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Abstract

Background: Machine learning (ML) methods have shown great potential in predicting colorectal cancer (CRC) survival.
However, the ML models introduced thus far have mainly focused on binary outcomes and have not considered the time-to-event
nature of this type of modeling.

Objective: This study aims to evaluate the performance of ML approaches for modeling time-to-event survival data and develop
transparent models for predicting CRC-specific survival.

Methods: The data set used in this retrospective cohort study contains information on patients who were newly diagnosed with
CRC between December 28, 2012, and December 27, 2019, at West China Hospital, Sichuan University. We assessed the
performance of 6 representative ML models, including random survival forest (RSF), gradient boosting machine (GBM), DeepSurv,
DeepHit, neural net-extended time-dependent Cox (or Cox-Time), and neural multitask logistic regression (N-MTLR) in predicting
CRC-specific survival. Multiple imputation by chained equations method was applied to handle missing values in variables.
Multivariable analysis and clinical experience were used to select significant features associated with CRC survival. Model
performance was evaluated in stratified 5-fold cross-validation repeated 5 times by using the time-dependent concordance index,
integrated Brier score, calibration curves, and decision curves. The SHapley Additive exPlanations method was applied to calculate
feature importance.

Results: A total of 2157 patients with CRC were included in this study. Among the 6 time-to-event ML models, the DeepHit
model exhibited the best discriminative ability (time-dependent concordance index 0.789, 95% CI 0.779-0.799) and the RSF
model produced better-calibrated survival estimates (integrated Brier score 0.096, 95% CI 0.094-0.099), but these are not
statistically significant. Additionally, the RSF, GBM, DeepSurv, Cox-Time, and N-MTLR models have comparable predictive
accuracy to the Cox Proportional Hazards model in terms of discrimination and calibration. The calibration curves showed that
all the ML models exhibited good 5-year survival calibration. The decision curves for CRC-specific survival at 5 years showed
that all the ML models, especially RSF, had higher net benefits than default strategies of treating all or no patients at a range of
clinically reasonable risk thresholds. The SHapley Additive exPlanations method revealed that R0 resection, tumor-node-metastasis
staging, and the number of positive lymph nodes were important factors for 5-year CRC-specific survival.

Conclusions: This study showed the potential of applying time-to-event ML predictive algorithms to help predict CRC-specific
survival. The RSF, GBM, Cox-Time, and N-MTLR algorithms could provide nonparametric alternatives to the Cox Proportional
Hazards model in estimating the survival probability of patients with CRC. The transparent time-to-event ML models help
clinicians to more accurately predict the survival rate for these patients and improve patient outcomes by enabling personalized
treatment plans that are informed by explainable ML models.

J Med Internet Res 2023 | vol. 25 | e44417 | p. 1https://www.jmir.org/2023/1/e44417
(page number not for citation purposes)

Yang et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

mailto:qiuhang@uestc.edu.cn
http://www.w3.org/Style/XSL
http://www.renderx.com/


(J Med Internet Res 2023;25:e44417) doi: 10.2196/44417

KEYWORDS

colorectal cancer; survival prediction; machine learning; time-to-event; SHAP; SHapley Additive exPlanations

Introduction

Colorectal cancer (CRC) is the third most commonly diagnosed
cancer and the second leading cause of cancer death worldwide,
with 1.9 million new cases and 0.93 million deaths estimated
in 2020, accounting for 10% of the global cancer incidence and
9.4% of all cancer-caused deaths [1,2]. With high morbidity
and mortality, CRC is an important component of health care
expenditure and imposes a heavy burden on families and society
[3]. Precise survival prediction for patients with CRC will help
clinicians optimize treatment measures, improve survival rates,
and reduce the disease burden of patients [3,4]. Therefore,
obtaining precise survival predictions for patients with CRC
and understanding what affects these predictions are critical for
identifying targeted interventions in the clinical setting.

The Cox proportional hazards (CPH) model [5] is the most
commonly used statistical method for survival analysis, which
has been widely applied to predict prognosis for patients with
CRC due to its ease of use and interpretation [6,7]. To deal with
high-dimensional data, based on the basic CPH model, some
variant models of CPH were proposed, such as Lasso-Cox [8],
EN-Cox [9], and robust CPH with nonlinearities and interactions
[6]. In recent years, machine learning (ML), especially ensemble
learning and deep learning (DL), has proven to be a great
complement to traditional statistical methods in many health
care applications [10-12]. A large body of studies has attempted
to use ML models to predict CRC survival [4,13,14]. For
instance, Pourhoseingholi et al [4] compared the performance
of traditional and ensemble ML models for predicting the 5-year
survival of patients with CRC. The results showed that the
ensemble voting model achieved an area under the receiver
operating characteristic curve of 0.96, which was the best result.
Al-Bahrani et al [14] used deep neural networks to predict
1-year, 2-year, and 5-year survival for patients with CRC. The
deep neural networks model achieved an average area under
the receiver operating characteristic curve of 0.87, which is
higher than the 0.85 reported by Stojadinovic et al [15].

Although ML-based approaches have shown great potential in
CRC survival prediction, the vast majority of existing studies
did not include time-to-event data and have only considered
binary outcomes, which may incur the risk of bias in prediction
accuracy [16,17]. Some time-to-event ML models, such as
random survival forest (RSF) [18], gradient boosting machine
(GBM) [19], DeepSurv [20], DeepHit [21], neural net-extended
time-dependent Cox model (Cox-Time) [22], and neural
multitask logistic regression (N-MTLR) [23], have shown
promising performances in several prognostic studies on breast
cancer [10,24], oral cavity cancer [16], and lung cancer [11,23];
however, it is not clear whether these models have the same
advantages in CRC survival prediction. Moreover, due to the
“black box” nature of ML models, the predictions made by these
models are opaque, meaning that the importance of input
features to the output is unclear, which limits the clinical

applications of ML approaches. Therefore, it is essential to
adopt effective methods to increase the transparency of ML
models in the medical domain.

Given the high incidence of CRC and the lack of a reliable study
on modeling time-to-event survival data of CRC using
ML-based approaches, this study seeks to contribute to the
existing body of knowledge by evaluating the performance of
time-to-event ML models in predicting CRC-specific survival
and by combining ML models with the SHapley Additive
exPlanations (SHAP) method [25] to provide transparent
predictions for clinical application.

Methods

Data Collection
We collected data from patients with CRC from the Database
of Colorectal Cancer (DACCA) of West China Hospital, Sichuan
University. This database includes patient demographics,
diagnosis, tumor, treatment, and follow-up information.
Specifically, the features collected included age at diagnosis,
gender, marriage, BMI, operation time, preoperative
carcinoembryonic antigen (CEA), number of positive lymph
nodes (PLNs), dystrophy, obstruction, intussusception, intestinal
perforation, diabetes, hypertension, differentiation,
tumor-node-metastasis (TNM) staging based on the 8th edition
of American Joint Committee on Cancer (TNM staging),
morphologic type, histologic type, R0 resection, neoadjuvant
treatment, cardiac function, anemia, perineural invasion, and
tumor location.

The date of the last follow-up for this study was October 11,
2021. CRC cases were identified by the International
Classification of Diseases, Tenth Revision codes (C18, C19,
and C20). After discharge, the clinician would follow up with
the patient regularly according to the patient’s condition and
record the survival information. The inclusion criteria were as
follows: (1) aged 15-99 years; (2) first diagnosed with CRC
between December 28, 2012, and December 27, 2019; and (3)
follow-up time ≥1 month.

Ethics Approval
This study was approved by the Ethics Committee of West
China Hospital, Sichuan University (2021-155). Because this
study was a retrospective study design and all data were
analyzed anonymously, the requirement to obtain informed
consent was removed.

Study Outcomes
The outcome of this study was CRC-specific survival, which
was defined as the number of months from diagnosis to death
from CRC or the end of follow-up, whichever occurred first.

J Med Internet Res 2023 | vol. 25 | e44417 | p. 2https://www.jmir.org/2023/1/e44417
(page number not for citation purposes)

Yang et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.2196/44417
http://www.w3.org/Style/XSL
http://www.renderx.com/


Data Preprocessing and Feature Selection
Features with a missing ratio of more than 30% were excluded
[26,27] because they provided limited information. Missing
data were assumed missing at random and were imputed 5 times
in the package “miceforest” [28] by multiple imputation by
chained equations, which helps minimize bias. The imputation
model contained all candidate predictor variables. Imputations
were performed within the cross-validation loop, and we
developed an imputation model on the training set and used it
to impute missing values on the training and testing sets,
respectively. Because the dimensions were different, numerical
features, ordinal categorical features, and nominal categorical
features were processed using zero-mean normalization, integer
encoding, and one-hot encoding, respectively.

We performed feature selection by combining the results of 2
different approaches: one based on the algorithm and the other
based on clinical experience. For the algorithm-based approach,
we used multivariate Cox regression to select features
significantly associated with CRC-specific survival [16].
Features with P values <.05 were considered significantly
associated with survival. For the clinical experience–based
approach, clinical experts identified 6 features (age, preoperative
CEA, PLN, TNM staging, R0 resection, and neoadjuvant
treatment) as the most relevant to CRC-specific survival based
on their clinical experience. The final feature set was the union
of the feature sets selected by the above 2 approaches. We aimed
to develop parsimonious models that contain only relevant and
easily accessible features, appropriately preventing models from
overfitting [29].

Model Development
A total of 6 time-to-event ML models with 2 based on ensemble
learning (RSF and GBM) and 4 based on DL (DeepSurv,
DeepHit, Cox-Time, and N-MTLR) were developed to predict
CRC-specific survival. These models were selected according
to their promising performances reported in previous studies
[16,23,30].

RSF is an ensemble learning algorithm similar to bagging [31],
which consists of survival trees [18]. RSF grows survival trees
by randomly selecting features and then splits nodes using
candidate features to maximize the survival difference between
child nodes. GBM is a gradient boosting–based ensemble
learning algorithm consisting of base learners. GBM sequentially
builds base learners in a greedy stage-wise fashion to minimize
the weighted risk function [19]. DeepSurv is a DL-based
algorithm that extends CPH to handle nonlinear effects between
input features and clinical events. DeepSurv consists of multiple
hidden layers and is trained with modern techniques, such as
batch normalization and gradient descent optimization
algorithms [20]. DeepHit is a DL-based nonproportional hazards
algorithm that uses multitask learning to handle competition
between events. DeepHit consists of a shared subnetwork and
1 or more cause-specific subnetworks [21]. Cox-Time is a

DL-based algorithm that treats time as a regular covariate to
model interactions between time and the other covariates.
N-MTLR is a DL-based algorithm that builds different neural
networks on different time intervals to estimate the probability
of the event of interest occurring in each interval. RSF, GBM,
DeepHit, Cox-Time, and N-MTLR algorithms have no
proportional hazards assumption. To explore the difference in
performance between the time-to-event ML model and the CPH
model, we developed a robust CPH model with nonlinearities
and interactions based on a study by Hippisley-Cox and
Coupland [6]. A sample size calculation was performed using
the “pmsampsize” [32] package in R for the CPH model, and
the total required sample size was 555 patients. In each
cross-validation loop, we had 1725 patients in the training set,
meaning that our sample size was sufficient for modeling a
reliable CPH model.

To tune all the time-to-event ML models’ hyper-parameters,
we performed a Bayesian search [33] with stratified 5-fold
cross-validation in the training set. The hyper-parameter search
space of the ML models is shown in Multimedia Appendix 1.

Evaluation of Model Performance
The discriminative ability of models was evaluated by the

time-dependent concordance index (Ctd) [34], which is the ratio

of correctly distinguished pairs to all pairs. A Ctd value of 1
represents perfect discrimination, whereas a value of 0.5
represents random guessing. The Brier score [35] measures the
distance between a patient’s survival status and the predicted
probability of survival. The integrated Brier score (IBS) is the
integral of the Brier score at all available times. The calibration
ability of models was evaluated with IBS, where the smaller
the IBS value of the model, the better its calibration ability.
Additionally, we assessed the calibration of 5-year CRC-specific
survival by comparing the observed survival probability at 5
years with the predicted survival probability.

Decision curve analysis is a statistical method to evaluate
whether a model has utility in supporting clinical decisions by
calculating the net benefit at different threshold probabilities
[27]. Therefore, we used decision curve analysis to evaluate the
net benefits of models for CRC survival at 5 years at a range of
clinically reasonable risk thresholds (10%-30%) [36].

All models were evaluated in stratified 5-fold cross-validation
[37] repeated 5 times, as shown in Figure 1. During the inner
stratified 5-fold cross-validation loop, we trained time-to-event
ML models with different hyperparameter configurations on

the inner training set and calculated their Ctd on the inner testing

set. The configuration that yielded the highest average Ctd was
chosen as the best hyperparameter configuration. During the
outer 5 times stratified 5-fold cross-validation loop, the
performance of the optimized time-to-event ML models was
estimated on the outer testing data.
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Figure 1. Study design flowchart.

Model Explanation
Model transparency is critical to the application of models in
the medical domain. Therefore, to make time-to-event ML
models more transparent, we introduced SHAP, which is a
model-agnostic post hoc explanation algorithm that has been
widely applied to explain ML models [10,38,39].

The 5-year survival is a metric commonly used in medical
science to evaluate the effects of surgery and treatment. Thus,
we adopted SHAP to explore important factors affecting 5-year
CRC-specific survival. In this study, all testing data were
selected to calculate the SHAP value of each feature to obtain
the importance ranking of features.

Sensitivity Analysis
Sensitivity analyses were performed to examine the predictive
stability of the models for different subgroups. Model
performance was evaluated in the subgroups, focusing on
patients in different age groups (<65 years and ≥65 years) [40]
and patients of different sex.

Statistical Analysis
Categorical and Boolean features were presented as frequencies
and percentages, and numerical features were presented as the
median (25th and 75th percentiles). A Wilcoxon rank sum test
was used to assess the difference in performance between the
models. A 2-sided P value <.05 was considered statistically
significant.

All analyses and calculations were performed using R (version
4.2.2; R Core Team) and Python (version 3.8.7; Python Software
Foundation). This study followed the Guidelines for Developing
and Reporting Machine Learning Predictive Models in

Biomedical Research [41] and the Transparent Reporting of a
Multivariable Prediction Model for Individual Prognosis or
Diagnosis [42] statement.

Results

Patient Characteristics
A total of 2157 patients were included in this study. Statistical
descriptions of these patients are presented in Multimedia
Appendix 2. The median age of the 2157 patients was 61 years,
and 1301 (60.4%) patients were male. Tumors were completely
resected (R0 resection) in 1503 (69.6%) patients, and the median
operation time was 60 minutes. Tumor pathology in very few
patients was characterized by squamous cell carcinoma, and
tumors were moderately differentiated in 1388 (64.3%) patients.
These patients had a median preoperative CEA of 3.8 ng/mL,
and 1217 (56.4%) patients received neoadjuvant treatment.
Follow-up durations ranged from 1 month to 104 months.
During this period, 420 (19.5%) patients died from CRC, 36
(1.6%) patients died from other causes, and 1702 (78.9%)
patients survived during follow-up.

Model Performance
The evaluation results of the time-to-event models are shown
in Table 1. Among the 6 time-to-event ML models, the average

Ctd (0.789, 95% CI 0.779-0.799) of the DeepHit model is the
highest and the average IBS (0.096, 95% CI 0.094-0.099) of
the RSF model is the lowest, but these are not statistically
significant (Multimedia Appendices 3 and 4). Additionally, no
significant performance differences were observed between the
RSF, GBM, DeepSurv, Cox-Time, and N-MTLR models and

the CPH model for Ctd and IBS (Multimedia Appendix 5).
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Table 1. Performance of time-to-event models.

Integrated Brier score, mean (95% CI)Time-dependent concordance index, mean (95% CI)Model

0.098 (0.095-0.100)0.781 (0.771-0.791)Cox proportional hazards

0.096 (0.094-0.099)0.786 (0.776-0.796)Random survival forest

0.100 (0.097-0.102)0.787 (0.775-0.799)Gradient boosting machine

0.097 (0.095-0.100)0.787 (0.776-0.798)DeepSurv

0.108 (0.101-0.114)0.789 (0.779-0.799)DeepHit

0.097 (0.095-0.099)0.787 (0.776-0.798)Cox-Timea

0.098 (0.086-0.101)0.786 (0.776-0.796)Neural multitask logistic regression

aNeural net-extended time-dependent Cox.

Figure 2 shows the difference between the predicted 5-year
CRC-specific survival and the actual events. Overall, all models
exhibited good 5-year survival calibration. The CPH, RSF,
GBM, DeepSurv, Cox-Time, and N-MTLR models slightly
overestimated the 5-year survival rate, while the DeepHit model

slightly underestimated the 5-year survival rate. In addition, the
CPH, RSF, DeepSurv, Cox-Time, and N-MTLR models
produced better 5-year survival calibrations than the DeepHit
and GBM models.

Figure 2. 5-year colorectal cancer (CRC)–specific survival calibration plot. Cox-Time: neural net-extended time-dependent Cox; CPH:Cox proportional
hazards; GBM: gradient boosting machine; N-MTLR: neural multitask logistic regression; RSF: random survival forest.

Figure 3 displays the net benefit curves for CRC survival models
at 5 years. Overall, all the CRC survival models had higher net
benefits than the default strategies of treating all or no patients

at a range of clinically reasonable risk thresholds. In particular,
the net benefit of the RSF model surpassed all other models.
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Figure 3. Decision curves for 5-year colorectal cancer (CRC)–specific survival. Cox-Time: neural net-extended time-dependent Cox; CPH: Cox
proportional hazards; GBM: gradient boosting machine; N-MTLR: neural multitask logistic regression; RSF: random survival forest.

Feature Importance
We applied SHAP to determine the effect of the input features
on the 5-year CRC-specific survival. Figure 4 shows the
importance ranking of the input features. The features are listed

in a top-down order, with decreasing importance. The larger
the mean SHAP absolute value of a feature, the more important
that feature is. R0 resection, TNM staging, and PLN ranked
among the top 3 in feature importance ranking for all ML
models.
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Figure 4. The importance ranking of the top 10 features for (A) random survival forest, (B) gradient boosting machine, (C) DeepSurv, (D) DeepHit,
(E) neural net-extended time-dependent Cox (Cox-Time), and (F) neural multitask logistic regression according to the mean SHapley Additive exPlanation
(SHAP) absolute value. CEA: carcinoembryonic antigen; PLN: positive lymph node; TNM: tumor-node-metastasis.

Sensitivity Analysis

The Ctd and IBS of the GBM and DeepHit models remained
stable in different age and sex groups (Multimedia Appendix
6). The performance of the GBM, DeepSurv, DeepHit, and
Cox-Time models has no statistical difference in different age
stratifications, while the IBS of the CPH, RSF, and N-MTLR
models in the age group ≥65 years is significantly lower than
that in the age group <65 years. The performance of the GBM
and DeepHit models has no statistical difference in different
sex stratifications, while the IBS of the CPH, RSF, DeepSurv,
Cox-Time, and N-MTLR models for female individuals is
significantly lower than that for male individuals.

Discussion

Principal Findings
In this study, we evaluated the performance of traditional (CPH)
and ML-based (RSF, GBM, DeepSurv, DeepHit, Cox-Time,
and N-MTLR) models for CRC-specific survival prediction and
applied SHAP to make predictions of time-to-event ML models
more transparent. We found that the DeepHit model

demonstrated the best discriminative ability (Ctd 0.789, 95% CI
0.779-0.799) and the RSF model produced better-calibrated
survival estimates (IBS 0.096, 95% CI 0.094-0.099), but these
are not statistically significant. Moreover, the RSF, GBM,
DeepSurv, Cox-Time, and N-MTLR models have comparable
predictive accuracy to the CPH model in terms of discrimination
and calibration. The 5-year CRC-specific survival calibration
plot showed all the ML models exhibited good calibration.

J Med Internet Res 2023 | vol. 25 | e44417 | p. 7https://www.jmir.org/2023/1/e44417
(page number not for citation purposes)

Yang et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Decision curves for 5-year CRC-specific survival showed that
all the ML models had higher net benefits than the default
strategies of treating all or no patients, and the RSF model had
the highest net benefit. Similar results have been reported in
other cancer survival studies. For example, Du et al [43] used
several models, including CPH and RSF, to predict
disease-specific survival in patients with oral and pharyngeal
cancers. Their results showed that time-to-event ML algorithms,
such as RSF, provide nonparametric alternatives to CPH to
estimate the survival probability of patients with oral and
pharyngeal cancers. Adeoye al [16] found that RSF, DeepSurv,
DeepHit, and Cox-Time algorithms are successful in predicting
oral cavity cancer prognosis. Our results showed the potential
of applying time-to-event ML predictive algorithms to help
predict CRC-specific survival, and the RSF, GBM, Cox-Time,
and N-MTLR nonproportional hazards algorithms could be used
as nonparametric alternatives to CPH in CRC-specific survival
prediction. Inconsistent with some previous studies [10,11,24],
we did not find that the time-to-event ML models achieve better
performance than the CPH model for CRC-specific prediction.
One possible reason may be that the sample size of our data set
is not large enough. ML approaches are data-driven approaches
and may require truly “big data” to ensure their developed
models avoid overfitting and their potential advantages (dealing
with nonlinear relations and interactions) reach fruition [32].
Our data set is sufficient to develop a reliable CPH model, but
larger sample sizes may be required when developing ML
models. Another possible reason is that we only included a small
number of features. The advantage of ML over traditional
statistical methods is that it automatically deals with the
interactions between numerous features based on data [44].
Therefore, if the number of features is too small, the advantage
of ML will not be significant.

The results of the sensitivity analysis showed that the
performance of the GBM and DeepHit models remained stable
in different age and sex groups, while other models performed
better in the age group ≥65 years and the female group. This
may be related to a higher incidence of CRC deaths among
individuals aged ≥65 years compared to those aged <65 years.
This data set is unbalanced, so higher event (death from CRC)
rates may lead to better performance. The proportion of female
patients aged ≥65 years is higher than that of male patients,
which may be one of the reasons why the models perform better
in the female subgroup.

To the best of our knowledge, this is the first study to evaluate
the discriminative ability and calibration ability of various
time-to-event ML models trained with clinical features to predict
CRC-specific survival based on data from Chinese patients with
CRC. Censoring is an unavoidable problem in long-term survival
prediction because patients are often lost to follow-up or die
from unrelated causes. Although ML has been widely used in
CRC survival prediction, many ML-based models ignore
censoring because the default framework is to analyze binary

outcomes rather than time-to-event survival outcomes, which
may bias survival predictions. Time-to-event algorithms achieve
a dynamic perception of survival predictions by providing
estimates at various time points, and these algorithms can be
better used for the survival monitoring of patients with CRC.
However, how different ML-based time-to-event algorithms
perform in terms of CRC-specific survival remains to be
explored. The results of our study will fill this gap and provide
a reference for subsequent researchers.

The predictions of ML models are opaque due to their “black
box” nature. In this study, we used SHAP to make time-to-event
ML models more transparent. SHAP is a model-agnostic ex
post facto explanation method. The larger the SHAP value of
a feature, the more influential it is on the model output. The
visualization of feature importance showed that TNM staging,
PLN, and preoperative CEA were important in predicting 5-year
CRC-specific survival, which was consistent with those of
previous works [3,4,6] and clinical experience. Additionally,
we found R0 resection and operation time were important
features in our study, which were rarely reported in the previous
CRC literature. One possible reason for this result is that our
model is based on data from Chinese patients with CRC, and it
suggests that R0 resection and operation time may simply be
valid independent predictors of CRC-specific survival in Chinese
populations, suggesting that the features affecting the prediction
of CRC-specific survival are different in different populations.
The value of R0 resection and operation time in predicting
CRC-specific survival is worthy of Chinese clinicians’attention.

Limitations
This study has some limitations. First, the retrospective nature
of this study resulted in some overly missing features, such as
perineural invasion. However, the features available for
modeling produced satisfactory and reasonable estimates on
the test set. Second, the information collected in this study is
structured clinical data; if combined with structured clinical
data and unstructured clinical data, such as imaging and
multiomics data, it may provide better prediction results. Third,
as with other cancer survival studies [6,10,17], unbalanced
survival data sets were not processed. Last, the time-to-event
ML models were trained on single-center CRC survival data
and need to be further validated in external data sets.

Conclusions
This study showed the potential of applying time-to-event ML
predictive algorithms to help predict CRC-specific survival.
The RSF, GBM, Cox-Time, and N-MTLR algorithms could
provide nonparametric alternatives to CPH in estimating the
survival probability of CRC patients. The transparent
time-to-event ML models help clinicians more accurately predict
the survival rate for patients with CRC and improve patient
outcomes by enabling personalized treatment plans that are
informed by explainable ML models.
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