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Abstract

Background: Micronutrient deficiencies represent a major global health issue, with over 2 billion individuals experiencing
deficiencies in essential vitamins and minerals. Food labels provide consumers with information regarding the nutritional content
of food items and have been identified as a potential tool for improving diets. However, due to governmental regulations and the
physical limitations of the labels, food labels often lack comprehensive information about the vitamins and minerals present in
foods. As a result, information about most of the micronutrients is absent from existing food labels.

Objective: This paper aims to examine the possibility of using machine learning algorithms to predict unreported micronutrients
such as vitamin A (retinol), vitamin C, vitamin B1 (thiamin), vitamin B2 (riboflavin), vitamin B3 (niacin), vitamin B6, vitamin
B12, vitamin E (alpha-tocopherol), vitamin K, and minerals such as magnesium, zinc, phosphorus, selenium, manganese, and
copper from nutrition information provided on existing food labels. If unreported micronutrients can be predicted with acceptable
accuracies from existing food labels using machine learning predictive models, such models can be integrated into mobile apps
to provide consumers with additional micronutrient information about foods and help them make more informed diet decisions.

Methods: Data from the Food and Nutrient Database for Dietary Studies (FNDDS) data set, representing a total of 5624 foods,
were used to train a diverse set of machine learning classification and regression algorithms to predict unreported vitamins and
minerals from existing food label data. For each model, hyperparameters were adjusted, and the models were evaluated using
repeated cross-validation to ensure that the reported results were not subject to overfitting.

Results: According to the results, while predicting the exact quantity of vitamins and minerals is shown to be challenging, with

regression R2 varying in a wide range from 0.28 (for magnesium) to 0.92 (for manganese), the classification models can accurately
predict the category (“low,” “medium,” or “high”) level of all minerals and vitamins with accuracies exceeding 0.80. The highest
classification accuracies for specific micronutrients are achieved for vitamin B12 (0.94) and phosphorus (0.94), while the lowest
are for vitamin E (0.81) and selenium (0.83).

Conclusions: This study demonstrates the feasibility of predicting unreported micronutrients from existing food labels using
machine learning algorithms. The results show that the approach has the potential to significantly improve consumer knowledge
about the micronutrient content of the foods they consume. Integrating these predictive models into mobile apps can enhance
their accessibility and engagement with consumers. The implications of this research for public health are noteworthy, underscoring
the potential of technology to augment consumers’ understanding of the micronutrient content of their diets while also facilitating
the tracking of food intake and providing personalized recommendations based on the micronutrient content and individual
preferences.
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Introduction

Background and Motivation
According to the World Health Organization (WHO), more than
2 billion people globally experience deficiencies in
micronutrients such as vitamins and minerals [1]. Pregnant and
nursing mothers and young children are particularly vulnerable
to micronutrient deficiencies [2]. Insufficient intake of
micronutrients has also been linked to disability-adjusted life
years, a measure of time lost due to premature mortality and
nonfatal health loss, and to various age-related disorders such
as cardiovascular diseases and Alzheimer disease [3]. Food
labels can be an effective tool for improving diets as they
provide consumers with information to make healthier choices
and decisions at the point of purchase and consumption [4-6].
In addition, increased consumer attention to nutrition labels has
motivated food manufacturers to produce healthier products
[7]. A systematic review of studies finds that reading nutrition
labels is associated with healthier diets in adults [8].

Despite their potential benefits, food labels have limitations. In
particular, including too much nutritional information on labels
may be impractical due to size and ergonomic constraints [9].
Additionally, studies have found that clutter and information
overload can overwhelm consumers, leading to the
underutilization of labels [10]. As a result, food labels aim to
convey only the most crucial nutritional information and are
subject to revisions and amendments as people’s eating habits
and the body of scientific knowledge regarding the impact of
nutrition on health evolves. For example, the US Nutrition Facts
label (NFL) first appeared in 1994 and was revised in 2016.
The revision required US food manufacturers to report
potassium and vitamin D and made the reporting of vitamins
A and C voluntary. Data from the National Health and Nutrition
Examination Survey (NHANES 2007-2011) suggests that about
92.4% of US adults fall short of the estimated average
requirement for consuming vitamin D [11]. However, the
decision to remove vitamins A and C from the list of
micronutrients required to appear on food labels was not made
because Americans received sufficient amounts of these
vitamins. In fact, NHANES 2007-2011 indicated that 51.0%
and 42.9% of adult Americans were not meeting dietary
requirements for consuming vitamins A and C, respectively,
even after accounting for these vitamins in fortified foods [11].
There are also many other unreported micronutrients that are
underconsumed by the public. For example, according to
NHANES 2007-2011, the vitamin E intake is below EAR for
93.9% of US adults, and magnesium and vitamin K deficiencies
are observed among 60.9% and 71.1% of US adults,
respectively. Micronutrient deficiencies are significantly more
common in low-income countries [1].

It is well established that many nutrients exhibit synergistic
interactions, whereby a deficiency in 1 nutrient may exacerbate
or manifest as a deficiency in another, and vice versa.
Furthermore, there are strong correlations between the presence
of certain nutrients in various foods. For example, vitamin E,
a fat-soluble antioxidant, tends to be positively correlated with
the fat content of foods. Similarly, there is a strong positive

correlation between dietary phosphorus and dietary calcium in
various foods [12]. This study aims to explore the potential for
estimating unreported micronutrients in foods using the nutrition
information provided on labels. This is done by training a wide
range of predictive machine learning algorithms using nutrition
data from over 5000 foods. If successful, this could offer
numerous benefits and options for consumers. For example,
mobile apps could be developed to allow consumers to scan
food labels and receive additional interactive information on
the micronutrients of their interest that is not reported on labels.

The micronutrients examined in this study are those that are not
currently reported on the NFL, including vitamin A (retinol),
vitamin C, vitamin B1 (thiamin), vitamin B2 (riboflavin),
vitamin B3 (niacin), vitamin B6, vitamin B12, vitamin E
(alpha-tocopherol), vitamin K, and minerals such as magnesium,
zinc, phosphorus, selenium, manganese, and copper. These
micronutrients play vital roles in overall well-being, and their
deficiency can lead to various health issues, as outlined in
Multimedia Appendix 1.

Related Studies
In recent years, the use of machine learning has opened up new
avenues for predicting and estimating food attributes, including
nutrient content [13]. Numerous studies have attempted to
estimate food nutrients based on images of foods, which can
help estimate food calories, analyze people’s eating habits, and
make food recommendations. For example, the research in [14]
introduces a new deep learning architecture specifically designed
to handle the vertical food traits common to a large number of
categories. Similarly, the authors in [15] propose a method for
food image recognition using a fine-tuned deep convolutional
neural network pretrained with ImageNet data. In [16], the
authors propose a mobile-based dietary assessment system that
can record real time images of the meal and analyze it for
nutritional content, ultimately leading to improved dietary habits
and a healthier lifestyle. The proposed system uses different
machine learning models for accurate food identification and
extracts semantically related words from a huge corpus of text
collected over the internet to estimate food attributes and
ingredients. The systematic review in [17] provides a
comprehensive review of the application of deep learning in the
food domain, including food classification, quality detection,
and calorie estimation.

In addition to research related to food image analysis, machine
learning has been used to predict food nutrient content in several
studies. In 1 study, multiple machine learning algorithms were
used to predict the carbohydrates, protein, and sodium content
of foods [13]. Similarly, the fiber content in packaged foods
was estimated using a k-nearest neighbor algorithm in [18], and
added sugar content was predicted using the same method in
[19]. While these studies provide valuable insights into the
predictability of certain nutrients based on other nutrition
information, it should be noted that the predicted nutrition
attributes are typically those already reported on food package
labels. In contrast, no previous study has focused on predicting
those micronutrients that are not reported on food packages but
are associated with deficiencies in a large portion of the
population.
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The prediction of unreported micronutrients has the potential
to assist consumers in making informed choices about their
dietary habits. However, it is crucial to present this information
in an easily interpretable format for consumers. Franklin et al
[20] found that a significant portion of the population faces
difficulty understanding current food labels. To address this
issue and avoid information overload, various label designs
have been proposed. Among these designs is the Multiple Traffic
Light system, developed by the UK Food Standards Agency,
which uses traffic light colors and optional descriptors such as
“low,” “medium,” and “high” to indicate reference intake levels
for fat, saturated fat, sugars, and salt (as illustrated in Figure 1).

In comparison to traditional nutrition labels, mobile apps have
the potential to significantly enhance consumers’ experiences
and engagement in the context of predicting unreported
micronutrients. These apps can be customized to meet individual
consumers’ needs and preferences, such as allowing them to
select specific micronutrients of interest, altering the way in

which information is presented, choosing the level of detail,
and comparing similar food products [21]. In addition, mobile
apps may facilitate tracking daily or weekly nutrient intake and
alerting users to any deficiencies. A systematic review by
Coughlin et al [21] found that nutrition and diet-related mobile
apps may be effective in promoting healthy behaviors and
facilitating positive behavior change in various countries.
Existing mobile apps such as Cronometer and Nutrients provide
some micronutrient information for certain foods. However,
these apps have limited databases. By predicting unreported
micronutrients from existing food label information, such apps
can provide micronutrient information about a much larger array
of foods. Moreover, such mobile app integration will also allow
apps to track users’ micronutrient intake over time and suggest
foods to ensure that users consume sufficient amounts of various
micronutrients. For example, the study in [22] presents a
machine learning approach to recipe development based on
nutrients in food, which can improve the nutritional quality of
diets and prevent chronic diseases.

Figure 1. An example of Multiple Traffic Light (MTL) nutrition label developed by Food Standards Agency (FSA).

Methods

Nutrition Data
This study relies on nutritional data obtained from the Food and
Nutrient Database for Dietary Studies (FNDDS), which is made
available by the US Department of Agriculture (USDA). The
FNDDS database is comprised of food intake information
obtained from the What We Eat In America survey, which is
conducted in collaboration between the USDA and the US
Department of Health and Human Services (DHHS). The survey
involves 2 interviews, the first conducted in person and the
second via telephone within a time frame of 3 to 10 days, during
which participants are asked to recall their dietary intake for 2
consecutive 24-hour periods. While the USDA is responsible
for the dietary data collection methods, database maintenance,
and data processing and evaluation, DHHS oversees sample
design and data collection. Widely used in nutrition research,
dietary assessment, and policy development, the FNDDS
database is regarded as a reliable data set in the field [23].

We used nutrition data from 5624 foods included in the latest
release of the FNDDS data set (ie, FNDDS 2019-2020) for our
study, and no missing values were observed in the data set. The
USDA’s Food Patterns Equivalents Database provides
information about the food groups targeted in dietary guidance,
and each food item in the FNDDS data set is associated with 1

of the 37 food groups defined in Food Patterns Equivalents
Database. The independent variables in our research are the
nutrition data provided on the current NFL, including calories,
total fat, saturated fat, trans fat, cholesterol, sodium, total
carbohydrates, dietary fiber, total sugars, protein, vitamin D,
calcium, iron, and potassium. The mean, SD, and important
percentiles of these attributes are presented in Table 1.

Furthermore, Table 2 presents the mean, SD, and important
percentiles of the unreported micronutrients that serve as
dependent variables in this study, all of which were derived
from the FNDDS data set.

Figure 2 illustrates the correlation coefficients between the
nutrition variables shown in Table 1 (ie, independent variables
in this study) and the micronutrients being predicted (presented
in Table 2). Strong positive correlations between certain
nutrients can be observed. While the co-occurrence of some of
these nutrients, such as magnesium and dietary fiber [24],
calcium and phosphorus [25], and zinc and protein [26], has
been documented in the literature, it remains unclear whether
these correlations are sufficient to accurately approximate
unreported micronutrients. To address this question, a range of
machine learning regression and classification models are used.
Regression models are used to predict the quantities of
micronutrients, while classification models aim to identify the
category (ie, “low,” “medium,” or “high”) of micronutrients for
each food, as will be discussed later.
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Table 1. The mean, SD, and important percentiles of nutrition attributes (per 100 g of foods) listed on the Nutrition Facts label used in this study.

PercentileValue, mean (SD)

Max75th66th50th (median)33rd25thMin

902.0337.0271.0191.0123.0091.00.00226.3 (169.86)Calories (kcal)

100.013.729.985.132.000.950.0010.55 (15.81)Total fat (g)

95.614.172.941.430.410.140.003.43 (6.42)Saturated fat (g)

24.350.160.080.0030.000.000.000.26 (1.45)Trans fat (g)

310065.040.02.000.000.000.0038.72 (117.35)Cholesterol (mg)

6681.76396.0281.084.055.036.00.00306.4 (939.22)Sodium (mg)

100.034.9120.879.342.400.050.0022.12 (27.26)Total carbohydrate (g)

26.322.401.600.040.000.000.002.04 (4.26)Dietary fiber (g)

99.806.053.000.490.000.000.006.75 (13.71)Total sugars (g)

76.9919.8814.808.023.692.380.0011.35 (10.53)Protein (g)

21.860.020.000.000.000.000.000.36 (3.09)Vitamin D (mcg)

200363.0039.0019.0011.008.000.0073.32 (199.85)Calcium (mcg)

64.552.572.081.300.730.490.002.76 (5.66)Iron (mg)

3535329290.0219.0143.0111.00.00265 (371.4)Potassium (mcg)

Table 2. The mean, SD, and important percentiles of micronutrients (per 100 g) that are not listed on the Nutrition Facts label and are dependent
variables in this study are derived from the Food and Nutrient Database for Dietary Studies (FNDDS) data set.

PercentileValue, mean (SD)

Max75th66th50th (median)33rd25thMin

10,851.1862.230.436.001.800.000.00203.12 (469.12)Vitamin A (mcg)

23.370.220.130.070.040.030.000.21 (0.51)Vitamin B1 (mg)

4.380.260.210.150.070.040.000.23 (0.44)Vitamin B2 (mg)

45.245.064.012.110.680.370.003.40 (4.76)Vitamin B3 (mg)

6.130.350.240.120.060.030.000.26 (0.46)Vitamin B6 (mg)

54.681.270.540.070.030.000.001.20 (4.27)Vitamin B12 (mcg)

240.922.500.900.290.010.000.008.36 (46.70)Vitamin C (mg)

40.020.460.290.190.090.000.000.88 (2.81)Vitamin E (mg)

183.903.401.901.1840.300.000.009.30 (22.15)Vitamin K (mcg)

290.3829.0025.0020.0013.0010.000.0032.26 (45.80)Magnesium (mg)

12.502.661.700.800.480.220.001.94 (2.33)Zinc (mg)

774.38215.0191.0129.061.0035.00.00153.8 (202.20)Phosphorus (mg)

172.8121.3014.04.000.600.100.0012.46 (27.07)Selenium (mcg)

52.260.300.120.050.020.000.000.49 (4.30)Manganese (mg)

5.120.140.100.070.040.020.000.16 (0.54)Copper (mg)
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Figure 2. Correlation coefficients between independent (see Table 1) and dependent (see Table 2) nutrition attributes in this study.

Machine Learning Algorithms

Classification and Regression Models
In addition to linear models, such as ordinary least squares
(OLS) regression or logistic regression classification models,
a range of machine learning regression and classification
algorithms are deployed to capture the nonlinear and complex
relationships between the dependent and independent variables
in this study. The no free lunch theorem (NFLT) in machine
learning [27] states that no one algorithm is optimal for every
classification or regression problem, and therefore, a variety of
algorithms are used to ensure that the reported predictive power
of input attributes is not limited by a particular algorithm. A
brief description of the algorithms used in this study is provided
below. Those interested in further information about these
algorithms are encouraged to refer to [28].

Decision Trees
Decision trees are a widely used algorithm that is popular due
to their low computational complexity and transparency, making
their output easy to interpret. These trees are constructed through
a series of if-then rules based on the value of input features.
Classification and regression trees are a widely deployed
implementation of decision trees, and through the concept of
ensemble learning, several individual decision trees can be

combined to form random forests (RFs). The RF algorithm is
based on the construction of a multitude of decision trees at
training time and outputting the class that is the mode of the
classes (classification) or mean prediction (regression) of the
individual trees. This technique provides more robust and
accurate predictions. Gradient boosting machines (GBMs) are
also a popular tree-based algorithm that uses the concept of
boosting, in which an iterative approach is taken to construct
an ensemble model with each individual tree aimed at improving
overall performance. GBMs differ from RFs by modifying the
weights of the training data at each iteration, allowing for a
greater emphasis on incorrectly classified data points in
subsequent iterations and thus improving the overall accuracy
of the model.

K-Nearest Neighbors
The k-nearest neighbors (KNN) is a simple yet powerful
algorithm that makes predictions for any record by finding the
k most similar data points in the training data set. KNN uses a
distance metric, such as Euclidean distance, to measure the
similarity between a test sample and the training data set. The
algorithm then identifies the k closest neighbors to the test
sample based on the distance metric and assigns the class of the
majority of the nearest neighbors to the test sample. This
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algorithm is nonparametric and does not require a training phase,
making it easy to implement and apply to various data sets.

Neural Networks
Neural networks are a complex and powerful class of machine
learning algorithms that are based on the structure and function
of the human brain. They consist of several simple, highly
interconnected processing elements known as artificial neurons
that are structured in layers and connected through weighted
links. The aim of this algorithm is to simulate the behavior of
the human brain, with neurons activated by other neurons to
which they are connected and, once triggered, generate output
that can trigger additionally connected neurons. The neural
network is composed of an input layer, one or more hidden
layers, and an output layer. Neural networks can be used for
both classification and regression tasks, and their power lies in
their ability to capture complex and nonlinear relationships
between the input features and the output variable.

Support Vector Machines
Support vector machines (SVMs) aim to find optimal decision
planes that serve as decision boundaries. For this, SVM uses
the concept of kernel methods. In this method, the input data is
mapped onto a high-dimensional feature space using a set of
functions known as kernels, where decision boundaries can be
defined. Linear kernels and radial basis function (RBF) kernels
are 2 widely used SVM kernel functions. SVMs are particularly
effective in high-dimensional spaces, where the number of
features is large compared to the number of samples. SVMs can
be used for both regression and classification tasks and can
handle complex data sets with nonlinear boundaries.

It should be noted that these algorithms are parameterized, and
the choice of their tuning parameters, also referred to as
hyperparameters, can significantly impact their performance
[28,29]. Table 3 lists the machine learning algorithms deployed
in this study along with their corresponding hyperparameters.

As shown in Table 3, the study deploys both classification and
regression models to predict the micronutrient contents of foods.
While regression models attempt to predict the exact nutrient
quantities, it should be noted that most consumers may not need
the exact numeric quantities of food micronutrients. This is due
to the wide range of daily recommended values for
micronutrients, which can range from micrograms to milligrams.

As a result, interpreting the numeric quantities of micronutrients
can be challenging for many consumers [20]. To address this
issue, food authorities around the globe have developed
simplified food labels, such as the Multiple Traffic Light designs
by the UK Food Standards Agency (see Figure 1). Similarly,
in this study, 3 categories of low, medium, and high are also
considered for each micronutrient based on the percentiles of
their distribution (see Table 2). The “low” category represents
values that are below the 33rd percentile; the “medium” category
refers to values between the 33rd and 66th percentiles; and the
“high” category refers to values above the 66th percentile. These
labels can then be used to represent the various micronutrient
contents. From a modeling perspective, these will be 3-level
classification tasks and are examined using the classification
algorithms shown in Table 2. In order to avoid overfitting, the
data was divided into 2 mutually exclusive subsets: the training
set (80%) and the test set (20%) [28,29]. A methodology
introduced in [29] was used for this purpose, with the training
and test sets being determined at random but possessing similar
distributions of the dependent variable in both sets. The optimal
values of the hyperparameters were subsequently determined
through an adaptive search algorithm proposed by Kuhn and
Johnson [29] and 10-fold cross-validation using only the training
set. In k-fold cross-validation, data is randomly divided into k
equal partitions, each referred to as a fold, with k-1 folds being
used to construct a model and the remaining fold being used
for performance evaluation. This process is repeated k times,
with a different fold chosen for evaluation each time. Once the
optimal values of the hyperparameters are determined, the entire
training set is used to train a model, the performance of which
is then evaluated on the test set. This approach ensures that the
test set samples are not used during the model training or
hyperparameter optimization steps, thereby minimizing the risk
of overfitting [28].To ensure that performance evaluations are
not specific to any one random test set (which could potentially
consist only of easily predictable samples, for example), the
above procedure is replicated 10 times, each time using new
random training and test sets, and the performance measures
are averaged [29]. The evaluation of models’performance based
on 10 independent, random, and completely out-of-sample test
sets is deemed critical in ensuring that the results reported in
this study are not subject to overfitting, a risk when applying
advanced machine learning algorithms [28,29].
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Table 3. List of machine learning algorithms deployed in this study along with their hyperparameters.

HyperparametersApplicationAcronymAlgorithm name

Classification and regressionCARTClassification and regression trees • Complexity parameter, cp

Classification and regressionGBMGradient boosting machines • No. of trees, n.trees
• Depth, interaction.depth
• Shrinkage parameter, shrinkage

Classification and regressionKNNK-nearest neighbors • No. of neighbors, k

ClassificationLRLogistic regression • N/Aa

Classification and regressionNNNeural networks • Weight decay, decay
• No. of hidden layer units, size

RegressionOLSOrdinary least squares • N/A

Classification and regressionRFRandom forests • No. of variables available for splitting, mtry

Classification and regressionSVM-LSupport vector machines–linear kernel • Cost parameter, c

Classification and regressionSVM-RBFSupport vector machines–radial basis function kernel • Cost parameter, c
• RBF kernel parameter, sigma

aN/A: not applicable.

Results

Regression Models

Figure 3 shows the R2 of different regression models for
predicting unreported vitamins using the nutrition information
provided by the NFL. It is found that vitamin B6 could be

predicted with the highest accuracy, with an R2 of 0.75 for the
best model, namely, GBM. In contrast, the prediction of vitamin

C is found to be the most challenging, with an R2 of 0.37 for
the best model, namely, RFs. The results also demonstrate the
superiority of most machine learning algorithms over the linear
regression model (OLS), as the former is able to capture
complex and nonlinear relationships that may exist between the
predictors and dependent variables.

Similarly, Figure 4 shows the R2 of various regression models
for estimating unreported minerals. As shown, magnesium can

be estimated with the highest accuracy (R2=0.82 for the best
model, ie, GBM), while the accuracy of predicting manganese

is the lowest compared to other minerals (R2=0.28 for the best
model, ie, NN). Again, the result confirms that most machine
learning algorithms outperform OLS.

The results from Figures 3 and 4 show that while the use of
machine learning models can explain a significant portion of
the variability in unreported micronutrients based on the
nutrition information provided on food labels, the accuracy of
such models in predicting the exact value of these micronutrients
is far from perfect. However, as discussed, the exact numeric
value of a micronutrient may not always be necessary. The next
section presents the results of the classification models.
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Figure 3. R2 of different regression models for predicting unreported vitamins using other nutrition information presented on Nutrition Facts Label.
CART: classification and regression trees; GBM: gradient boosting machines; KNN: k-nearest neighbors; NN: neural networks; OLS: ordinary least
squares; RF: random forests; SVM-L: support vector machines-linear kernels; SVM-RBF: support vector machines-radial basis function.

Figure 4. R2 of different regression models for predicting unreported minerals using other nutrition information presented on Nutrition Facts Label.
CART: classification and regression trees; GBM: gradient boosting machines; KNN: k-nearest neighbors; NN: neural networks; OLS: ordinary least
squares; RF: random forests; SVM-L: support vector machines-linear kernels; SVM-RBF: support vector machines-radial basis function.

Classification Models
The accuracy of various classification models for predicting the
category (ie, “low,” “medium,” or “high”) of unreported
vitamins using the nutrition information provided on NFL is
shown in Figure 5. In this context, classification accuracy is
defined as the proportion of correctly classified records. It can
be seen that reasonable accuracy is achievable for predicting
the categories of most vitamins. When comparing different
vitamins, the results suggest that the accuracy is particularly
high (>0.90) for the best machine learning models when
predicting the presence of vitamins B1 and B12. In general,
nonlinear models, such as GBM, SVM, RF, and NN, are shown

to outperform linear logistic regression models and simple
decision trees (classification and regression tree).

Further examination of the misclassified records in Figure 5
reveals 2 notable characteristics. First, a significant percentage
of misclassified records are misclassified between the “low”
and “medium” categories or between the “medium” and “high”
categories, with a negligible percentage between the “low” and
“high” categories. For example, considering the best
classification model for vitamin A (ie, GBM), 13.82% of foods
are misclassified. This includes 3.42% of foods in the “low”
vitamin A category being classified as “medium,” 2.98% of
foods from the “medium” category being classified as “low,”
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3.85% of foods from the “medium” class being classified as
“high,” 3.35% of foods from the “high” class being classified
as “medium,” and only 0.18% of foods from the “low” category
being classified as “high,” and 0.04% of foods from the “high”
category being misclassified as “low.” Second, an examination
of the misclassified records reveals that most are borderline.
For example, considering the GBM model for vitamin A
prediction, the average percentile of “low” category records
that are misclassified as “medium” is 30.78%, which is close
to the classification boundary (ie, 33%). Similarly, the average
percentile of “medium” category records that are misclassified
as “low” and “high” is 38.56% and 60.24%, respectively. These
observations suggest that not only is the rate of misclassification
relatively small, but also that those records that are misclassified
are not severely misleading.

Similarly, Figure 6 shows the accuracy of different classification
models for predicting the category (ie, “low,” “medium,” or
“high”) of unreported vitamins using the nutrition information
provided on the NFL. Again, we can see a reasonable
performance of classification models, where the best models’
accuracy is higher than 90% for predicting magnesium,
phosphorous, and zinc.

The results in Figure 6 demonstrate the reasonable performance
of classification models in predicting the categories of
unreported minerals, with the best models achieving accuracy
higher than 0.90 for predicting magnesium, phosphorous, and
zinc. In order to gain a deeper understanding of the role of each
independent variable in predicting unreported micronutrients,
Table 4 presents variable importance scores (VIS) for each
predictor nutrition attribute when predicting various unreported
vitamins. As described in [29], VIS is calculated by removing
independent variables from a model and measuring the
corresponding decrease in the model’s accuracy. The most
important attribute is assigned a value of 100, with other
attributes scaled proportionally.

The results in Table 4 align with the correlation results shown
in Figure 2, with protein, iron, and potassium frequently
appearing as highly predictive independent attributes when
classifying foods based on their vitamin content. Similarly,
Table 5 presents the VIS values for each nutrition attribute when
predicting various unreported minerals, with the results again
agreeing with the correlation values shown in Figure 2, where
potassium, iron, calcium, and protein are among the top
predictors.

Figure 5. Accuracy of different classification models for predicting the category of unreported vitamins using other nutrition information presented
on Nutrition Facts Label. CART: classification and regression trees; GBM: gradient boosting machines; KNN: k-nearest neighbors; LR: logistic
regression; NN: neural networks; OLS: ordinary least squares; RF: random forests; SVM-L: support vector machines-linear kernels; SVM-RBF: support
vector machines-radial basis function.
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Figure 6. The accuracy of different classification models for predicting unreported minerals using other nutrition information presented on Nutrition
Facts Label. CART: classification and regression trees; GBM: gradient boosting machines; KNN: k-nearest neighbors; LR: logistic regression; NN:
neural networks; OLS: ordinary least squares; RF: random forests; SVM-L: support vector machines-linear kernels; SVM-RBF: support vector
machines-radial basis function.

Table 4. The variable importance score quantities for each of the reported nutrition attributes when predicting various unreported vitamins.

Vitamin KVitamin EVitamin CVitamin B12Vitamin B6Vitamin B3Vitamin B2Vitamin B1Vitamin A

49.5174.91a75.339.0523.0819.3320.4922.3960.49Calories

65.89100a62.487.7119.2915.3418.6619.452.71Total fat

58.6069.3949.9512.0424.2717.8122.4721.3152.26Saturated fat

33.2854.8147.1113.9025.1914.5228.2632.9037.76Trans fat

36.4046.0740.42100a15.149.6916.3029.7141.76Cholesterol

56.1963.8765.9314.9125.1017.4325.9227.9267.32Sodium

49.4370.74100a17.6222.7118.7316.7048.6082.20aTotal carbohydrate

100a36.7236.797.6115.2712.313.0213.5538.09Dietary fiber

37.9360.1050.326.3521.5610.9712.9512.3150.58Total sugars

59.9772.1282.5a39.68a82.64a100a100a47.08a86.07aProtein

64.5078.329.4727.959.7655.6811.6617.5055.97Vitamin D

76.27a73.3166.8221.1529.924.5933.1522.09100aCalcium

72.0175.35a71.8533.7a100a76.92a55.31a100a71.11Iron

79.01a68.986.42a28.4251.68a38.12a40.32a45.91a74.89Potassium

aThe top 3 predictors.
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Table 5. The variable importance score quantities for each of the reported nutrition attributes when predicting various unreported minerals.

ZincSeleniumPhosphorusManganeseMagnesiumCopper

8.5720.0610.9738.2117.1924.2Calories

6.9718.957.1433.4513.4422.73Total fat

11.7821.399.8837.3216.2426.7Saturated fat

9.1019.7610.4841.415.9019.91Trans fat

4.7444.09a8.3065.7834.1933.71Cholesterol

9.8928.0212.4950.4216.5330.97Sodium

11.7331.028.1272.45a17.2128.68Total carbohydrate

8.3617.066.0972.2566.84a20.43Dietary fiber

6.1118.985.0549.2010.6720.95Total sugars

100a100a100a52.5237.87a31.97Protein

4.508.853.2222.606.68311.49Vitamin D

33.4338.2195.74a61.9724.8634.64aCalcium

55.38a27.1912.1183.56a29.31100aIron

37.76a48.51a37.83a100a100a70.86aPotassium

aThe top 3 predictors.

Discussion

Principal Findings
The results presented in the previous section demonstrate the
potential for machine learning models to estimate unreported
micronutrients based on the nutrition information provided on
food labels. The regression models presented in this study
showed that vitamin B6 and magnesium were the micronutrients
that could be predicted with the highest accuracy, while vitamin
C and manganese were the most challenging micronutrients to
predict accurately. Furthermore, the classification models were
able to predict the categories of most vitamins and minerals
with a high degree of accuracy, with nonlinear models
outperforming linear models. The VISs for each predictor
nutrition attribute were also calculated to gain a deeper
understanding of the role of each independent variable in
predicting unreported micronutrients. The results indicate that
protein, iron, potassium, and calcium were among the top
predictors for both vitamins and minerals.

The findings of this study demonstrate that classification models
outperform regression models in predicting unreported
micronutrients using nutrition information provided on food
labels. It is important to note that regression models aim to make
precise predictions about continuous dependent variables, which
makes them more complex than classification models that
predict categorical outcomes based on input features.
Furthermore, the skewed distribution of dependent nutrition
variables considered in the regression models, as presented in
Table 2, can significantly hinder their prediction accuracy. The
interpretation of exact numeric quantities of food micronutrients,
however, can be challenging for many consumers due to the
wide range of daily recommended values [20], making it
unnecessary for most to require exact numeric quantities. On

the other hand, classification models, which indicate
micronutrient levels as “low,” “medium,” or “high,” provide
easily interpretable insights for consumers. Mobile apps that
implement classification models to predict unreported
micronutrients can offer beneficial information to various user
groups, especially those at risk of micronutrient deficiencies,
including vegetarians, vegans [30], and older adults [3,31]. By
scanning food labels, mobile apps can provide a simplified and
engaging presentation of nutrient content and also offer features
such as daily meal planning and water intake tracking [32,33].
Fortunately, machine learning algorithms are easy to deploy on
mobile apps, and they do not require privacy-sensitive
permissions to function. Furthermore, mobile apps that monitor
users’ food intake can suggest foods based on their micronutrient
content. Such features have been reported to be effective in
increasing dietary diversity and alleviating micronutrient
deficiency [34]. In general, these features can raise user
awareness of their health and nutrition and, as a result, may lead
to better dietary habits [35].

Limitations and Future Studies
While this research offers valuable insights into the potential
for estimating various unreported micronutrients from existing
food labels, it has some limitations that should be considered.
Most importantly, this study focused on American diets using
the foods listed in the What We Eat In America database.
However, given that diets differ between countries [36], further
research using diet and nutrient data from other countries would
be valuable. In addition to the potential for improved
performance with larger training data sets, it is worth
considering that certain machine learning algorithms may
perform better at predicting specific micronutrients or food
categories. Therefore, the development of ensemble machine
learning models that combine the strengths of individual models
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may represent a promising avenue for further enhancing
predictive accuracy and should be pursued in future research.
Finally, a follow-up study demonstrating the integration of
machine learning algorithms to predict unreported
micronutrients would provide significant practical value.

Conclusions
This study demonstrates the feasibility of predicting unreported
micronutrients from food labels. By analyzing detailed nutrition
data from over 5000 foods and applying a range of machine
learning algorithms, the study finds that it is possible to predict
the category (ie, “Low,” “Medium,” or “High”) of various

vitamins and minerals with an accuracy of at least 0.80.
According to the results of this study, the highest prediction
accuracies for specific micronutrients were achieved for vitamin
B12 (0.94) and phosphorus (0.94), while the lowest were for
vitamin E (0.81) and selenium (0.83). These findings have
important implications for helping consumers make more
informed decisions about their nutrition and for improving the
overall health of the population. By using mobile apps to present
this information in an engaging and easy-to-interpret manner,
it may be possible to encourage better nutrition decisions and
address the significant prevalence of micronutrient deficiencies.

Data Availability
This study used the Food and Nutrient Database for Dietary Studies (FNDDS) 2019-2020 data set, which is made available by
the US Department of Agriculture (USDA) and can be obtained from [37].
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