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Abstract

Background: To date, performance comparisons between men and machines have been carried out in many health domains.
Yet machine learning (ML) models and human performance comparisons in audio-based respiratory diagnosis remain largely
unexplored.

Objective: The primary objective of this study was to compare human clinicians and an ML model in predicting COVID-19
from respiratory sound recordings.

Methods: In this study, we compared human clinicians and an ML model in predicting COVID-19 from respiratory sound
recordings. Prediction performance on 24 audio samples (12 tested positive) made by 36 clinicians with experience in treating
COVID-19 or other respiratory illnesses was compared with predictions made by an ML model trained on 1162 samples. Each
sample consisted of voice, cough, and breathing sound recordings from 1 subject, and the length of each sample was around 20
seconds. We also investigated whether combining the predictions of the model and human experts could further enhance the
performance in terms of both accuracy and confidence.

Results: The ML model outperformed the clinicians, yielding a sensitivity of 0.75 and a specificity of 0.83, whereas the best
performance achieved by the clinicians was 0.67 in terms of sensitivity and 0.75 in terms of specificity. Integrating the clinicians’
and the model’s predictions, however, could enhance performance further, achieving a sensitivity of 0.83 and a specificity of
0.92.

Conclusions: Our findings suggest that the clinicians and the ML model could make better clinical decisions via a cooperative
approach and achieve higher confidence in audio-based respiratory diagnosis.
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Introduction

Background
Over the past decades, digital transformation has promoted
innovation in health care and biotechnology, yielding devices
and machine learning (ML) models as well as enhancing
processes and user experiences [1,2]. For example,
computer-aided decision support systems have been developed
and implemented to assist clinicians in various areas, such as
augmenting limited intraoperative information and
recommending surgical steps to surgeons by analyzing surgical
videos and images [3]; identifying possible malignant tumors
in terms of their location, size, and shape to assist clinicians in
cancer diagnostics [4]; and exploring the drug-repurposing
opportunities for new diseases, including COVID-19, by
uncovering correlations among drugs, proteins, and diseases
[5]. Although in many other health domains, the performance
of humans and machines has been extensively investigated,
compared, or even integrated [6-9], it has been understudied in
the domain of audio-based respiratory health. In this study, we
for the first time compare predictions from an ML model with
predictions made by clinicians in audio-based respiratory disease
diagnosis.

Prior Work
Auscultation, that is, using an acoustic stethoscope to listen to
the internal sounds of the body (eg, heart and lungs) is a test
performed by physicians during routine physical examinations
to confirm or rule out various medical conditions [10-12]. For
instance, auscultation of the respiratory system, one of the oldest
diagnostic techniques since the days of Hippocrates, is rather
effective in detecting respiratory problems, such as asthma,
pneumonia, and chronic obstructive pulmonary disease. Early
lung auscultation studies associated characteristics of
adventitious lung sounds (eg, wheezes and crackles) with
specific respiratory diseases [11,13,14]. Unfortunately, several
reports indicate that mastering auscultation remains a major
challenge, and the auscultation skill of medical trainees and
clinical physicians at all levels is declining with time [15-17].
With the aim of assisting clinicians to improve the performance
of auscultation, a diverse range of signal processing and ML
approaches have been developed, recording and analyzing body
sounds via computer-aided digital auscultation systems [18,19].
Moreover, in addition to internal sounds collected via an
acoustic medical device (eg, stethoscope) during physical
examinations, breathing sounds and voice sounds can be
collected and stored even remotely on mobile devices (eg, via
embedded microphones in smartphones) and then analyzed to
detect respiratory conditions. Recent research has demonstrated
a high level of interest and promise of artificial
intelligence–driven machine listening to detect respiratory
pathologies in patients with active asthma, chronic obstructive
pulmonary disease, and recently, COVID-19 [20-22]. These
approaches are normally convenient, safe, affordable, and easy
to perform.

Despite the rise of many novel approaches, a number of
questions remain unanswered, including (1) what is the average
performance of clinicians on human respiratory sounds, as

opposed to lung sounds from standard auscultation? (2) Are
there unique acoustic features specific to certain respiratory
pathologies that are detectable by clinicians from sounds
collected using a phone? (3) How do clinicians perform in
remote audio-based respiratory diagnostics tasks in terms of
both the prediction accuracy and the corresponding confidence,
when compared with an automatic ML-based predicting system
trained on this type of data? (4) and whether we could get
improved performance in designing a combined decision system
by integrating the intelligence of clinicians and machines, as
there is a possibility that the two could be leveraging different
aspects of the sounds associated with the disease, in which case
complementary knowledge could lead to performance
enhancement. Multiple reports were published about
performance comparisons of clinicians and machines in the
analysis of medical imaging (eg, computerized tomography,
functional magnetic resonance imaging, and x-rays) [23,24].
However, to the best of our knowledge, there are no similar
performance comparisons between clinicians and machines in
terms of respiratory sounds.

Goal of This Study
In this work, we selected COVID-19 sounds as a specific
respiratory illness case study. Following our development of
an audio-based digital testing model for COVID-19 prediction
[22], this work presents a comparison study between clinicians
and our model. Specifically, we compared the performance of
over 30 clinicians and our ML-based model to examine human
sounds for COVID-19 prediction, based on respiratory sounds
(including breathing, coughs, and voice sounds) collected via
a smartphone microphone from participants tested negative and
positive for COVID-19. This study aimed to look into the
agreement level of predictions of an ML model with suspected
diagnosis of experienced clinicians and to lay the groundwork
for the implementation of digital auscultation for remote
respiratory condition assessment and monitoring.

Methods

Setting
This study aims to present a comparison of prediction by an
algorithm (ie, a supervised trained model) and a human (ie,
doctors with experience in treating COVID-19 or other
respiratory problems) for COVID-19 from respiratory sounds
collected from smartphone microphones. The Standards for
Reporting of Diagnostic Accuracy (STARD) reporting guideline
was followed [25].

Overview

COVID-19 Sound Listening Test for Doctors
In this COVID-19 sound listening test, each clinician (referred
to as “the doctor” below) was asked to listen to a set of
respiratory sound samples (each about 20 seconds), blinded to
their COVID-19 test labels. Some of the doctors worked in
COVID-19 wards, and some others were clinical trainees. Each
doctor was given access to these samples and performed the
listening test independently. After listening to each sample,
each doctor was asked to annotate with a yes or no whether they
thought the sample was from a COVID-19–positive participant
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or not and to provide an uncertainty score between 1 (very
uncertain) and 10 (very certain), describing how confident they
were in this judgement. In this study, there was no time
restriction for the clinicians to perform the test.

The ML Model
In our previous study [22], we developed and validated an ML
framework (referred to as “the model” below) for detecting
COVID-19 solely based on respiratory sounds of participants,
crowd-sourced via mobile apps or web applications. The model
was based on a deep convolutional neural network structure
VGGish, which is a pretrained network that learnt knowledge
from a large-scale general audio data set. The model was then
trained on a data set consisting of 1162 samples from 400
COVID-19–positive and 400 COVID-19–negative subjects.
Particularly, these audio samples were preprocessed by
removing the silence periods at the beginning and the end of
the recording and then normalized. We used Adam optimizer
to reduce the binary cross-entropy loss function on these training
samples (more details are presented in a study by Han et al [22]).
Once trained, the model takes one sample, consisting of 3
respiratory sounds (ie, breathing, coughs, and voice) from the
same subject as input. The sample is processed through the
model, and the model outputs a two-dimensional prediction,
indicating the probability of the sample being from a positive-
or negative-tested participant, respectively. The categorical
prediction is determined as the class with a larger probability,
and this probability can be deemed as the confidence of the
model for the given sample.

Study Samples
In our previous study, audio data collection and research on
audio-based COVID-19 prediction was performed [26,27]. In
this study, we selected a subcohort from the original data
collection, consisting of audio samples from COVID-19–positive
and COVID-19–negative participants. Each sample includes a
cough recording, a breathing recording, and a voice recording.
We limited the number of samples to 24, to limit the burden of
each doctor we involved, as it took them at least 0.5 hour to
finish the listening test. The samples were randomly selected
but needed to meet three criteria, as follows: (1) balancing the
ratio of positive and negative, balancing gender, as well as
spanning a wide age range; (2) covering various clinical
presentations, so to include both symptomatic positive-tested
and asymptomatic positive-tested individuals; (3) including
other conditions or confounding factors, such as patients with
active asthma and heavy smokers. It is important to mention
that these selected samples were not used in the training of our
ML model and were selected without knowledge of the outcome
prediction of our model in advance. Once selected, these audio
recordings were the only materials provided to the model and
the clinicians, that is, additional information, such as the gender,
age, and medical history, were neither used in the model nor
known by the clinicians before they listened to the audio
recordings. A summary of the basic information for each sample,
including age, gender, complained symptoms, COVID-19 test
results, and medical history, is listed in Table 1.
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Table 1. Basic information of 24 selected samples (samples were selected to cover different gender and age groups with varied medical histories.
Presence of symptoms reported among these samples are also listed).

SymptomsCOVID-19 test resultMedical historyAge (years)GenderID

—Negative—a30-39Male1

Sore throat and runny noseNegativeAsthma20-29Male2

Wet cough, shortness of breath, dizziness, and
headache

PositiveOther long-term condition20-29Female3

—NegativeHigh blood pressure50-59Male4

Dry cough, wet cough, shortness of breath, tightness
in chest, and sore throat

Positive—20-29Male5

Wet cough, shortness of breath, headache, and sore
throat

NegativeAsthma, diabetes, or other
long-term condition

50-59Female6

—NegativeHigh blood pressure and
diabetes

60-69Male7

Dry cough and loss of small or tastePositive—30-39Female8

Wet cough, tightness in chest, and loss of small or
taste

PositiveAsthma30-39Male9

Dry coughNegative—30-39Female10

HeadachePositiveHigh blood pressure and
cancer

60-69Male11

—Negative—60-69Female12

—Negative—20-29Female13

Shortness of breath, headache, sore throat, and
runny nose

Negative—40-49Female14

Wet cough, headache, sore throat, and dizzinessPositive—50-59Female15

—Positive—40-49Male16

—PositiveAsthma50-59Female17

Dry cough, tightness in chest, muscle ache, and
dizziness

PositiveHigh blood pressure40-49Female18

Fever and wet coughPositive—50-59Male19

HeadacheNegative—40-49Female20

Wet cough, shortness of breath, sore throat, runny
nose, and dizziness

Negative—30-39Male21

Dry cough, wet cough, tightness in chest, sore
throat, and dizziness

NegativeHigh blood pressure40-49Male22

Dry cough and muscle achePositive—40-49Male23

—PositiveAsthma50-59Female24

aNot applicable.

Study Design
This study compared the performance of audio-based COVID-19
predictions made by clinicians and an ML model. To this aim,
36 clinicians (with experience in treating COVID-19 or other
respiratory illnesses) from four different sites were recruited to
complete the COVID-19 sound listening test. After listening to
each respiratory sound sample, they noted down their answers
in a provided spreadsheet. Similarly, the trained ML model took
each of the given samples as the input and returned the
corresponding output prediction. We then examined the
performance of the clinicians and the model and performed an
in-depth comparison between the two.

Furthermore, we examined the performance of a committee of
multiple members within a team, given that it is possible to
reach a better performance by leveraging the power of a team.
To this end, we evaluated the scenarios when different numbers
of clinicians sit on a committee and make predictions
collectively. More specifically, for each respiratory sample
(consisting of breathing, cough, and voice sounds), a final
decision was reached by applying weighted majority voting,
taking all clinicians’ votes and their corresponding uncertainty
scores into account. Moreover, the final uncertainty score was
also derived by taking the average uncertainty score of the
clinicians whose vote was the same as the final decision. We
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are also interested in exploring if the ML model can aid the
clinicians, especially when conventional screening or testing
tools are not available (eg, during web-based consultations). To
simulate this setting, the ML model was considered as an
additional member of the committee, with its votes and
uncertainty scores being taken into account for the final decision.

Statistical Analysis
Performance is assessed via 3 measurements, including
sensitivity, specificity, and accuracy. Sensitivity indicates the
performance to identify positive samples correctly, while
specificity shows the ability to identify negative ones correctly.
Accuracy, on this balanced cohort, can be applied to average
the performance in terms of sensitivity and specificity. We
computed 95% CIs of the metrics via bootstrapping. We
examined the interrater agreement levels of the clinicians using
Fleiss kappa (between multiple clinicians) and Cohen Kappa
(between 2 clinicians) [28].

Ethical Considerations
The study was approved by the ethics committee of the
Department of Computer Science at the University of Cambridge
(ID 2000). The participants gave written informed consent to
participate in this study. The study data are deidentified.

Results

Performance of a Single Doctor and the ML Model
We present the performance of all 36 clinicians as well as the
performance of the ML model (Table 2). Results showed that
the ML model outperformed every single clinician, yielding
0.79 (95% CI 0.62-0.92) accuracy, 0.75 (95% CI 0.46-1.0)
sensitivity, and 0.83 (95% CI 0.58-1.0) specificity for
COVID-19 detection. In this study, the performance was
evaluated on 24 selected samples for the ML model as well as
for each clinician, while these samples were chosen to be
representative. The same ML model was evaluated on a testing

set with 200 participants, achieving 0.65 (95% CI 0.58-0.72)
of sensitivity and 0.69 (95% CI 0.62-0.76) of specificity [22].
The clinician who achieved the best performance, ID 36, a
pulmonologist working in the COVID-19 outpatient clinic,
predicted the presence of COVID-19 with 0.71 (95% CI
0.50-0.88) of accuracy, 0.67 (95% CI 0.36-0.92) of sensitivity,
and 0.75 (95% CI 0.50-1.0) of specificity. In this study, a small
sample size (24) results in a wide CI range in the performance.

The concordance among all raters indicated a slight agreement
level, with a Fleiss κ value of 0.137. Moreover, the paired
interrater agreement from every 2 respiratory specialists based
on Cohen κ is between –0.543 and 1.0, and the mean of all
Cohen κ values is 0.162, also representing a slight agreement
level on average between paired raters.

We further display the distribution of the uncertainty scores of
all clinicians and the ML model for correct and incorrect
predictions, respectively (Figure 1). Of note, with kernel density
estimate, the resulting distribution estimation is smoothed and
wider than the original range between 1 and 10. Distributions
of the clinicians’ uncertainty scores for correct and incorrect
samples (dark and light blue) are quite similar, covering the
whole range and both centered at around 8. In contrast,
uncertainty scores of the ML model are centered between 9 and
10, for both correct (dark green line) and incorrect (light green
line) predictions. This implies an extremely high confidence
level of the ML model for its predictions.

We listed the decisions of clinicians together with their
uncertainty scores for each sample (Figure 2) in box plots.
Specifically, for a COVID-19 negative detection, the uncertainty
score was multiplied by –1; for a COVID-19 positive detection,
the uncertainty score was kept unchanged. It can be noticed that
although the opinions of the clinicians varied from each other
in most of the samples, there were some samples where there
was a high agreement among the clinicians with high certainties
(eg, samples 08, 18, and 23).
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Table 2. Performance comparison of 36 doctors and the machine learning (ML) model in terms of sensitivity, specificity, and accuracy, with 95% CIs.
The best performance of 1 clinician and our ML model in terms of accuracy is italicized.

Specificity (95% CI)Sensitivity (95% CI)Accuracy (95% CI)Doctor ID

0.17 (0.00-0.40)0.42 (0.14-0.70)0.29 (0.12-0.46)1

0.58 (0.30-0.86)0.50 (0.21-0.80)0.54 (0.33-0.75)2

0.17 (0.00-0.40)0.33 (0.08-0.62)0.25 (0.08-0.42)3

0.42 (0.13-0.70)0.25 (0.00-0.50)0.33 (0.17-0.54)4

0.42 (0.14-0.73)0.50 (0.22-0.79)0.46 (0.29-0.67)5

0.50 (0.22-0.78)0.33 (0.08-0.64)0.42 (0.21-0.62)6

0.42 (0.14-0.73)0.50 (0.22-0.79)0.46 (0.29-0.67)7

0.50 (0.21-0.75)0.75 (0.50-1.0)0.62 (0.42-0.79)8

0.17 (0.00-0.40)0.33 (0.08-0.62)0.25 (0.08-0.42)9

0.50 (0.21-0.75)0.75 (0.50-1.0)0.62 (0.42-0.79)10

0.42 (0.13-0.70)0.25 (0.00-0.50)0.33 (0.17-0.54)11

0.50 (0.22-0.78)0.33 (0.08-0.64)0.42 (0.21-0.62)12

0.58 (0.30-0.86)0.50 (0.21-0.80)0.54 (0.33-0.75)13

0.58 (0.31-0.85)0.25 (0.00-0.50)0.42 (0.21-0.58)14

0.25 (0.00-0.50)0.83 (0.60-1.0)0.54 (0.33-0.75)15

0.67 (0.38-0.92)0.33 (0.08-0.62)0.50 (0.33-0.71)16

0.67 (0.38-0.92)0.33 (0.08-0.62)0.50 (0.33-0.71)17

0.67 (0.38-0.92)0.58 (0.30-0.88)0.62 (0.42-0.83)18

0.67 (0.40-0.92)0.50 (0.21-0.77)0.58 (0.38-0.79)19

0.67 (0.38-0.92)0.58 (0.30-0.88)0.62 (0.42-0.83)20

0.67 (0.40-0.92)0.50 (0.21-0.77)0.58 (0.38-0.79)21

0.25 (0.00-0.53)0.75 (0.50-1.0)0.50 (0.29-0.71)22

0.67 (0.38-0.91)0.42 (0.14-0.71)0.54 (0.33-0.75)23

0.50 (0.20-0.80)0.50 (0.18-0.78)0.50 (0.29-0.71)24

0.75 (0.50-1.0)0.50 (0.20-0.78)0.62 (0.42-0.83)25

0.75 (0.50-1.0)0.33 (0.08-0.62)0.54 (0.38-0.75)26

0.50 (0.20-0.80)0.50 (0.18-0.78)0.50 (0.29-0.71)27

0.50 (0.22-0.75)0.42 (0.12-0.70)0.46 (0.29-0.67)28

0.17 (0.00-0.40)0.42 (0.14-0.70)0.29 (0.12-0.46)29

0.50 (0.21-0.75)0.75 (0.50-1.0)0.62 (0.42-0.79)30

0.75 (0.50-1.0)0.42 (0.12-0.71)0.58 (0.38-0.79)31

0.58 (0.31-0.85)0.58 (0.29-0.86)0.58 (0.38-0.79)32

0.67 (0.38-0.92)0.33 (0.08-0.62)0.50 (0.29-0.71)33

0.67 (0.38-0.91)0.33 (0.08-0.62)0.50 (0.29-0.71)34

0.67 (0.42-0.92)0.58 (0.27-0.85)0.62 (0.42-0.83)35

0.75 (0.50-1.0)0.67 (0.36-0.92)0.71 (0.50-0.88)36

0.83 (0.58-1.0)0.75 (0.46-1.0)0.79 (0.62-0.92)ML model
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Figure 1. Confidence score kernel density estimate of 36 doctors and our model, for correct and incorrect predictions, respectively. Doc: doctor; ML:
machine learning.

Figure 2. Confidence scores of all clinicians in box plot for each sample separately. Real labels and the model predictions are also displayed. The
original confidence scores were adjusted to indicate the predictions or true labels (ie, if the prediction or label is COVID-19 positive, the confidence
score is maintained; and if the prediction or label is COVID-19 negative, the original confidence score is multiplied by –1).

Performance of a Committee of Multiple Members
As shown in the previous section, the average performance of
clinicians on the listening test is outperformed by the ML model.
Though most of the clinicians had working experiences in a
COVID-19 ward, they were not trained to detect COVID-19
based on respiratory sounds. In contrast, the ML model was
developed on purpose to carry out audio-based COVID-19
prediction, training on 1162 samples from 800 participants (400
COVID-19–positive participants and 400 COVID-19–negative
participants).

In this section, we reported the performance of a committee of
multiple members. We presented the averaged performance of
a committee with a varied number of clinicians (Figure 3A).
Dashed lines are for performance in terms of accuracy,
sensitivity, and specificity, respectively, between 1 and 6
(committee performance with more than 6 clinicians was not

given here, as including more than 6 does not bring further
performance increase). Further, we presented the best
performance that could be achieved by a committee (Figure
3B). The results were based on random selections of committees
over 10,000 times. It can be seen that the best committee with
3 or 4 clinicians obtained an accuracy of 0.79, sensitivity of
0.75, and specificity of 0.83. This was better than any single
clinician and matched the performance of our ML model (Table
2). Of note, in this study, the best clinicians committee was
selected based on their overall performance on the limited
provided samples. However, in reality, such a committee might
be selected based on the clinicians’experience with the disease.

When decisions of the ML model were also considered in the
committee, the performance of the adjusted committee is shown
with solid lines (Figure 3). The figure shows that on average
the ML model helped the most when a committee had a small
number of clinicians, and the benefits declined as the number
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of clinicians increased. This is because, under the used voting
strategy, the more human clinicians being involved, the less
helpful the model was, as its opinion was diluted in the doctors’
collective. However, it is encouraging to observe that when the
ML model was combined with the best clinicians committee

(Figure 3B) with 5 or 6 clinicians, the performance improved,
reaching an accuracy of 0.88, a sensitivity of 0.83, and a
specificity of 0.92. The uncertainty score distribution of this
best combination is also demonstrated (red lines in Figure 1),
mainly centered around 7.

Figure 3. Performance of a committee of multiple members, in terms of sensitivity (SE), specificity (SP), and accuracy (ACC), respectively. (A) the
average performance over 10000 times of committee selection. (B) The best performance that one committee with a certain number of members can
obtain. Dashed lines are performance of the committee with doctors only, and solid lines are performance with the ML model as an additional member.
Doc: doctor; ML: machine learning.

Discussion

Principal Results
In this work, we made a first step toward the integration of
machine intelligence and human intelligence in the context of
respiratory health. Specifically, we presented a detailed
performance comparison of multiple clinicians and an ML model
for audio-based COVID-19 detection from breathing, cough,
and voice sounds. The ML model trained on thousands of
samples outperformed the clinicians. However, it was
overconfident when making wrong predictions. We provided
insights on how, via proper cooperation, clinicians and the ML
model could achieve a more accurate diagnosis, with a more
appropriate confidence level. Furthermore, we showed the
COVID-19 signatures in different sound types that helped
clinicians make a prediction based on respiratory sounds only.
To the best of our knowledge, this is the first reported

performance comparison of a model with respiratory experts
for detecting COVID-19 from audio.

The results have shown that the performance of a committee
combining multiple doctors and the ML model outperformed
the performance of the ML model alone as well as
outperforming a committee of doctors without ML, indicating
the possibility and potential benefits of integrating the
predictions of clinicians and an ML model. Further, the derived
uncertainty score distribution of the doctors-and-ML committee
may imply that not only can the ML model help the clinicians
committee reach a more accurate decision, but also clinicians
help alleviate the over-confidence issue of the ML model.

We further invited the clinician with the best performance to
list the reasons behind each decision. It should be noted that the
ML model and this clinician reached an agreement of 0.328 in
terms of Cohen Kappa score, indicating a fair consensus between

J Med Internet Res 2023 | vol. 25 | e44804 | p. 8https://www.jmir.org/2023/1/e44804
(page number not for citation purposes)

Han et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


the two. The clinician noted down several potential COVID-19
signatures from the audio, including nasal voice, wheezing
cough, long expiration, tired voice, and strong coughs. we have
shown 2 positive samples as examples in Figure 4. The clinician
integrated the signatures from the 3 sound types and correctly
diagnosed a positive COVID-19 case for both samples. This
implies the complementarity and usefulness of the 3 respiratory
sounds for audio-based COVID-19 screening.

When looking into mistakes of the ML model, the model made
5 mistakes (02, 09, 17, 20, 24), 4 of which were for participants
with asthma (02, 09, 17, and 24; Figure 2). Moreover, 17 and
24 were samples from asymptomatic COVID-19–positive

participants, whereas 02 was a sample from a
COVID-19–negative participant who had respiratory symptoms,
such as sore throat and runny nose, which also affect voice
production. This was in line with the 2 of our previous findings
[22], as follows: (1) for participants with asthma, the
performance in terms of sensitivity declined to 0.33 (95% CI
0.07-0.64); and (2) the model was better in predicting
symptomatic COVID-19 than asymptomatic COVID-19.
Although the samples were selected to cover as many conditions
as possible, the limited size of the sample hindered us to
disentangle these confounders for a clearer view of the errors
made by the ML model.

Figure 4. COVID-19 positive breath, cough, and voice recordings from 2 samples (08 and 18) and the reported cues from one of the clinicians.
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Limitations
Several limitations to our study should be acknowledged. The
samples used were crowd-sourced; therefore, the information
collected, such as COVID-19 labels and the symptoms, were
self-reported. Nevertheless, several publications have assessed
the usefulness of our samples and obtained promising results
[29-31].

Moreover, this is a relatively small study with 24 samples and
36 clinicians. Communicating with and gathering a statistically
significant number of clinicians to perform the listening test
was laborious. Aiming at promoting doctors’ engagement in
developing artificial intelligence–driven assistive systems for
health care, further investigation on such performance
comparison and aggregation would be necessary, with more
samples and clinicians involved.

In addition, all of the samples used in this study were in English
language. Therefore, it is unclear whether and how different
languages may affect the performance of the clinicians and the
ML model, which was trained on English samples only, since
language is a potential confounding factor for audio-based
COVID-19 prediction [22]. In the future, we plan to study audio
samples from Italian participants, which have the second largest
number of samples in our collected data set.

Although only respiratory sounds collected from smartphones
were considered in this study, in the future, it is also interesting
to assess the ability of lung sounds collected via digital

stethoscopes. Combining the knowledge of the 2 types of sounds
might yield better prediction performance.

Finally, yet importantly, we considered the performance
comparison between clinicians and the ML model on sounds
only, as this was the main scope of our study. As the next step,
it seems reasonable to consider additional information for
clinicians or models to perform a more comprehensive and
holistic analysis. Such information could include but is not
limited to reported symptoms [32], body temperature [33], heart
rate [34], and oxygen saturation level [35].

Conclusions
In this study, we compared clinicians and an ML model in
audio-based COVID-19 prediction and observed that the
diagnostic accuracy of the model was superior to that of
respiratory clinicians. The study also showed that the model
and clinicians might be using complementary information, and
by combining the predictions, it is possible to achieve a further
increase in diagnostic accuracy. This study was the first study
of its kind in comparing the performance of respiratory clinicians
with an ML model and showed the value of a computer-aided
decision support system in the transformation of respiratory
care pathway. In light of the model’s ease of implementation,
it can be applied to many scenarios, such as remote assessments,
web-based consultations, and remote monitoring. Future work
will focus on verifying such an ML-based system on other
respiratory conditions and assessing its feasibility and
acceptability in clinical practice.
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