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Abstract

Background: The current methods of evaluating cognitive functioning typically rely on a single time point to assess and
characterize an individual’s performance. However, cognitive functioning fluctuates within individuals over time in relation to
environmental, psychological, and physiological contexts. This limits the generalizability and diagnostic utility of single time
point assessments, particularly among individuals who may exhibit large variations in cognition depending on physiological or
psychological context (eg, those with type 1 diabetes [T1D], who may have fluctuating glucose concentrations throughout the
day).

Objective: We aimed to report the reliability and validity of cognitive ecological momentary assessment (EMA) as a method
for understanding between-person differences and capturing within-person variation in cognition over time in a community sample
and sample of adults with T1D.

Methods: Cognitive performance was measured 3 times a day for 15 days in the sample of adults with T1D (n=198, recruited
through endocrinology clinics) and for 10 days in the community sample (n=128, recruited from TestMyBrain, a web-based
citizen science platform) using ultrabrief cognitive tests developed for cognitive EMA. Our cognitive EMA platform allowed for
remote, automated assessment in participants’natural environments, enabling the measurement of within-person cognitive variation
without the burden of repeated laboratory or clinic visits. This allowed us to evaluate reliability and validity in samples that
differed in their expected degree of cognitive variability as well as the method of recruitment.

Results: The results demonstrate excellent between-person reliability (ranging from 0.95 to 0.99) and construct validity of
cognitive EMA in both the sample of adults with T1D and community sample. Within-person reliability in both samples (ranging
from 0.20 to 0.80) was comparable with that observed in previous studies in healthy older adults. As expected, the full-length
baseline and EMA versions of TestMyBrain tests correlated highly with one another and loaded together on the expected cognitive
domains when using exploratory factor analysis. Interruptions had higher negative impacts on accuracy-based outcomes (β=−.34
to −.26; all P values <.001) than on reaction time–based outcomes (β=−.07 to −.02; P<.001 to P=.40).

Conclusions: We demonstrated that ultrabrief mobile assessments are both reliable and valid across 2 very different clinic
versus community samples, despite the conditions in which cognitive EMAs are administered, which are often associated with
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more noise and variability. The psychometric characteristics described here should be leveraged appropriately depending on the
goals of the cognitive assessment (eg, diagnostic vs everyday functioning) and the population being studied.

(J Med Internet Res 2023;25:e45028) doi: 10.2196/45028
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Introduction

Background
Traditional neuropsychological assessment methods typically
rely on single time point assessments that capture only a
snapshot of an individual’s cognitive functioning. The advent
of novel technologies can facilitate more comprehensive data
capture for understanding cognitive functioning, including the
real-time, high-frequency, and context-informed capture of
cognitive data [1]. High-frequency data captured over time can
provide rich data sets for understanding within-person cognitive
variability while closing many key gaps in neuropsychological
research and in the practice of neuropsychology. For example,
evaluating cognition in the context of environmental,
psychological, and physiological factors can aid in better
ascertaining the degree of variability in day-to-day performance,
which may have considerable functional impact, whereas a
single, in-person assessment may poorly reflect everyday
cognitive functioning if a patient is not experiencing their usual
degree of cognitive symptoms when being tested (whether owing
to chance or rising to the occasion for the test) or is being tested
at a nonoptimal time of day [2]. Thus, traditional evaluations
completed in the laboratory or clinic, which often cannot account
for these factors, might misrepresent cognitive and functional
capabilities [3,4]. This limitation contributes to poorer ecological
validity and potentially limits the between- and within-person
reliabilities of the results gleaned from neuropsychological
testing [5,6]. It can also be invalidating to individuals who
appear to perform well under optimal conditions yet experience
cognitive difficulty in everyday life. These patients may be told
that they are performing within normal limits yet continue to
experience cognitive difficulty in their daily lives. Furthermore,
in limiting our assessments to a single time point, we may not
be able to adequately capture the associations between poorer
cognition and modifiable factors, such as sleep or time of day,
which may differentially impact cognition. By capturing
multiple time points of assessment, we gain access to richer
information about an individual’s cognition and ways specific
contextual factors might be impacting their functioning in
everyday life outside the clinic.

Cognitive Ecological Momentary Assessment
Cognitive ecological momentary assessment (EMA) has evolved
to address the limitations of single time point assessment through
high-frequency assessment using brief cognitive measures
delivered within an individual’s naturalistic environment. This
approach permits a better estimation of mean performance [6]
and performance variability [2], as well as the potential for
greater ecological validity and generalizability because

performance is assessed within an individual’s unique context
instead of an artificially controlled laboratory setting [7].

In clinical samples, the application of cognitive EMA has further
advantages beyond enabling denser data collection. Because of
the COVID-19 pandemic, individuals have become more
reluctant to attend in-person clinic visits; this is especially true
for patients with chronic or comorbid medical and psychiatric
conditions, who are more likely to experience chronic or severe
disease outcomes [8]. Since March 2020, neuropsychological
evaluations have often been conducted remotely, in-person, or
using a hybrid in-person or remote model [9]. Cognitive EMA
may be preferable or complementary to the current method of
neuropsychological test administration in that it enables valid
and reliable remote test administration without supervision; this
remains true even in older adults, who demonstrate strong
adherence to cognitive EMA when provided with support [10].
Cognitive EMA also allows for more measurement distribution,
which allows for “averaging out” a discrepant or outlying
performance while also quantifying performance instability as
a potentially clinically relevant signature [11].

Although EMA as a scientific methodology is not new (eg,
Smyth and Stone [12] and Shiffman et al [13]), it has only
recently been used in neuropsychology to assess fluctuations
in cognitive status. Basic validation research in this area has
primarily focused on measurement burst designs for evaluating
longitudinal cognitive change associated with aging [6] or
testing specific hypotheses (eg, Hyun et al [14]). This study
aimed to extend current research by characterizing the reliability
and validity of ultrabrief cognitive EMA in both a clinical
sample with high expected cognitive variability (type 1 diabetes
[T1D]) and a community sample with lower, normative levels
of cognitive variability.

People With T1D
T1D is a chronic autoimmune disease characterized by elevated
blood glucose levels resulting from the loss of insulin-producing
beta cells in the pancreas. The management of the disease
requires intensive insulin therapy using multiple daily insulin
injections or an insulin pump. Fluctuations in glucose
concentrations, including frequent episodes of hyperglycemia
(high blood glucose) and hypoglycemia (low blood glucose),
are common, and studies have linked them to short-term
fluctuations in cognitive and psychological status (eg, Brands
et al [15] and Mõttus et al [16]). Although capturing ecologically
valid cognitive variation can be advantageous in any context,
it is particularly useful for characterizing cognition in this
population, in which known physiological factors can impact
cognitive performance in the timescale of minutes, hours, and
days. Therefore, using cognitive EMA in a sample with T1D
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permits the evaluation of reliability and validity in a sample
with higher cognitive variability due to the impact of regular
physiological changes.

This Study
This study reports on the psychometric properties, including
reliability and validity, of a set of ultrabrief cognitive EMA
measures in a sample of adults with T1D as well as in a
community sample. The primary goal of this study was to
determine whether the cognitive test scores measured using
cognitive EMA show good evidence for reliability
(between-person and within-person, explained in detail in the
subsequent section) and construct validity in both of these
samples.

Methods

Participants
Participants were recruited from 2 sources for this study. First,
adults with T1D were recruited from 4 endocrinology clinics
across the country as part of an observational study (the GluCog
study), which aimed to characterize the relationship between
glycemic excursions and cognitive variability in adults

diagnosed with T1D. Second, participants from the community
were recruited through links on TestMyBrain (TMB [17]; the
authors’ digital research platform) as part of a separate
observational study (the MoodCog study) oriented around
understanding the associations between fluctuations in mood
and cognition in healthy, nonpsychiatric participants.

In the GluCog study, 203 participants were enrolled, and 198
(97.5%) met the criteria for inclusion in the final analytic data
set based on the completion of at least 50% of the EMAs. All
participants had a diagnosis of T1D. In this sample, we did not
exclude individuals or time points based on glycemic excursions
(episodes of low or high blood glucose, data on which were
collected passively using continuous glucose monitoring), as
these are the primary expected sources of increased cognitive
variability. In the MoodCog study, 156 participants were
enrolled, and 128 (82.1%) completed at least 50% of the EMAs.
Table 1 lists further inclusion and exclusion criteria for each
study. Table S1 in Multimedia Appendix 1 provides further
details on participant compliance. The exclusion criteria were
decided as part of the study protocol before this analysis and
have been described in our published protocol for the T1D study
[18] as well as in a paper now published using data from the
community sample [19].

Table 1. Inclusion and exclusion criteria for the GluCog and MoodCog groups.

MoodCogGluCog

Inclusion criteria •• Age of ≥18 at the time of initial assessmentAge of ≥18 at the time of initial assessment
• •Fluency in English Fluency in English

•• 24-hour access to a smart phone with reliable internet ac-
cess

24-hour access to a smart phone with reliable internet access
• Diagnosis of type 1 diabetes with >1 year duration

Exclusion criteria •• Inability to complete cognitive EMA during the study pe-
riod (eg, because of working night shifts, planned travel
across time zones, or an occupation that does not reliably
allow breaks)

Inability to complete cognitive EMAa during the study peri-
od (eg, because of working night shifts, planned travel across
time zones, or an occupation that does not reliably allow
breaks)

• Disabilities that would substantially interfere with the study
protocol (eg, motor or visual impairment and a history of
head trauma)

• Disabilities that would substantially interfere with the study
protocol (eg, motor or visual impairment and a history of
head trauma)

• Current psychiatric condition or medical condition or
treatment that may interfere with the study protocol (eg,
substance use disorder, chemotherapy, inpatient psychiatric
admission, and a diagnosis of dementia), obtained via self-
report

• Current psychiatric condition or medical condition or treat-
ment that may interfere with the study protocol (eg, sub-
stance use disorder, chemotherapy, inpatient psychiatric
admission, and a diagnosis of dementia), obtained via med-
ical records

aEMA: ecological momentary assessment.

Procedure
Figure 1 illustrates the assessment schedules for the GluCog
and MoodCog studies. Within the 2 groups, all cognitive tests
were performed at each measurement occasion. On the first day
of the study, the participants completed a baseline battery of
cognitive tests, including standard, full-length versions of the
tests that were completed as part of cognitive EMA (Figure 2).
On the second day, the participants completed a single
onboarding cognitive EMA on their smartphone to familiarize
themselves with the shorter EMA versions of the tests and
confirm their understanding of the study procedures. Data from
the onboarding EMA were excluded from our analytic data set.
On the third day and for the next 10 days (MoodCog) or 15 days

(GluCog), the participants received texts on their phone
containing links to a short battery of cognitive EMA measures
3 times a day: once in the morning, once in the afternoon, and
once in the evening. The texts were sent on a pseudorandom
schedule to capture a range of times across the day. Upon
receiving the text, the participants had up to 30 minutes to
complete the cognitive EMA. The participants received a
reminder text 20 minutes after the first text to encourage
completion. The GluCog sample completed 15 days of cognitive
EMAs (a total of 45 cognitive EMAs), whereas the MoodCog
sample completed 10 days of cognitive EMAs (a total of 30
cognitive EMAs). The test trials and test orders were
counterbalanced across cognitive EMA time points, although
each participant received the same test trials and test orders at
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any given time point. All ultrabrief tests were developed for
brief administration using an iterative test development
procedure to ensure that the test formats, trials, and lengths were
adequate for capturing cognitive functioning at individual time
points [1]. Psychometric characteristics were evaluated for each

alternate form to ensure that they had similar reliability and
distributional properties. The psychometric characteristics of
the individual, ultrabrief TMB tests used in this study have also
been previously described, although within the context of
glycemic variability in a sample of individuals with T1D [18].

Figure 1. Testing schedules for the GluCog and the MoodCog groups. EMA: ecological momentary assessment.

Figure 2. Illustrations of TestMyBrain cognitive tests administered in the GluCog and MoodCog groups. The participants in the GluCog sample did
not complete Choice Reaction Time (CRT). DSM: Digit Symbol Matching; GradCPT: Gradual Onset Continuous Performance Test; MOT: Multiple
Object Tracking.

Measures

TMB Multiple Object Tracking
The TMB Multiple Object Tracking (MOT) task assesses
visuospatial attention and visual working memory [20,21]. On
each trial of the MOT task, a subset of black dots is designated
as targets by turning green before turning back to black and
moving around the screen among nontarget dots. The
participants are asked to keep track of those target dots during
5 seconds of movement; once the dots stop moving, the
participants are asked to select the dots originally designated
as targets.

The full-length version has 18 test trials, 6 trials each at the
target set sizes of 3, 4, and 5 dots, and takes 6 minutes to
complete. Within each set size, the dots move relatively slowly
on the first trial and increase in speed in each additional trial.
Before beginning the test trials in the full-length assessment,
the participants complete 2 practice trials, one at set size 2 and
another at set size 3. In the ultrabrief EMA version, there are 6
test trials, all with a target set size of 5 dots and no practice
trials, and it takes 2 minutes to complete. The speed of the dots
increases in each successive trial. The score represents the
percentage of target dots correctly identified during the test
trials.

TMB Digit Symbol Matching
The TMB Digit Symbol Matching (DSM) test, adapted from
the Wechsler Adult Intelligence Scale-Third Edition (WAIS-III)
[22], assesses processing speed [23,24]. The participants are
presented with 6 symbols, each of which is paired with a single
digit between 1 and 3 (ie, 2 symbols lined up vertically under
each digit); these digit-symbol pairings remain visible
throughout the duration of the test. Individual probe symbols
are sequentially presented above these pairings and remain
visible until the participants make a response. The participants
respond by selecting the corresponding digit (using the keyboard
or touchscreen) as quickly as possible for either 90 seconds in
the full-length version or 30 seconds in the ultrabrief EMA
version. The full-length version starts with 3 practice trials. The
score for the DSM test is the median reaction time of correct
responses to test probes (the number of items presented varies
across test administrations).

TMB Gradual Onset Continuous Performance Test
The TMB Gradual Onset Continuous Performance Test
(GradCPT) assesses sustained attention, cognitive control, and
response inhibition [25,26]. The participants view a sequence
of grayscale images of cities and mountains, with the images
gradually transitioning from one to the next every 800
milliseconds. The participants are instructed to tap the screen
when images of cities are presented (80% of the trials) and
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withhold from tapping the screen when images of mountains
are presented (20% of the trials). The total duration of the image
sequence is 240 seconds for the full-length test and 60 seconds
for the ultrabrief EMA. The score represents the participants’
discrimination ability (d-prime), a signal detection measure
based on response accuracy corrected for response bias.

TMB Choice Reaction Time
The TMB Choice Reaction Time (CRT) assesses processing
speed, cognitive inhibition, and cognitive control [27,28]. On
each trial of the CRT, the participants view 3 vertically aligned
squares, each of which contains a color (blue or yellow) and an
arrow (pointing either left or right). Of the 3 squares, 1 is always
of a different color from the other 2; the participants are
instructed to indicate the direction of the arrow in the differently
colored square as quickly as possible by clicking or tapping.
The participants complete 4 practice trials and 30 test trials in
the full-length test, for a duration of 3 minutes, and 24 test trials
in the ultrabrief EMA test, for a duration of 1 to 2 minutes. The
CRT was administered as an EMA measure only for the
MoodCog group. The score represents the median reaction time
in correctly answered test trials.

TMB Vocabulary Test (Baseline Only)
The TMB Vocabulary Test assesses crystalized cognitive ability
and word knowledge, which have been shown to positively
correlate with age [24], educational attainment, and Wechsler
Adult Intelligence Scale-Fourth Edition (WAIS-IV) vocabulary
performance [23]. On each trial of the test, the participants view
a target word and are asked to select which of 5 response options
is closest in meaning to that target word. The Vocabulary Test
is only administered at the baseline and includes 1 practice trial
and 30 test trials. The score represents the percentage of
correctly answered test trials. It takes approximately 4 minutes
to complete.

Interruptions Survey (EMA Only)
At the end of each cognitive EMA, the participants were asked,
“Did anything interrupt you during this assessment?” To this,
the participants responded with “yes” or “no,” and then they
were asked to provide a brief explanation for their response.

Statistical Analyses

Cognitive EMA Reliability
For each outcome measured using cognitive EMA, we calculated
two different metrics of reliability [6]: (1) between-person
reliability (the ratio of variance in scores attributable to
differences in individuals, relative to within individuals) and
(2) within-person reliability (the proportion of total variance in
scores attributable to differences across measurement occasions,
relative to within measurement occasions). To allow the
calculation of these 2 measures of reliability, each cognitive
test outcome was separately computed for the even and odd
trials of each cognitive EMA, with some slight variance in this
procedure depending on the test (ie, for TMB GradCPT, we
looked at even or odd separately for cities and mountains, and
for TMB MOT, we split trials 1, 4, and 6 and 2, 3, and 5 to
equate for difficulty). The mlr function (mlr stands for multilevel
reliability, which finds and plots reliability and generalizability

coefficients for multilevel data) of the psych package [29,30]
in R (R Foundation for Statistical Computing) was then used
to compute between-person reliability (labeled RkRn in the mlr
output) and within-person reliability (labeled Rcn in the mlr
output), using unconditional multilevel mixed models to predict
performance on each half of each EMA, with the random effects
of EMA number nested within participants. Of note, we believe
that this was the most consistent approach to calculating
reliability, given that in MOT, trials are not at the same level
of difficulty; in GCPT, we cannot compute a score for an
individual’s trials; and in DSM, there are not an equal number
of trials on each EMA version. Thus, we could not compute
within-trial variance from the scores from each trial (calculating
within-person reliability as a function of the number of trials
administered) in a way that would be consistent across tests.

Previous work has indicated that reliability estimates will often
reach an asymptote after a certain number of EMAs. Therefore,
we also estimated the number of EMAs needed to achieve
maximum (or near maximum) reliability, between person and
within person, for each cognitive test.

Cognitive EMA Validity
We evaluated construct validity using factor analysis within
both samples. For both samples, we conducted an exploratory
factor analysis with direct oblimin rotation (to allow correlations
between factors) using the psych package’s fa() function [29]
and used a manifest average.

We also evaluated the criterion validity by examining
correlations with age for all cognitive tests. On the basis of
previous work, it was expected that scores on speed-based
measures (CRT and DSM) and visuospatial working memory
(MOT) would exhibit sharp declines with age [24,27] and that
sustained attention would show minimal declines with age [25].
Although vocabulary was not included in cognitive EMA, we
included scores on the TMB Vocabulary Test as a comparison
condition, as vocabulary scores typically improve with age,
even as other cognitive skills decline [24].

Other Analyses: Self-reported Interruptions
We aimed to better understand how interruptions (the
participants indicated “yes” or “no” to the question about
whether there were any interruptions) affected performance; as
a validity indicator, we expected that greater interruptions would
be associated with poorer performance on cognitive tests. To
assess the impact of interruptions on EMA task performance,
each cognitive performance outcome was first standardized
(using z scores) across all EMAs, separately for each sample.
These standardized cognitive EMA outcomes were then
predicted using multilevel mixed models, with fixed effects of
interruptions (yes or no), gender, and age, and a random
intercept of participants; this approach allowed us to determine
the unique contribution of interruptions to performance on each
outcome measured using cognitive EMA.

Ethics Approval
The study protocol was approved by the institutional review
board (IRB) associated with each study (GluCog: Jaeb Center
for Health Research IRB Protocol 2023P000083; MoodCog:

J Med Internet Res 2023 | vol. 25 | e45028 | p. 5https://www.jmir.org/2023/1/e45028
(page number not for citation purposes)

Singh et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Mass General Brigham IRB Protocol 2019P000538). All
participants provided informed consent to participate in this
study.

Results

Demographic Characteristics
The demographic characteristics for both groups are presented
in Table 2. Compared with the MoodCog participants, the

GluCog participants were significantly older (t328=5.21, P<.001)
and more likely to be male (GluCog + MoodCog, N=326;

χ2
2=32.6, P<.001). The GluCog participants completed an

average of 86.1% (SD 10%) of the 45 cognitive EMAs assigned
to them, and the MoodCog participants completed an average
of 84.5% (SD 10.2%) of the 30 cognitive EMAs assigned to
them. We excluded EMAs that did not meet the quality control
criteria (refer to Table S2 in Multimedia Appendix 1 for the
quality control criteria and number of EMAs excluded).

Table 2. GluCog and MoodCog participant demographic characteristics.

P valueMoodCog (n=128)GluCog (n=198)Characteristic

.15b84.47 (10.15)86.09 (9.97)EMAa completion (%), mean (SD)

<.001b36.77 (14.66)45.69 (15.58)Age (years), mean (SD)

<.001bGender, n (%)

77.27 (102)54.04 (107)Woman

17.42 (23)44.95 (89)Man

5.30 (7)0.51 (1)Nonbinary

.07cRace, n (%)

9.85 (13)1.01 (2)Asian

4.55 (6)7.07 (14)Black

0.76 (1)1.01 (2)Native American

0 (0)0.51 (1)Pacific Islander

81.06 (107)88.89 (176)White

8.33 (11)4.04 (8)Missing or other

.70cHispanic or Latino, n (%)

8.33 (11)6.57 (13)Yes

89.39 (118)92.93 (184)No

2.27 (3)0.51 (1)Missing

.17b15.95 (2.41)15.62 (1.9)Education (years), mean (SD)

aEMA: ecological momentary assessment.
bWelsh independent samples 2-tailed t test.
cPearson chi-square test. As some racial categories had too few participants to ensure accuracy when estimating group differences, the race categories
were collapsed into a “White” group and a “non-White” group when conducting the chi-square test.

Descriptive Characteristics and Reliability of Cognitive
EMA
Table 3 shows the means and SDs of the performance on the
full-length baseline and ultrabrief EMA versions of each
cognitive test, separately for the GluCog and MoodCog groups.
As expected, performance variability was significantly higher
among the GluCog participants than among the MoodCog
participants on the TMB DSM task (t321=5.77, P<.001).
Variability on the TMB MOT and TMB GradCPT tasks did not
significantly differ between the 2 groups (TMB MOT:
t256.7=−1.17, P=.25; TMB GradCPT: t272.5=1.6, P=.11).

Table 3 also shows the between- and within-person reliabilities
for each outcome measured using cognitive EMA. The

traditional form of reliability reported for neuropsychological
tests is a kind of between-person reliability, which evaluates
the consistency of the differences in scores between individuals.
Both groups demonstrated very high between-person reliability
for both the full-length baseline and ultrabrief EMA versions
of cognitive tests. Given the large number of test time points
and known between-person reliability of the original tests, these
very high levels of between-person reliability were in line with
expectations. Within-person reliability is a separate form of
reliability that assesses the degree to which the differences
between assessments are large or small relative to the differences
among items and trials within a single assessment. Thus,
within-person reliability depends on variability across
assessments and is minimized when there is little to no
variability in test scores within individuals. Within-person
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reliability varied substantially across tests in both groups.
Within-person reliability was lower for accuracy-based scores
(MOT and GradCPT) than for reaction time–based scores (DSM
and CRT) in both groups. Of the tests that were included in both
studies, MOT had the lowest within-person reliability in both
groups, and DSM had the highest within-person reliability in

both groups. This suggests that reaction time–based measures,
such as DSM, may be most useful for examining variability
over time within participants. The magnitude of within-person
reliability for these tests was comparable with that observed in
other studies that used cognitive EMA (eg, Sliwinski et al [6]).

Table 3. Descriptive statistics and reliabilities of the performance on the full-length baseline and ultrabrief ecological momentary assessment (EMA)
versions of the cognitive tests, separately for the GluCog and MoodCog groups.

MoodCogGluCogOutcome

WPRBPRValue, mean (SD)WPRbBPRaValue, mean (SD)

Baseline versions

—0.8480.2 (8.8)—d0.8973.8 (10.3)MOTc accuracy (%)

—0.99843 (203)—0.981070 (344)DSMe medianRTcf (ms)

—0.822.81 (0.74)—0.862.45 (0.84)GradCPTg d-primeh

—0.98876 (294)—0.981010 (363)CRTi medianRTc (ms)

EMA versions

0.280.9773.9 (8.7)0.200.9868.5 (8.8)MOT accuracy (%)

0.720.98817 (140)0.650.99968 (235)DSM medianRTc (ms)

0.550.952.78 (0.49)0.540.982.45 (0.67)GradCPT d-prime

0.800.98720 (109)———CRT medianRTc (ms)

aBPR: between-person reliability.
bWPR: within-person reliability.
cMOT: Multiple Object Tracking.
dNot available.
eDSM: Digit Symbol Matching.
fRTc: reaction time for correct responses.
gGradCPT: Gradual Onset Continuous Performance Test.
hd-prime: ability to discriminate targets from distractors.
iCRT: Choice Reaction Time.

Number of EMAs Needed for Reliability
Next, we analyzed between- and within-person reliability as a
function of the completed number of cognitive EMAs (ie, how
many assessments were needed to achieve maximum reliability)
for the GluCog and MoodCog groups (Figure 3). For both the
GluCog and MoodCog sample groups, maximum
between-person reliability was observed after participants
completed approximately 10 EMAs, with minimal improvements
to reliability thereafter. Initially, we started with the first 5
EMAs and then computed the within-person reliability; after
that, we took the first 10 EMAs and then computed the
within-person reliability. This was to ensure that there were no
radical changes over time and that, generally, the participants

were performing and interacting with the test consistently over
time.

When examining within-person reliability, the pattern was
somewhat different between the 2 groups. In the GluCog sample,
within-person reliability approached its maximum after the
completion of 15 to 20 EMAs. In the MoodCog sample, the
number of EMAs needed to achieve maximum within-person
reliability varied by test, with some tests showing improvements
in reliability up to approximately 15 EMAs (GradCPT and
DSM) and others not showing such improvements (MOT and
CRT). For both groups, across all tests, between-person and
within-person reliability estimates were stable after 20 to 25
EMAs.
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Figure 3. Within- and between-person reliabilities as functions of the number of ecological momentary assessments (EMAs) completed, separately
for the GluCog and MoodCog groups. In the top-left panel, the line for Multiple Object Tracking (MOT) overlaps with the line for Gradual Onset
Continuous Performance Test (GradCPT) such that only the GradCPT line is visible. CRT: Choice Reaction Time; d-prime: ability to discriminate
targets from distractors; DSM; Digit Symbol Matching; RTc: reaction time responses.

Construct Validity of Cognitive EMA: Exploratory
Factor Analysis
We assessed the construct validity of the EMA versions of the
cognitive tests by examining the associations between the
ultrabrief EMA cognitive tests and their corresponding
full-length baseline versions. For both the GluCog and MoodCog
samples, the ultrabrief EMA version of each cognitive test was
generally more highly correlated with the corresponding
full-length version of the same test than with the other tests
(Figure 4).

Exploratory factor analysis was used to identify latent groupings
among the ultrabrief cognitive EMA tests and their
corresponding validated full-length baseline versions. Because
the baseline EMAs were administered only once, we could not
determine whether there were different factor loadings at the

within-person level. For both samples (and as mentioned earlier),
we conducted a parallel analysis [31] using the fa.parallel()
function of the psych package in R [29]. This suggested 3 latent
factors; therefore, we conducted an exploratory factor analysis
with 3 latent factors and direct oblimin rotation (to allow for
correlations between factors). On the basis of the resulting factor
structure for each group, we identified 3 distinct factors
corresponding to working memory (MOT only), attention
(GradCPT only), and processing speed (DSM and CRT). The
cumulative proportion of variance explained by these 3 factors
was 0.72. The proportion of variance explained by each factor
was 0.22 for working memory, 0.21 for sustained attention, and
0.29 for processing speed.

Factor loadings and structure for each group are presented in
Figure 5.
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Figure 4. Correlation matrices (Pearson correlation) of the ecological momentary assessment (EMA) and full-length baseline versions of each cognitive
test, separately for the GluCog and MoodCog groups. Correlations between the cognitive EMA and baseline versions of the tests are marked with a
black border. CRT: Choice Reaction Time; d-prime: ability to discriminate targets from distractors; DSM: Digit Symbol Matching; GradCPT: Gradual
Onset Continuous Performance Test; MOT: Multiple Object Tracking; RTc: reaction time for correct responses.

Figure 5. Factor structure of the ecological momentary assessment (EMA) and baseline versions of the cognitive EMA tests, separately for the GluCog
(top) and MoodCog (bottom) groups. CRT: Choice Reaction Time; d-prime: ability to discriminate targets from distractors; DSM: Digit Symbol
Matching; GradCPT: Gradual Onset Continuous Performance Test; MOT: Multiple Object Tracking; RTc: reaction time for correct responses.
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Association With Age
Next, as an indicator of the validity for detecting differences
across age, we analyzed whether cognitive test performance
was correlated with age (Figure 6), as we would expect based
on previous work [24,25]. As anticipated, older age was
associated with worse working memory (poorer performance
on full-length and EMA TMB MOT tasks; [32]) and slower
processing speed (worse performance on full-length and
ultrabrief EMA TMB DSM and TMB CRT tests; [24]). To
confirm that older age was not associated with reduced

performance because of reduced motivation or other more
general issues not specific to these domains, we also examined
the association between age and performance on the TMB
Vocabulary Test. In addition, consistent with prior findings,
older age was associated with better vocabulary performance
[24]. Finally, we did not find a consistent linear association
between age and sustained attention (full-length and EMA
GradCPT d-prime). This is consistent with the prior findings
that performance on this measure is stable across much of
adulthood, with minimal decrements in performance until older
age [25].

Figure 6. Relationships between cognitive test performance and age, separately for the GluCog and MoodCog groups. CRT: Choice Reaction Time;
d-prime: ability to discriminate targets from distractors; DSM: Digit Symbol Matching; EMA: ecological momentary assessment; GradCPT: Gradual
Onset Continuous Performance Test; MOT: Multiple Object Tracking; RTc: reaction time for correct responses.

Self-reported Interruptions
Finally, at the end of each EMA, we asked the participants to
indicate whether they were interrupted during the completion
of EMAs (yes or no). In both MoodCog and GluCog samples,
the participants reported interruptions of some kind in
approximately 25% of the EMAs. Specifically, the participants
in the GluCog sample reported that an average of 10.8 (SD 8.10)
of their 45 (24.1%) EMAs were interrupted, and the participants
in the MoodCog sample reported that an average of 7.50 (SD
5.40) of their 30 (25%) EMAs were interrupted.

For both samples, self-reported interruptions were associated
with worse working memory (TMB MOT: GluCog β=−.26;
P<.001; MoodCog β=−.28; P<.001) and worse sustained
attention (TMB GradCPT: GluCog β=−.31; P<.001; MoodCog
β=−.34; P<.001). Interruptions were also associated with a
slower median reaction time for TMB DSM in both samples,
but to a smaller degree (TMB DSM: GluCog β=−.07; P<.001;
MoodCog β=−.06; P<.01). Interruptions were not related to
differences in performance in TMB CRT (MoodCog: β=−.02;
P=.41). This is likely because the median reaction time metric
is relatively unaffected by outlier values, whereas the outcome
metrics for working memory and sustained attention aggregate
across all trials (Figure 7).
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Figure 7. Impact of interruptions on momentary cognitive performance, separately for the GluCog and MoodCog groups. The points illustrate the
estimates of the impact of interruptions in standardized units, and the error bars indicate the corresponding CIs. Negative values indicate a high impact
on test performance. CRT: Choice Reaction Time; d-prime: ability to discriminate targets from distractors; DSM: Digit Symbol Matching; GradCPT:
Gradual Onset Continuous Performance Test; MOT: Multiple Object Tracking; RTc: reaction time for correct responses.

Discussion

Principal Findings

Overview
Cognitive EMA represents a novel approach to evaluating
fluctuations in cognitive status over time. The completion rates
in both studies demonstrate that cognitive EMA can be feasibly
used in both a clinical sample of individuals with high levels
of expected cognitive variability recruited through clinics and
a community sample of individuals with normative levels of
cognitive variability recruited on the web (through our digital
research platform, TMB [17]). To our knowledge, this study is
the first to report the psychometrics of cognitive EMA in clinical
and community samples. Other prior studies [33] examining
community samples used multiple time points over longer
periods, whereas our study had a higher-frequency burst design,
requiring multiple time points of assessments. Currently,
neuropsychologists and others measuring cognition are limited
in the scope of assessment, typically capturing 1 to 2 time points
or a “snapshot” of a patient’s functioning. In terms of the goals
of our study, which were to demonstrate the reliability and
validity of ultrabrief cognitive EMAs in clinical and community
samples, our findings suggest that there is an optimal number
of EMAs with good reliability, consistent validity markers, and
specific tests that are more and less robust to contextual factors,
such as interruptions during test administration, that can be
administered in these samples.

Reliability
To better capture the psychometric properties of these tests, we
evaluated both between- and within-person reliabilities. EMA
uniquely allows the tracking of fluctuations in a single
participant’s functioning over repeated assessments
(within-person measurement) while simultaneously improving
our ability to measure an individual’s performance relative to
others (traditional, between-person measurement). Estimating
between-person reliability allows us to examine the stability of

this between-person assessment, that is, it demonstrates the
reliability of the differences between participants aggregated
across testing sessions. Within-person reliability, by contrast,
provides the consistency of scores between time points (within
participants) or the reliability of the performance differences
evaluated between ≥2 testing sessions. In most of
neuropsychology, the type of reliability reported when
evaluating the psychometric characteristics of a test is
between-person reliability. In our study, we found the expected
high between-person reliability across all tests. Within-person
reliability values were more modest for the cognitive EMA
measures we evaluated, with poor within-person reliability for
visuospatial working memory (TMB MOT) and good
within-person reliability for measures related to processing
speed. Low within-person reliability for MOT may have been
due to the variation in scores over time within individuals. This
is consistent with the findings from the study by Sliwinski et al
[6], which demonstrated that within-person reliability tends to
be lower in accuracy-based tests and that there can be significant
scores from test to test. In the case of MOT, which is an
accuracy-based test, performance tends to be highly influenced
by participants’ guessing choices. A key difference between
within-person reliability and traditional test-retest reliability,
with all else being equal, is that reducing within-person
variability increases test-retest reliability (as scores are more
stable over time) but reduces within-person reliability, which
depends on cognitive variability over time within participants.
Thus, for tests where scores are stable or robust to differences
in stress, physiology, fatigue, or context, within-person
reliability is limited by a lack of within-person variability. In
the existing literature, the within-person reliability of cognitive
tests is typically lower than the between-person reliability of
high-frequency cognitive testing protocols (eg, measurement
burst designs), likely because many cognitive tests were
designed to capture between-person differences. Our reliability
values for both between- and within-person reliabilities were
comparable with those obtained for high-frequency cognitive
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testing in a measurement burst design in an older adult sample
[6].

The GluCog and MoodCog groups completed a similar
proportion of total EMAs (approximately 85%). In line with
previous findings [6], tests in both groups established strong
between-person reliability after completing 10 EMAs (previous
study established that those EMAs were completed over 3 days).
Within-person reliability, although generally stable regardless
of the number of EMAs completed, varied based on the test;
processing speed tests had the highest within-person reliability,
followed by the sustained attention and working memory tasks.
Tests with higher within-person reliability are likely to be well
suited for identifying factors that may impact cognitive
functioning over short time intervals. Clinically, these factors
are important when evaluating cognitive impairment, particularly
when determining whether there is a bona fide decline in
cognitive functioning or intratest variability. For interventions
aimed at maximizing cognitive performance by reducing the
modifiable causes of cognitive impairment (eg, poor sleep and
low mood), the presence of variation within person over time
may uncover important treatment targets.

Validity
The full-length baseline and ultrabrief EMA versions of the
cognitive tests correlated highly with one another and loaded
together as expected when using an exploratory factor analysis
approach. As expected based on prior literature evaluating these
cognitive tests (eg, Singh et al [34]), for both the GluCog and
MoodCog groups, both versions of the MOT task mapped onto
working memory, both versions of the GradCPT mapped onto
attention, and both versions of the DSM test and the baseline
version of CRT mapped onto processing speed. For the
MoodCog group that completed the ultrabrief EMA version of
CRT, the ultrabrief EMA version of CRT also mapped onto
processing speed. All tests also varied with age, as expected
based on previous research [24]. In both samples, the scores on
the tests of processing speed and visuospatial working memory
declined sharply with age, based on both full-length and
ultrabrief EMA measures. Sustained attention scores were
relatively stable across the age range for both samples [25]. At
the same time, TMB vocabulary scores (based on baseline,
full-length assessment) improved across the age range for both
samples. Thus, the EMA versions of these tests were judged to
be valid with respect to the expected age-related differences.

Interruptions
The participants in both MoodCog and GluCog groups were
provided with a 30-minute window to complete EMAs, with
the direction to complete the assessments at a time when
disruptions would be minimal. Nevertheless, the participants
reported interruptions (in response to a post-EMA self-report
question) at approximately 25% of the time points. As expected
and supporting the use of interruptions as a validity marker,
interruptions were related to poorer performance on the
ultrabrief cognitive EMA. This is important to account for when
designing EMA studies, particularly given that EMAs are
completed in natural environments. On the one hand, if aiming
to achieve diagnostic accuracy (ie, inferring underlying brain
pathology), it may benefit future investigations using cognitive

EMA to optimize the delivery timing of EMAs to ensure that
delivery occurs when participants are less likely to be interrupted
(early morning or evening). However, if the goal of EMA
assessment is to understand how patients function in their
everyday lives, measuring the impact of interruptions on
cognitive performance may have important clinical implications.
The results showed that different tests and cognitive domains
may be more robust versus sensitive to interruptions.
Specifically, the scores on accuracy-based tests were more
impacted by interruptions than the scores on reaction time–based
tests (where scores were estimated using the median). For
evaluating individuals who may have cognitive impairments
that are more transient or sensitive to interruptions, it is likely
that the TMB MOT test and GradCPT would be best at capturing
momentary cognitive deficits. For cases where there is a need
for measures that are more resistant to interruptions, based on
our findings, we recommend processing speed tests such as
DSM and CRT and using test scores that are more robust to the
influence of outliers (eg, the use of median rather than mean
reaction times).

Limitations
Although we demonstrated that cognition in these 2 samples
can be measured reliably, this study was not designed to
characterize the source and context of this variability. For
example, although we measured interruptions and related them
to poorer cognitive functioning, we did not have contextual
information to further characterize the nature and severity of
the interruptions (eg, hearing a loud noise but being able to
continue vs stopping the test to talk to someone). Given the
concern about participant burden and the necessarily brief nature
of EMA, this study is limited in the number of cognitive tests
and domains that were evaluated, which limits the
generalizability of our findings. In addition, these cognitive
EMAs were administered in an uncontrolled environment, which
is different from the way cognitive tests are administered in
clinics (ie, in highly controlled environments); however,
neuropsychology and neuropsychological research are
increasingly moving toward digital and more naturalistic
approaches to cognitive testing that must account for these
sources of variability [35]. Thus, as with any study, researchers
need to weigh the tradeoffs between single time point, longer,
and controlled assessments and more frequent, shorter EMAs
in naturalistic settings, noting that, as discussed earlier,
naturalistic assessments can indeed complement in-clinic
assessments without necessarily replacing them. Regarding the
tests themselves, the ultrabrief cognitive EMAs used in this
study were validated based on baseline (full-length) TMB
cognitive tests instead of the traditional paper-and-pencil tests
typically administered in neuropsychological evaluations. In
this study, we did not have sufficient power to analyze within-
and between-person reliability stratified by other demographic
variables, such as education; we chose age as a meaningful
variable to associate with cognitive test performance based on
its association with cognitive performance in previous research
[24]. In terms of gathering self-report data, we asked the
participants to self-report diseases and drug use; this presents
its own set of limitations in that we cannot corroborate
self-reports with previous medical records.
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Future Directions
In future studies, we aim to analyze the predictors of
within-person variation to identify key factors that substantially
impact fluctuations in cognitive status. This would include the
analyses of physiological variables such as glucose and
psychological factors such as mood and symptom severity. By
understanding the factors that most substantially contribute to
variability in cognitive status, we can begin to generate insights
that help address fluctuations in cognitive status in clinical
populations. Future studies may also further validate the use of
ultrabrief cognitive EMAs in clinical samples by associating
the cognitive performance on these tasks with the results of
traditional paper-and-pencil tests typically administered in
neuropsychological evaluations. This would facilitate
implementation in traditional clinical workflows, which would
provide additional opportunities for research focused on patient
outcomes.

Conclusions
This study examined the between- and within-person reliabilities
and validity of the EMA versions of cognitive tests in clinical
and community samples. Analyses demonstrated that there was
strong between-person reliability after the completion of
approximately 10 EMAs in both samples. Although
within-person reliability was relatively stable, it was generally
higher for tests of processing speed than for tests of sustained
attention and working memory in both clinical and community
participants. Furthermore, approximately 25% of the completed
EMAs were subject to (self-reported) interruptions, which
decreased performance on measures of working memory and
sustained attention but was less important for processing speed.
In general, cognitive EMA offers substantial benefits, as it
permits the collection of rich between- and within-person data
that can improve the monitoring of cognitive functioning. Future
studies will aim to understand which internal and external factors
best account for within-person variability in cognitive status.
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