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Abstract

Background: Fetal alcohol syndrome (FAS) is a lifelong developmental disability that occurs among individuals with prenatal
alcohol exposure (PAE). With improved prediction models, FAS can be diagnosed or treated early, if not completely prevented.

Objective: In this study, we sought to compare different machine learning algorithms and their FAS predictive performance
among women who consumed alcohol during pregnancy. We also aimed to identify which variables (eg, timing of exposure to
alcohol during pregnancy and type of alcohol consumed) were most influential in generating an accurate model.

Methods: Data from the collaborative initiative on fetal alcohol spectrum disorders from 2007 to 2017 were used to gather
information about 595 women who consumed alcohol during pregnancy at 5 hospital sites around the United States. To obtain
information about PAE, questionnaires or in-person interviews, as well as reviews of medical, legal, or social service records
were used to gather information about alcohol consumption. Four different machine learning algorithms (logistic regression,
XGBoost, light gradient-boosting machine, and CatBoost) were trained to predict the prevalence of FAS at birth, and model
performance was measured by analyzing the area under the receiver operating characteristics curve (AUROC). Of the total cases,
80% were randomly selected for training, while 20% remained as test data sets for predicting FAS. Feature importance was also
analyzed using Shapley values for the best-performing algorithm.

Results: Overall, there were 20 cases of FAS within a total population of 595 individuals with PAE. Most of the drinking
occurred in the first trimester only (n=491) or throughout all 3 trimesters (n=95); however, there were also reports of drinking in
the first and second trimesters only (n=8), and 1 case of drinking in the third trimester only (n=1). The CatBoost method delivered
the best performance in terms of AUROC (0.92) and area under the precision-recall curve (AUPRC 0.51), followed by the logistic
regression method (AUROC 0.90; AUPRC 0.59), the light gradient-boosting machine (AUROC 0.89; AUPRC 0.52), and XGBoost
(AUROC 0.86; AURPC 0.45). Shapley values in the CatBoost model revealed that 12 variables were considered important in
FAS prediction, with drinking throughout all 3 trimesters of pregnancy, maternal age, race, and type of alcoholic beverage
consumed (eg, beer, wine, or liquor) scoring highly in overall feature importance. For most predictive measures, the best
performance was obtained by the CatBoost algorithm, with an AUROC of 0.92, precision of 0.50, specificity of 0.29, F1 score
of 0.29, and accuracy of 0.96.
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Conclusions: Machine learning algorithms were able to identify FAS risk with a prediction performance higher than that of
previous models among pregnant drinkers. For small training sets, which are common with FAS, boosting mechanisms like
CatBoost may help alleviate certain problems associated with data imbalances and difficulties in optimization or generalization.

(J Med Internet Res 2023;25:e45041) doi: 10.2196/45041
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Introduction

Fetal alcohol spectrum disorders (FASDs) comprise a range of
neuropsychological and behavioral deficits that emerge from
prenatal alcohol exposure (PAE) [1]. The most severe form of
FASD, otherwise known as fetal alcohol syndrome (FAS), is
characterized by distinct facial malformations, prenatal or
postnatal growth retardation, and central nervous system
abnormalities [2]. In the United States, it is predicted that around
1%-5% of school-aged children have FASDs and 0.6%-0.9%
have FAS [3]. While FASDs are 100% preventable if a pregnant
woman abstains from consuming alcohol [4], more than 10%
of women drink during pregnancy [5]. For certain populations,
such as women with alcohol use disorders (AUDs) and women
with unintended pregnancies, this rate is higher [6].

Machine learning (ML) proposes an interesting solution to
predicting FASDs, as only 1 in every 13 pregnant women who
consume alcohol during pregnancy delivers a child with FASDs
[7]. However, studies using ML algorithms in FAS detection
have been limited to small samples [8] or nonhuman studies
[9]. For example, a rodent study of FAS found that certain ML
models, including support vector machine–based algorithms of
the brain’s functional connectivity, have successfully predicted
PAE among rodents with an accuracy of up to 62.5%,
highlighting the potential for ML-based human subject research
[9]. Genome-wide DNA methylation data in small human
cohorts (n=48) have achieved moderately accurate predictions
of FASD status by using gradient boosting models to distinguish
FASD cases and controls [8]. The “K Nearest Neighbor”
algorithm for imputing missing prenatal alcohol data has
predicted pregnant drinkers with an accuracy of up to 76% and
shown potential in imputing missing data for longitudinal studies
where data missingness leads to bias [10].

As of now, few studies have attempted to use ML strategies to
detect prenatal exposure to alcohol, despite its increased use in
retrospective studies of other teratogens like tobacco [11,12],
environmental contaminants [13], and certain medications [14].
For example, in an American cohort study of 531 children
between 3 and 5 years old, ML algorithms achieved an accuracy
of 81% in detecting prenatal exposure to smoking, by
incorporating DNA methylation data and maternal self-reports
[12]. In another study of longitudinal birth cohorts in New York
City, cord blood DNA methylation samples were found to
predict average prenatal exposure to air pollution like NO2 and
PM2.5 with an accuracy of up to 60% (95% CI 0.52-0.68) [15].

Furthermore, while ML has been used increasingly in recent
years to improve the “diagnosis” of FAS—for example,
identifying facial features [16]—fewer studies have focused on
“predicting” FAS based upon maternal risk factors such as the
timing of alcohol exposure during pregnancy (eg, first vs second
or third trimester), as well as the frequency and amount of
drinking. One reason is because of the difficulty of collecting
detailed information about alcohol drinking during pregnancy
[9]. With the creation of the collaborative initiative on fetal
alcohol spectrum disorders (CIFASDs) in 2003, a consortium
of clinicians and researchers from multiple sites in the United
States and Europe have begun to collaboratively gather data on
prenatal exposure to drugs and alcohol, including data on alcohol
exposure histories from maternal reports and review of medical
or legal or social service records [17].

As statistical and ML forecasting methods often vary in
predictive performance for neonatal studies (eg, ML methods
had higher predictive accuracy than traditional statistical
methods in predicting mortality among low birthweight infants)
[18], this study aims to predict FASDs based on a number of
maternal characteristics, and compare or contrast these factors
with risk factors highlighted in the existing body of literature
where more traditional, statistical methods were used.

Methods

Overview
Data were collected by CIFASD as part of a longitudinal,
multisite research study of pregnant drinkers between 2003 and
2017 (for full methodology, see [17]). For this study, data on
dysmorphology (U24AA014815), neurobehavior
(U01AA014834), and demographics (U01AA014809) were
used to gather information about 595 pregnant drinkers who
visited 1 of the following sites within the United States to be
interviewed about various questions related to their pregnancy
behaviors and birth-related outcomes: (1) Center for Behavioral
Teratology, San Diego State University, San Diego, CA; (2)
Emory University, Atlanta, GA; (3) 7 Northern Plains
communities, including 6 Indian reservations; (4) the University
of California, Los Angeles, CA; and (5) the University of
Minnesota, Minneapolis, MN [17]. Institutional review boards
(IRBs) at all CIFASD sites approved this study, and the Harvard
T.H. Chan School of Public Health IRB approved analyses of
these secondary data (Protocol #: IRB21-1261).

J Med Internet Res 2023 | vol. 25 | e45041 | p. 2https://www.jmir.org/2023/1/e45041
(page number not for citation purposes)

Oh et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.2196/45041
http://www.w3.org/Style/XSL
http://www.renderx.com/


Study Sites

Center for Behavioral Teratology, San Diego, California
At this site, children suspected of alcohol exposure were referred
to the principal investigator and local professionals for
participation in this project [17]. Many patients were already
studying at this center before the initiation of the CIFASD
project, including those referred to the investigative team for
meeting the traditional diagnostic criteria for FAS (eg, facial
anomalies; growth retardation; and evidence of central nervous
system dysfunction such as microcephaly, mental retardation,
or attentional deficits) [19]. Alcohol exposure histories were
obtained via self-reports or professional reviews of medical,
legal, or social service records of the biological mother. Parents
or primary caregivers completed questionnaires regarding the
child’s behavior, while the children were examined for facial
features of FAS, that is, 2 of the 3 key facial features (short
palpebral fissures: ≤10th centile; thin vermilion border of the
upper lip: rank 4 or 5 on a racially normed lip or philtrum guide;
smooth philtrum: rank 4 or 5 on a racially normed lip or philtrum
guide), as well as signs of prenatal or postnatal growth
deficiency (head circumference or height or weight ≤10th
percentile) [20].

Emory University, Atlanta, Georgia
At Emory University, the Fetal Alcohol and Drug Exposure
Clinic gathered data on a large sample of patients with FASDs
while providing clinical services and facial evaluations at the
Emory University Marcus Institute [21]. In the absence of direct
reports, documentation of alcohol abuse or dependence by the
biological mother in the form of medical, social services, or
court records was reviewed [17]. Recruitment took place via
clinical and community referrals, and parents or primary
caregivers completed questionnaires or interviews, while patients
with FASD were administered various neuropsychological tests
over a 3-hour session [22].

Northern Plains
Seven communities, including 1 urban and 6 reservation sites
throughout North Dakota, South Dakota, and Montana,
participated in this study [21]. Children with FASDs were
recruited via active case ascertainment methods and
advertisements in tribal and community health centers [20].
Data on PAE were obtained from in-person interviews with the
parent or primary caregiver to obtain exact exposure histories
retrospectively and were also confirmed via reviews of medical
records, when available [20].

University of Minnesota, Minneapolis, Minnesota
The Department of Psychiatry at the University of Minnesota
collected data on PAE histories obtained through several
modalities including medical reports, birth records, social service
records, and when available, using maternal self-reports [21].

University of California, Los Angeles
Data were collected from children attending the Fetal Alcohol
and Related Disorders Clinic at University of California, Los
Angeles (UCLA) [23]. Participant recruitment was through
local FASD clinic referrals, web-based advertisements, and
word of mouth in caregiving communities [23]. All alcohol

exposure histories were confirmed via in-person interviews,
maternal reports of prenatal substance exposure, or the review
of maternal medical records by a licensed medical doctor [23].

To obtain information about PAE, questionnaires or in-person
interviews as well as reviews of medical, legal, or social service
records regarding alcohol-related problems or a diagnosis of
alcohol abuse were used to gather information about alcohol
consumption. At all CIFASD sites, the Institute of Medicine’s
definition of FASDs was used for diagnosis, for example, (1)
evidence of a characteristic pattern of minor facial anomalies
including at least 2 or more of the key facial features of FAS
(palpebral fissures ≤10th centile, thin vermilion border, or
smooth philtrum), (2) evidence of prenatal and postnatal growth
retardation (height or weight ≤10th centile), (3) evidence of
deficient brain growth (structural brain anomalies or
occipitofrontal circumference ≤10th centile), and if possible
(4), confirmation of maternal alcohol consumption directly from
the mother or a knowledgeable collateral source was used for
FAS diagnosis [2] were used by dysmorphologists at each site
to diagnose FAS. Among children with confirmed PAE, a
diagnosis of FAS was made if 2 of the 3 key facial features of
FAS (ie, short palpebral fissure, smooth philtrum, or thin
vermillion) was accompanied by either microcephaly, growth
retardation, or both [17]. Children were excluded when there
were reports of known causes of mental deficiency, such as
congenital hypothyroidism, neurofibromatosis, or chromosomal
abnormalities.

At 4 of the sites including Emory University, the University of
California, University of Minnesota, and San Diego, a
dysmorphologist trained to accurately diagnose FAS based on
physical features, as defined by the CIFASD Dysmorphology
Core, was used to diagnose FAS. Contrastingly, for the Northern
Plains site, a team of physicians, teachers, and other
representatives were trained to identify children with certain
morphological characteristics of FASD and other birth defects,
IQ, and neuropsychologic traits; however, subjects could not
always be referred to a pediatric dysmorphologist for verification
or a complete physical examination or morphology assessment;
resulting in difficulties with ethnic variations in morphology,
syndromic features of FASDs were sometimes compared to
normal controls within the same population, in terms of weight,
head circumference, fissure length, and other facial
characteristics (eg, ptosis and intercanthal distance) [24].

Regarding PAE, all cases of biological mothers with reported
alcohol consumption during pregnancy were categorized into
1 of the following mutually exclusive groups: (1) women who
consumed alcohol in the first trimester only, (2) women who
consumed alcohol in the first and second trimesters only, (3)
women who consumed alcohol during all 3 trimesters of
pregnancy, and (4) women with “other” drinking patterns (eg,
drinking only in the second or third trimester). Preferred
alcoholic beverage type (eg, “beer,” “wine,” and “spirits”),
maternal age, maternal race (American Indian or Alaska Native,
Asian, Native Hawaiian or other Pacific Islander, Black or
African American, White, more than 1 race, other), ethnicity
(Hispanic or Latino, or Not Hispanic or Latino), the reception
of prenatal care (yes, no), and experience of any
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pregnancy-related complications (bleeding, high blood pressure,
diabetes) were also included in all models.

For the computational analyses, 80% (n=595) of the total cases
were randomly selected for training, while 20% remained as
test data sets for predicting FAS (Figure 1). The measures for
the predictive performance of each algorithm (logistic
regression, XGBoost, light gradient-boosting machine [GBM],
and CatBoost) included area under the precision-recall curve
(AUPRC) and area under the receiver operating characteristic

curve (AUROC). Besides logistic regression, which has been
the traditional approach for making associations between
pregnant drinking patterns and FASDs in the existing body of
literature [25,26], on boosting (XGBoost [27], light GBM [28],
CatBoost [29]), a supervised ML method that consists of
aggregating classifiers developed sequentially on the train-test
sample, to learn from classifiers, correct errors, and obtain more
accurate classifiers by training a sequence of weaker models
[30].

Figure 1. Flow diagram of investigation. AUPRC: area under the precision-recall curve; AUROC: receiver operating characteristics curve; GBM:
gradient-boosting machine.

In order to verify the prediction performance of our 4 methods,
the performance of each of the 4 models was bootstrapped 1000
times for our entire sample (n=595) and validated. A box plot
of the mean and pooled standard deviations of each model over
1000 bootstrapped samples can be found in Multimedia
Appendix 1. All models had a similar range in variance with
pooled standard deviations ranging from 0.07 (light GBM) to
0.09 (CatBoost, XG Boost, logistic regression). As CatBoost
continued to show the highest prediction performance out of
all 4 models following verification (mean 0.94, SD 0.09), the
importance of features based on Shapley values was verified
based on the CatBoost model, and Shapley additive explanation
values [31] were used to interpret how each feature contributed
to the prediction of FAS risk based on the CatBoost model. All
statistical analyses were performed using Python (version 3.7.2;
Python Software Foundation) and Scikit-learn library (version
0.20.2; David Cournapeau and Matthieu Brucher) [32].

Ethics Approval
This study was approved by the IRB at the Harvard TH Chan
School of Public Health (IRB approval number: IRB21-1261),
and the procedures were conducted in accordance with the
Helsinki Declaration of 1975, as revised in 2000 for human
subjects research. During primary data collection at each clinical
location of CIFASD. IRB approval and informed consent were
obtained from all adult participants or their legal guardians [33].
For secondary analysis of the data, our research team was
provided with deidentified and anonymized data upon request
and approval from CIFASD’s data committee.

Results

Table 1 presents the data characteristics of the study population.
Overall, there were 20 cases of FAS within a total population
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of 595 individuals with PAE. Most of the drinking occurred in
the first trimester only (n=491) or throughout all 3 trimesters
(n=95); however, there were also reports of drinking in the first
and second trimesters only (n=8), and 1 case of drinking in the
third trimester only (n=1).

Figure 2 presents the AUROC and the AUPRC of each ML
algorithm. The CatBoost method delivered the best performance
in terms of AUROC (0.92) and AUPRC (0.51), followed by the
logistic regression method (AUROC 0.90; AUPRC 0.59), light
GBM (AUROC 0.89; AUPRC 0.52), and XGBoost (AUROC
0.86; AUPRC 0.45).

Table 1. Data characteristics of study population.

No FAS (n=575)FASa (n=20)TotalCharacteristics

Drinking timing, n (%)

488 (99.4)3 (0.6)491First trimester only

8 (100.0)0 (0.0)8First and second trimesters

78 (82.1)17 (17.9)95All throughout

1 (100.0)0 (0.0)1Other

Race, n (%)

78 (98.7)1 (1.3)79American Indian or Alaska Native

234 (98.3)4 (1.7)238Black

227 (95.8)10 (4.2)237White

36 (87.8)5 (12.2)41Otherb

Ethnicity, n (%)

90 (97.8)2 (2.2)92Hispanic or Latino

485 (96.4)18 (3.6)503Not Hispanic or Latino

25.93 (3.61)24.30 (2.93)25.45 (3.59)Maternal age at childbirth, mean (SD)

Preferred alcoholic beverage, n (%)

61 (83.6)12 (16.4)73Beer

493 (99.4)3 (0.6)496Wine

21 (80.8)5 (19.2)26Liquor

Prenatal care, n (%)

40 (88.9)5 (11.1)45No

535 (97.3)15 (2.7)550Yes

Pregnancy complications, n (%)

452 (96.6)16 (3.4)468No

123 (96.9)4 (3.1)127Yes

575 (96.6)20 (3.4)595Total, n (%)

aFAS: fetal alcohol syndrome.
bAsian, Native Hawaiian or other Pacific Islander, or more than 1 race.
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Figure 2. Performance evaluation of machine learning (ML) algorithms for FAS prediction in the collaborative initiative on fetal alcohol spectrum
disorder (CIFASD) data set. AUC: area under the receiver operating characteristic curve; AP: average precision; FAS: fetal alcohol syndrome; GBM:
gradient-boosting machine; ROC: receiver operating characteristic.

Shapley values illustrated that drinking throughout all 3
trimesters of pregnancy, maternal age, race, and type of
alcoholic beverage consumed were observed to be the most
important features for prediction (mean 1.08), followed by
maternal age (mean 0.79), race (mean 0.52), beverage type
(mean 0.4), pregnancy complications (mean 0.2), ethnicity
(mean 0.07), and prenatal care (mean 0.03). Regarding alcohol
consumption amount, drinking throughout all 3 trimesters was
associated with FAS risk, however, only drinking during the
first trimester, drinking during the first and second trimesters,
and other patterns were not associated with increased FAS risk.

Discussion

Principal Findings
FAS is more common among socioeconomically disadvantaged
populations but is also more likely to be underdiagnosed due
to inadequate resources [34]. The significance of our research
from an algorithm development perspective is that our study is
the first of its kind to use ML algorithms to predict FASD onset,
via the incorporation of variables associated with maternal
pregnancy behaviors and the CIFASD data set. Despite FASDs
being 100% preventable in nature, the application of automated
methods such as ML for the identification of high-risk groups
remains rare, relative to other neurodevelopmental disorders.

However, while few FASD studies have incorporated ML for
“disease prediction” based on maternal behaviors and
sociodemographic characteristics, a growing body of literature
has been incorporating ML for “diagnostic purposes” using
facial features’ data to distinguish FASD children from
non-FASD children [35]. While this was not the objective of
our study, it is interesting to note that recent studies
amalgamating ML methods such as decision trees, support
vector machine, and k-nearest neighbor with 3D-metric facial
data for FAS diagnosis have been able to achieve an accuracy
rate of up to 89% in clinical settings [35]. Scholars have
remarked that advances in FASD diagnosis are often “hindered
by a lack of consensus in diagnostic criteria and limited use of
objective biomarkers,” highlighting the value of such studies
to aid clinical decision-making.

For other intellectual disabilities with larger data sets like autism
spectrum disorder (ASD) and epilepsy [36], accuracy rates have
ranged from 72.40% [37] to 86.64% [38]. However, in 1 study
of children with ASDs, data sets incorporating graph signal
processing data were able to reach a diagnostic accuracy of up
to 100% in differentiating ASD patients from typically
developing children [39]. These studies suggest that for
neurodevelopmental illnesses like ASD, artificial intelligence
techniques could aid physicians to apply automatic diagnosis
and rehabilitation procedures with great accuracy in the future
[40].

In 2 of our ML models, the use of only 12 variables centralized
around self-reportable measures of alcohol consumption during
pregnancy and basic sociodemographic characteristics (age and
race or ethnicity) resulted in a predictive accuracy of over 90%.
While it may be common knowledge that drinking any amount
of alcohol can harm the fetus, it is important to understand that
information regarding dose, timing, type, and frequency can
improve the prediction of FAS.

Comparison to Prior Work
Regarding ML, scholars have emphasized that there are
numerous issues with interpretability and inference, including
overgeneralization or overinterpretation of causality [35].
Likewise, because our data set was small and FASD prevalence
was low for numerous scenarios, certain confusion matrices had
higher numbers for identifying true negatives than true positives,
resulting in substantial imprecision in the estimates of
“sensitivity” and “precision” [36]. While this may be common
among rare outcomes, it highlights the need to gather more data
on pregnant drinkers in future studies.

In our study, we also evaluated the AUPRC as a performance
metric for FASD. Precision-recall curves are based on precision
rather than the false-positive rate and are noted by scholars to
be a better assessment of model performance when predicting
outcomes that are rare or “unbalanced” due to a small data set
[37]. While our curve was beneficial in helping understand the
magnitude and uncertainty of each ML algorithm’s performance,
in a real-world setting, skewed class distribution will likely be
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inevitable [38]. Thus, we recommend that instead of using ML
algorithms alone, these models should be used in combination
with other, externally validating screening or surveillance
strategies to identify high-risk FASD groups, for example,
women with a history of alcohol abuse during pregnancy or
multiple children with FASDs [39].

Strengths and Limitations
Our model only incorporates a small number of variables that
could easily be collected by health systems via self-registrable
questionnaires or routine data collection methods from health
records [40]. This may be beneficial as some skepticism has
been expressed regarding the feasibility of implementing ML
models in real-life health care practices [41]. Among the
different algorithms tested, the CatBoost algorithm had the
highest predictive performance of all algorithms. As noted
previously by other researchers, because CatBoost is the newest
gradient-boosting decision tree algorithm with better handling
of categorical features compared to other algorithms, it will
usually outperform other models such as XGBoost and light
GBM [42].

This study has several limitations. First, like all traditional
studies of FASDs, some of the self-reported data on PAE is
likely unreliable and influenced by social desirability or
retrospective recall bias [43]. For example, it has been noted
that pregnant women often present a more favorable image of
themselves when it comes to self-reporting questionnaires about
their dietary intake during pregnancy [44]. As a solution,
researchers are increasingly exploring the use of biospecimens
including meconium, urine, the placenta, neonatal blood,

maternal blood, and fetal tissue (ie, the umbilical cord) to extract
biomarkers like fatty acid ethyl esters, ethyl glucuronide, ethyl
sulfate, and phosphatidylethanol to detect PAE [45]. Second,
certain barriers to data collection were inevitable because of
barriers such as a limited window of detectability, difficulties
in collection, and high costs of analysis [45]. Such barriers may
be overcome in future FASD studies if data on biomarkers are
used in combination with maternal self-reporting to improve
prediction. Third, besides logistic regression, our study mainly
focused on boosting algorithms because they are known to
reduce variance and have higher flexibility or interpretability
in ML ensembles [46]. However, for training sets that are small
like ours, boosting mechanisms may formulate discriminative
classifiers where the optimality criterion that the loss function
approximates is unclear [47]. Thus, future studies would benefit
from incorporating other algorithms that are not boosting-based,
such as random forest, for a more well-rounded analysis.

Conclusions
In this study comparing multiple ML algorithms to predict FAS
risk among a sample of pregnant drinkers, the CatBoost model
outperformed both traditional and other ML models. The
variables and methods used in our CatBoost model may serve
as an effective, automated method for identifying high-risk
groups in clinical predictions of FAS. Future research should
evaluate the accuracy of such methods in predicting FAS relative
to traditional approaches such as logistic regression analysis,
as well as the extent to which certain risk factors may have been
missed or overlooked, for overall improved clinical outcomes
among FAS patients.
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