symptom lexicon, we
matched each symptom against each tweet to create a data set

X = [x1, x2, …, xn]   R
n×m, where xi = [di1, di2, …, dim]. dij is a

binary feature that represents whether tweet xi mentions

symptom j; m and n represent the numbers of symptoms and
tweets, respectively.

To quantitatively explore the strength of co-occurrence between

2 symptoms, we built symptom vector V, where V = XT = [v1,

v2, …, vm]   Rm×n, meaning that each dimension of vx is a binary
feature that indicates whether the symptom x was mentioned in
tweet i. The co-occurrence strength is modeled by the similarity
between the 2 symptom vectors, for which we adopted cosine
similarity as the metric. In conclusion, the co-occurrence C
between vx and vy can be modeled by the following equation:

Based on the model, we constructed a weighted co-occurrence
network of COVID-19 symptoms, where nodes represent
symptoms and edges capture the co-occurrence strength between
symptom pairs. We used Gephi [51] and ForceAtlas2 algorithm
[52] to visualize the symptom network.

Results

Weekly Trends of Tweets With Self-Reported
Symptoms
We selected 948,478 unique COVID-19-related tweets with
self-reported symptoms to conduct the studies. We observed
that weekly changes of tweets with self-reported symptoms
were roughly consistent with the trends of new cases in the 4
selected countries (Figure 2A). The Pearson correlation
coefficient between the 2 trends was 0.8528 (P<.001) and was
higher than the Pearson correlation coefficient between new
cases and unfiltered COVID-19-related tweets (0.3235; P<.001;
Multimedia Appendix 5). Moreover, self-reporting tweets
showed a significant leading trend compared with new cases
when the leading time was set to 1 week. Such a trend had a
higher correlation (Pearson correlation coefficient=0.8802;
P<.001) than when no time difference was set.

There were several waves of new cases and self-reporting tweets,
including the initial outbreak in March 2020 and the continuous
rapid spread. The first peak occurred during the transition of
2020 and 2021. Weekly new cases fell back to a prepeak level
and then increased at a slow rate until the outbreak of Delta,
which started a new wave of infections in the middle of 2021.
Omicron swept across countries from December 2021, took
over Delta, and gave rise to the most enormous COVID wave.
During the week of January 16, 2022, weekly new cases reached
the highest number of 6.83 million. Weekly self-reporting
showed similar trends but with more fluctuations. Such
fluctuations mainly happened with hotspot issues on social
media. One example was when former US president Donald
Trump tested positive for COVID during the presidential
election.
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Figure 2. Weekly numbers of self-reporting tweets and weekly trends of the frequency of symptoms and affected systems. (A) Weekly numbers of
self-reporting COVID-19 tweets and sum of new COVID-19 cases in the United States, the United Kingdom, Canada, and the Philippines. (B) Weekly
trends of the frequency of the top 20 symptoms. (C) Weekly trends of the frequency of the affected systems. The colors of symptoms in (B) correspond
to affected systems in (C).

Distribution of COVID-19 Symptoms and Affected
Organs/Systems
In all, 245 symptoms were mentioned a total of 1,197,733 times
in 948,478 tweets. A total of 201 symptoms from 10 affected
systems were mentioned in ≥10 tweets. The distribution of
different systems and their related symptoms are hierarchically
visualized in Figure 3. Notably, systemic symptoms accounted

for 42.2% (505,620/1,197,733) of the total number of symptom
occurrences, followed by respiratory (399,722/1,197,733,
33.4%), digestive (81,054/1,197,733, 6.8%), sensory
(76,959/1,197,733, 6.4%), musculoskeletal (52,142/1,197,733,
4.4%), nervous (48,697/1,197,733, 4.1%), integumentary
(21,351/1,197,733, 1.8%), cardiovascular (8839/1,197,733,
0.7%), reproductive (2418/1,197,733, 0.2%), and urinary
(772/1,197,733, 0.1%) symptoms.
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Figure 3. The distribution of mentioned symptoms and their affected body systems.

Frequency of Common COVID-19 Symptoms and
Affected Systems
Overall, 20 common symptoms had more than a 1% frequency
(Table 1) (more details are in Multimedia Appendix 6). Note
that the WHO report was based on 55,924 laboratory-confirmed
cases from China in the early stage of COVID-19 [53]. The data
of Delta and Omicron were extracted and calculated from our
data set in the corresponding period.

Figure 2B and Figure 2C show the weekly frequency of COVID
symptoms and affected systems. The frequency of symptoms
showed dynamic changes with the progression of the pandemic

and had some distinct waves. In the early stage of COVID-19,
cough, fever, and sneezing were the major symptoms, while
other symptoms were rarely reported. With the progression of
the pandemic, more symptoms, such as taste sense altered, chills,
and anosmia, started to emerge. Respiratory symptoms were
most common initially, accounting for more than 80% of
symptoms at one time and then gradually decreasing to about
40%. In contrast, the frequency of systemic, musculoskeletal,
and nervous symptom mentions showed increasing trends. The
frequencies of different symptoms gradually stabilized, with
fluctuations associated with hotspot issues and the emergence
of new variants.
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Table 1. Occurrences and frequencies of common symptoms in filtered tweets.

Self-reported symptoms (Omi-
cron) (N=158,994), n (%)

Self-reported symptoms
(Delta) (N=149,462), n (%)

WHOa symptoms
(N=55,924), n (%)

Self-reported symptoms
(all; N=948,478), n (%)

Body systemSymptom

52,325 (21.4)38,378 (18.4)37,861 (67.7)b183,039 (19.3)RespiratoryCough

34,562 (14.1)32,501 (15.5)49,157 (87.9)142,752 (15.1)SystemicFever

36,704 (15.0)29,621 (14.2)21,307 (38.1)138,169 (14.6)SystemicFatigue

30,601 (12.5)22,846 (10.9)7606 (13.6)101,055 (10.7)SystemicHeadache

13,601 (5.6)13,841 (6.6)10,402 (18.6)65,949 (7.0)RespiratoryDyspnea

18,059 (7.4)8381 (4.0)7773 (13.9)43,463 (4.6)RespiratoryPain in the throat

8188 (3.3)10,426 (5.0)N/Ac38,607 (4.1)SensoryTaste sense altered

8024 (3.3)7281 (3.5)N/A37,992 (4.0)RespiratorySneezing

10,876 (4.4)8114 (3.9)8277 (14.8)d37,814 (4.0)MusculoskeletalLimb pain

11,952 (4.9)7570 (3.6)2684 (4.8)e30,400 (3.2)RespiratoryRhinorrhea

5928 (2.4)5890 (2.8)6375 (11.4)27,399 (2.9)SystemicChills

6408 (2.6)5780 (2.8)2796 (5.0)f27,191 (2.9)DigestiveVomiting

5525 (2.3)7983 (3.8)N/A26,124 (2.8)SensoryAnosmia

8104 (3.3)4285 (2.0)N/A18,130 (1.9)NervousConcentration
problems

4187 (1.7)3675 (1.8)N/A17,238 (1.8)DigestiveNausea

5047 (2.1)3701 (1.8)N/A16,628 (1.8)SystemicDizziness

2028 (0.8)3295 (1.6)N/A13,532 (1.4)SystemicComag

3312 (1.4)2634 (1.3)N/A13,382 (1.4)SystemicChest pain

3053 (1.2)2511 (1.2)N/A13,255 (1.4)SystemicSweating

2573 (1.1)2165 (1.0)N/A9699 (1.0)SystemicMalaise

2952 (1.2)1726 (0.8)N/A7511 (0.8)RespiratoryNasal congestiong

aReported by the World Health Organization (WHO) but not the top symptoms among self-reported symptoms: hemoptysis (WHO: 503, 0.9%, ranked
13th; our assessment: 614, 0.1%, ranked 75th).
bSpecifically dry cough.
cN/A: not applicable.
dIncluding myalgia (limb pain) and arthralgia (joint pain).
eReported as nasal congestion, including rhinorrhea and nasal congestion (count 3673, frequency 0.6%, rank 20) among self-reported symptoms.
fIncluding vomiting and nausea.
gFor Omicron, nasal congestion reached 1.2% and replaced coma as the 20th symptom.

Prevalence Difference in Symptoms Between
COVID-19 Variants
A total of 209,074 tweets from June 1, 2021, to November 27,
2021, were placed in the Delta group, while 244,960 tweets
from December 20, 2020, to April 30, 2021, were placed in the
Omicron group. Table 1 shows the top common symptoms and
corresponding frequencies. Figure 4 shows the frequency
differences of common symptoms for Delta versus Omicron.

The top 20 symptoms of Omicron and Delta were roughly the
same, but nasal congestion replaced coma as one of the top 20
symptoms of Omicron. Among these 21 symptoms, 8 were

significantly (P<.001) less prevalent among individuals infected
during the Omicron period than during the Delta period (top 5
ORs: coma: OR 0.52, 95% CI 0.49-0.55; anosmia: OR 0.58,
95% CI 0.56-0.60; taste sense altered: OR 0.66, 95% CI
0.64-0.68; dyspnea: OR 0.83, 95% CI 0.81-0.85; chills: OR
0.86, 95% CI 0.82-0.89), and 10 were significantly more likely
to occur in Omicron patients than in Delta patients (top 5 ORs:
pain in the throat: OR 1.91, 95% CI 1.86-1.96; concentration
problems: OR 1.64, 95% CI 1.58-1.70; nasal congestion: OR
1.47, 95% CI 1.38-1.55; rhinorrhea: OR 1.37, 95% CI 1.33-1.41;
cough: OR 1.21, 95% CI 1.19-1.23). Further details are provided
in Multimedia Appendix 7.
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Figure 4. Frequency difference in common symptoms between the Delta and Omicron variants.

Co-occurrence Network of COVID-19 Symptoms
To simplify the co-occurrence network, we selected the top 100
symptoms by their overall distribution. The final network had
100 nodes with 2654 edges (Figure 5). Overall, the symptoms
in this network showed a clustering tendency according to the
affected system, and the common symptoms were roughly
distributed in the central region. Though systemic and
musculoskeletal symptoms were not the leading part of the
network, they were mainly in the center of the network and
linked to the symptoms of different systems. Some outliers fell
out of the clustering region of their theoretically affected

systems. For example, palpitations, a cardiovascular symptom,
was located at the center of the network next to systemic and
musculoskeletal symptoms. Impotence, the only reproductive
symptom with a high occurrence rate, and nocturnal enuresis,
the only urinary symptom, were located at the network border,
demonstrating that co-occurrences with other symptoms were
relatively low. Both intrasystemic and intersystemic symptoms
had strong co-occurrences, such as chills and fever (both
systemic symptoms), palpitations (cardiovascular), and dyspnea
(respiratory). For clinicians to further explore the co-occurrences
of a specific symptom, we provide an interactive online version
of this symptom network [54].
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Figure 5. The co-occurrence network of different symptoms and affected systems.

Discussion

Principal Findings
In this work, we presented a novel workflow to investigate the
symptom characteristics of an emergent pandemic using social
media. We curated a hierarchical symptom lexicon that handles
social media colloquialism and maps symptoms to their affected
systems. We constructed a comprehensive co-occurrence
network for COVID-19 symptoms. To the best of our
knowledge, this is the first dynamic prevalence status and
network analysis of COVID-19 symptoms using large-scale
and long-term social media data. This workflow can aid clinical
professionals in monitoring unusual co-occurrent symptom
patterns to promote pathogenesis studies. It is also promising
for studying other emergent epidemics, given the accessibility
and timeliness of social media.

Trend analysis on the number of tweets and COVID-19
infections demonstrated social media’s sensitivity and
promptness, and emphasized its effectiveness for studying
symptoms and timely monitoring pandemic status. Masri et al

[55] found that new case trends could be predicted 1 week ahead
based on related tweets for the 2015 Zika epidemic. In
correspondence and beyond, we found a highly correlated
1-week leading trend of symptom-related tweets compared to
new cases of COVID-19. This further confirms the potential of
social media for predicting pandemic status. Meanwhile, small
fluctuations in the trends reflected public concerns with hotspot
issues such as government policies and measures regarding the
pandemic. For example, Figure 2A shows that the presidential
election and Trump testing positive triggered increases in
self-reporting tweets. This could be attributed to people
discussing relevant problems and bringing up their own
experiences, including symptoms. The insights gained from this
type of trend analysis could help officials better guide and warn
the public during pandemics. Readers can refer to our previous
study for a more detailed investigation of the influence of
hotspot issues on symptom reports [56].

The common symptoms and their prevalence ranks identified
in our study are mostly in accordance with WHO reports but
with different frequencies. This difference may be a result of
different study populations; compared to studies based on EHRs,
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self-reported symptoms on social media were predominantly
from COVID-19 patients with mild symptoms who did not seek
help from health care agencies. For example, limb pain and
vomiting were relatively less common in social media than in
WHO reports, and hemoptysis was reported as a common
symptom in WHO reports and ranked 13th (n=503, 0.9%) in
these reports, but only ranked 75th in our study (n=614, 0.1%).
The gap in the prevalence ratio between social media and WHO
reports may be because COVID-19 patients do not self-report
all symptoms on social media. In addition, different granularity
and definitions of symptoms may be related to the frequency
difference. For example, cough in WHO reports only refers to
dry cough, whereas wet cough is often correlated with sputum
production [53]. Therefore, cough was the most common
symptom in social media but was the second most common in
WHO reports. Nonetheless, such strict definitions are less
suitable for social media data. Using the symptom lexicon, we
identified a few symptoms that were not taken seriously in the
WHO’s early reports, such as taste sense altered, anosmia, and
nausea [57-59]. In addition, we noticed some relatively
infrequent symptoms, such as alopecia (n=5373) and impotence
(n=2027). A recent large-scale study has also observed that hair
loss and sexual dysfunction are typical long-COVID symptoms
in nonhospitalized adults with confirmed SARS-CoV-2 infection
[60]. Having learned from the UK government’s experience of
being urged by general practitioners to update the official
COVID-19 symptom list to eliminate confusion [61,62],
policymakers should be aware that timely updates on the disease
are essential to reassure the public, control the disease, and
better manage patients with specific complications.

The longitudinal analysis of symptom prevalence showed that
COVID-19 is a multiorgan disease with broad-spectrum
manifestations and that its symptom prevalence dynamically
varies over time. As the key receptors of SARS-CoV-2 are
highly co-expressive in the respiratory tract [63-65], the initial
symptoms are mainly respiratory and systemic symptoms caused
by inflammation. However, over time, extensive self-reports of
multiple symptoms from different systems confirmed that
COVID-19 is a multiorgan disease [66]. At the later stage of
the pandemic, there are increasing reports of persistent
symptoms after COVID-19, such as fatigue, concentration
problems, and limb pain (muscle/joint) [67,68]. Notably,
consistent with recent findings on the increased risks of
cardiovascular diseases [69] and long neuropsychiatric
symptoms [70], our results showed a burst of attention toward
nervous and cardiovascular symptoms on social media in
January 2022, which has continued growing. This alerts us to
the emerging prolonged signs (long COVID) [71] and their
chronic burden on the nervous and cardiovascular systems.

The comparison of symptom prevalence between Delta and
Omicron demonstrated that our method can promptly seize the
epidemic characteristics and common symptom spectrum of
new viruses. As reported by the general population, Omicron
has (1) lower ORs for severe symptoms, such as coma and
dyspnea; (2) higher ORs for flu-like symptoms, such as pain in
the throat, concentration problems, nasal congestion, and
rhinorrhea; and (3) lower ORs for some typical COVID
symptoms, such as anosmia and taste sense altered [42,72]. This

finding confirms that the Omicron variant is much more
transmissible than previous variants but has less severe
symptoms [73,74].

The network of COVID symptoms and affected systems, built
on massive data and a comprehensive lexicon, contains more
extensive information than previous studies [33,34]. While
symptoms of the same system have higher co-occurrences, we
did observe intersystem co-occurrences consistent with clinical
studies. For example, coma exhibited strong relationships with
respiratory symptoms in our networks, especially dyspnea,
because the hypoxic/metabolic changes caused by an intense
inflammatory response can trigger a cytokine storm and may
further result in coma and encephalopathy [75]. We also found
unusual co-occurrences. For example, palpitations as a
cardiovascular symptom strongly correlated with dyspnea and
dizziness (respiratory and systemic) [76]. Impotence, a
reproductive symptom, had the strongest correlation with
alopecia (an integumentary symptom). They both showed higher
hazard ratios in people who experienced long COVID [60], and
they may be related to the high expression of key receptors of
SARS-CoV-2 (ACE2 [angiotensin-converting enzyme 2] and
TMPRSS2 [transmembrane protease, serine 2] [77,78]) in
reproductive organs and the androgen-mediated SARS-CoV-2
infection [79]. Recent studies [77,80,81] found that men with
male pattern hair loss (caused by elevated androgen signaling)
were at a higher risk of experiencing more severe COVID-19
symptoms. Furthermore, many studies adopted antiandrogens
as a clinical treatment option for COVID-19 [77]. Although the
exact mechanism requires more rigorous studies, these strong
relationships among unexpected groups of symptoms may point
to new foci of disease progression or indicate the potential risk
of co-occurrent symptoms.

Urgent pandemics and outbreaks, such as COVID-19 and the
recent monkeypox outbreak, always attract considerable
discussions on social media [82]. These discussions contain
rich information about the pandemic. Big data on social media
can mitigate potential information gaps in hospital-based
epidemiologic studies when many patients are not timely
diagnosed and treated. Moreover, the promptness of social media
supports a fast-track symptom spectrum and dynamic changes
in symptom prevalence, providing clues to enlighten clinical
treatment and pathogenesis investigations. These advantages
in terms of efficiency and availability make our workflow
promising for monitoring and analyzing emergent pandemics.

Limitations
We acknowledge that our study has limitations. First, although
we reviewed substantial studies to construct a lexicon that is as
comprehensive as possible, it would have inevitably missed
some colloquial variants of symptoms due to the noisy nature
of Twitter. Second, the self-reported symptoms and cases were
not laboratory-confirmed results. Moreover, some of our
analyses could be biased. For example, we split the dominant
period of different strains based on reports from the WHO and
Centers for Disease Control and Prevention of the United
Kingdom and the United States, but patients infected in one
period still had chances of infection from another strain.
Therefore, we explicitly point out that our comparison is an
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estimation. Third, due to the desultory and noisy nature of social
media data, users usually did not report precisely the infection
timeline and symptom duration, so we could not accurately
distinguish the tweets regarding long COVID and initial
infection. We manually checked the sampled tweets (n=200)
to extract the descriptions of symptoms and the timeline. Only
5% were explicitly related to long COVID. Therefore, we did
not analyze these tweets separately. The huge volume of social
media data has alleviated such an impact, and the finding still
reflected the actual prevalence status, which was also consistent
with previous reports and studies. Finally, like every other public
health study based on social media, our study has potential
cohort bias as the demographic distribution of social media does
not represent that of the whole population.

Conclusions
We developed a novel workflow to explore the dynamic
characteristics of pandemic symptoms through social media.
Using symptom analysis, we performed a large-scale and
long-term social media–based study on COVID-19 and
identified 201 symptoms from 10 systems. Compared to clinical
data–based studies, we found a different symptom prevalence
reported by a population of predominantly mild-symptom
patients. Evaluations of the big data of social media can
complement clinical studies to depict a more holistic picture of
COVID-19 symptoms. The network revealed unusual
co-occurrent symptom patterns, which may enable downstream
pathogenesis studies. Owing to the accessibility and timeliness
of social media, this workflow is also promising for contributing
to future public health studies, such as those involving other
emergent epidemics.
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