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Abstract

Background: Vocal biomarker–based machine learning approaches have shown promising results in the detection of various
health conditions, including respiratory diseases, such as asthma.

Objective: This study aimed to determine whether a respiratory-responsive vocal biomarker (RRVB) model platform initially
trained on an asthma and healthy volunteer (HV) data set can differentiate patients with active COVID-19 infection from
asymptomatic HVs by assessing its sensitivity, specificity, and odds ratio (OR).

Methods: A logistic regression model using a weighted sum of voice acoustic features was previously trained and validated on
a data set of approximately 1700 patients with a confirmed asthma diagnosis and a similar number of healthy controls. The same
model has shown generalizability to patients with chronic obstructive pulmonary disease, interstitial lung disease, and cough. In
this study, 497 participants (female: n=268, 53.9%; <65 years old: n=467, 94%; Marathi speakers: n=253, 50.9%; English speakers:
n=223, 44.9%; Spanish speakers: n=25, 5%) were enrolled across 4 clinical sites in the United States and India and provided
voice samples and symptom reports on their personal smartphones. The participants included patients who are symptomatic
COVID-19 positive and negative as well as asymptomatic HVs. The RRVB model performance was assessed by comparing it
with the clinical diagnosis of COVID-19 confirmed by reverse transcriptase–polymerase chain reaction.

Results: The ability of the RRVB model to differentiate patients with respiratory conditions from healthy controls was previously
demonstrated on validation data in asthma, chronic obstructive pulmonary disease, interstitial lung disease, and cough, with ORs
of 4.3, 9.1, 3.1, and 3.9, respectively. The same RRVB model in this study in COVID-19 performed with a sensitivity of 73.2%,
specificity of 62.9%, and OR of 4.64 (P<.001). Patients who experienced respiratory symptoms were detected more frequently
than those who did not experience respiratory symptoms and completely asymptomatic patients (sensitivity: 78.4% vs 67.4% vs
68%, respectively).
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Conclusions: The RRVB model has shown good generalizability across respiratory conditions, geographies, and languages.
Results using data set of patients with COVID-19 demonstrate its meaningful potential to serve as a prescreening tool for identifying
individuals at risk for COVID-19 infection in combination with temperature and symptom reports. Although not a COVID-19
test, these results suggest that the RRVB model can encourage targeted testing. Moreover, the generalizability of this model for
detecting respiratory symptoms across different linguistic and geographic contexts suggests a potential path for the development
and validation of voice-based tools for broader disease surveillance and monitoring applications in the future.

(J Med Internet Res 2023;25:e44410) doi: 10.2196/44410
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Introduction

Background
Voice-based health assessments using acoustic signatures
(“vocal biomarkers”) are well suited to be considered as
prescreening and population health surveillance tools, as they
do not require additional hardware beyond the smartphone itself
and are therefore inherently accessible and low cost. Vocal
biomarkers have already shown promise in various areas of
health condition detection, including mental health [1,2],
neurodegeneration [3], and cardiovascular conditions [4].
Approaches like these, using acoustic features (“how you
sound”) and linguistic analysis (“what you say”), have indicated
that <10 seconds of voice recording can be adequate to obtain
results consistent with medical diagnoses or validated as
screening instruments in approximately 60% to 90% of cases.
These techniques are feasible on consumer devices operating
under naturalistic conditions, outside of controlled laboratory
environments [5]. Vocal biomarker applications for the detection
of potential COVID-19 could be particularly interesting, as they
could be used frequently and at the population scale, thereby
helping to detect and monitor the spread of the disease in the
population. These approaches could be complementary to
polymerase chain reaction (PCR) and rapid tests, which are
costlier, less accessible, and do not return results quickly [6,7].
The digital nature of the approach also has the potential to serve
as a centralized monitoring system, similar to wastewater RNA
detection [8], but at a lower operational cost and potentially
more easily applicable to future pandemics that have a
respiratory component.

Several groups have investigated voice-based identification of
COVID-19 using machine learning– and artificial
intelligence–based methods on a labeled data set of voice
recordings from patients with COVID-19 and control groups
[9-23]. Although these reports included a variety of model
training and testing approaches, with different participant
recruitment methods, they all used newly collected data to train
models to identify COVID-19. Our work differs substantially
in that we tested an existing respiratory-responsive vocal
biomarker (RRVB) model, previously developed using an
asthma and healthy control data set, for its ability to extend,
without alteration, to a COVID-19 population.

Objective
This study was not designed to optimize COVID-19
identification. The intent was primarily to validate the existing
RRVB model on a new data set from different geographies,
settings, and medical conditions. The ability to preserve
performance on such diverse independent data sets is not
routinely examined (or achieved) with machine learning
approaches and, if successful, would support the robustness of
this RRVB model. One published report that attempted to do
so in a COVID-19 data set found a marked decline in detection
performance on a new test set [24].

As the study was not aimed at developing a COVID-19 detection
model, the enrollment criteria had several specific requirements.
The most significant one was the need for patients who are
COVID-19 positive (COV +ve) to have at least 1
COVID-19–associated symptom (respiratory or otherwise).
This was performed to avoid a high percentage of asymptomatic
cases [25], which may not be detectable with the existing RRVB
model. As detailed in the Results section, the enrolled
participants did have a mix of symptom burden, including some
that were asymptomatic at the time of voice recordings, allowing
an analysis of the effect of symptom burden on RRVB
performance. In addition to patients who were COV +ve,
patients who were symptomatic and were tested negative for
COVID-19 were also enrolled. This was done to enable
comparisons with other acute illnesses that have a similar
symptom spectrum to COVID-19.

Methods

RRVB Model Development
The RRVB model was trained using data collected from over
20 hospitals in India from August 2018 to January 2020 and
included 5 major Indian languages and English. This digital
biobank includes over 3000 patients with respiratory disease,
of whom 1700 were diagnosed with asthma, as well as a similar
number of healthy controls. A more detailed description of the
model development and testing is provided in Multimedia
Appendix 1.

In summary, a detection model was trained using a
6-second–held “ahh” vowel elicitation and was optimized to
differentiate patients with asthma from healthy controls. The
model was evaluated for its ability to generalize to hold out
validation data from patients with asthma, as well as individuals
with other respiratory diseases including chronic obstructive
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pulmonary disease (COPD), interstitial lung disease (ILD), and
cough. Acoustic features were selected based on univariate
correlations with the 2 training classes and evaluated by repeated
stratified cross-validation on several potential confounding
variables (eg, phone manufacturer, research coordinator, and
language). Candidate features were combined, and an exhaustive
set of these feature combinations was trained using a logistic
regression model using the same stratification process as
described in Multimedia Appendix 1. The model performance
was evaluated based on the area under the curve of the receiver
operating characteristic, and the coefficients of the final logistic
model were determined using the full training data set. The
model produces a score ranging from 0 to 100, representing the
likelihood that the modeled voice characteristics more closely
resemble those of patients with asthma than those without. A
threshold value (fixed at 65) was used to convert to a binary
screening outcome of good health or asthma diagnosis (negative
vs positive). Performance on a test set of patients with asthma,
COPD, ILD, and cough indicated that performance was
comparable across all these conditions: sensitivity and specificity
ranged from 55% to 75%, with odds ratios (ORs) ranging from
3 to 9. The generalizability across these conditions suggests
that the RRVB model responds to a subset of voice acoustic
changes that accompany the shared symptoms across these
conditions (ie, shortness of breath, cough, chest tightness, or
pain).

COVID-19 Study Description
The primary objective of this study was to determine whether
the RRVB model developed to identify people with a medical
diagnosis of asthma can also identify patients who were COV
+ve from asymptomatic healthy volunteers (HVs); a third cohort
of patients who were symptomatic but COVID-19 negative
(COV −ve) was also enrolled. The study design and end points
were prespecified as described at ClinicalTrials.gov
(NCT04582331) [26].

Participating sites, in decreasing order of total participant
enrollment, were Deenanath Mangeshkar Hospital, Pune,
Maharashtra, India; Montefiore Medical Center, Bronx, New
York; Brigham and Women’s Hospital, Boston, Massachusetts;
and University of California, San Diego Health, San Diego,
California.

The study targeted patients at presentation to the clinical site
(typically emergency department or urgent care), although
admitted patients were also eligible to enroll for up to 5 days
after testing (see the Eligibility Criteria section). Patients with
COVID-19–like symptoms could enroll before a confirmed
COVID-19 diagnosis, and the study design intended both
positive and negative patients to continue with the study.
Diagnosis for participants in the COV −ve group was not
collected. HVs were recruited from hospital staff or their family
members and were required to be asymptomatic with no history
of positive COVID-19 tests (viral or serological).

Figure 1 graphically illustrates the participant journey. Upon
agreeing to participate, participants were instructed to download
the study app (described in the Mobile App section) onto their
personal smartphone, provide in-app electronic consent, and
record daily voice samples and symptom inventories for 14 days
(day 1-14), without further involvement of the study team
beyond the day 1 baseline session (see the Assessments and
Data Collection section for more details). Participants displayed
varying levels of compliance with the daily study tasks, but the
primary end point used day-1 data only, which all the
participants provided.

Most participants were enrolled in person, although a small
number were enrolled virtually while at home (if they were
previously seen and tested at the study site). In-app study
assessments were completed by participants at their treatment
location for as long as they remained there, with instructions to
continue at home if they were not admitted or discharged before
day 14.

J Med Internet Res 2023 | vol. 25 | e44410 | p. 3https://www.jmir.org/2023/1/e44410
(page number not for citation purposes)

Kaur et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 1. Participant journey: participants were identified when presenting with suspected COVID-19. Testing and any additional standard practice
assessments (not shown) confirmed either positive or negative clinical diagnosis status, and all patients continued through daily study assessments
through day 14 to exit of study. Healthy volunteers follow a similar journey, without COVID-19 testing. Daily assessments are conducted on the
participants’ personal smartphone devices using the study app. Actual enrollment numbers are shown.

End Points
The primary end points were the sensitivity, specificity, and
OR of the RRVB model screening result (explained in the RRVB
Screening section) to identify patients who were COV +ve
versus HVs on day 1. The primary end point was evaluated for
the entire participant group, as well as for various subgroups
defined by demographic, geographic, or clinical factors. The
same set of analyses was conducted for COV –ve group versus
HVs on day 1.

Eligibility Criteria
Both patients who were COV +ve and COV −ve presenting
with at least one of the following COVID-19–associated
symptoms, for up to 10 days before enrollment on day
1—cough, fever (>37.5 °C or 99.5 °F), shortness of breath, sore
throat, diarrhea, anosmia, or ageusia—were eligible to
participate, provided a COVID-19 test was performed no more
than 5 days before day 1.

Patients with critical disease were not eligible, as the intended
uses of this technology are most likely for early identification
of disease or monitoring of patients in nonacute settings. Critical
disease was defined as patients on supplemental oxygen via a
nonrebreather mask or high-flow nasal cannula, presenting with
one or more of hypoxemic respiratory failure or acute respiratory
distress syndrome on continuous positive airway pressure or
bilevel positive airway pressure or invasive ventilation, shock,
multiorgan dysfunction, or multisystem inflammatory syndrome
in children. HVs were not eligible if they had a history of a
positive COVID-19 viral or serological test result at any time
before enrollment, but no test was ordered as part of this study.

The participants were required to own a smartphone that could
download and run the study app and sign up for a user account.
Participants were required to be able to speak and read either
English or Spanish (US sites) or Marathi or English (India site).

Mobile App
The study app was previously developed by Sonde Health to
conduct vocal biomarker studies and is an integrated component
of a broader vocal biomarker platform that includes cloud-based
back-end services and databases, as well as web-based
configuration tools to support different study designs. For
research studies, the application was configured to obtain
electronic informed consent, questionnaire responses, and voice
sample recordings. The app can be used with iOS (version
12.4.4, iPhone 6 or later; Apple Corp) or Android devices
(operating version 7.0 or later).

The app configuration was achieved via a token that was specific
to each site and the desired language of the participant (English,
Spanish, or Marathi). Language choice allowed participants to
read informed consent, questionnaires, and voice sample
elicitation instructions in their preferred language.

At enrollment, participants were trained by study coordinators
on the proper use of the app, in particular requirements for good
quality voice sample recordings (being in a quiet place with
minimal background noise and providing the correct type of
voice elicitation).

Assessments and Data Collection
Participant assessments (except for COVID-19 testing and
standard of care clinical tests) were conducted on the study app
and involved audio (voice) recordings (without facial mask) of
a 6-second–held vowel “ahh” as in the word “father” (other
elicitations were recorded but not analyzed as part of this report)
and a symptom questionnaire. The questionnaire included a
12-item symptom inventory previously used in a large
web-based study of COVID-19 symptoms [27], which is
consistent with the Centers for Disease Control and Prevention
(CDC) coronavirus guidance, and one additional question
regarding the participant’s location at the time of the study
session (outpatient clinic, inpatient, home, or other location).

J Med Internet Res 2023 | vol. 25 | e44410 | p. 4https://www.jmir.org/2023/1/e44410
(page number not for citation purposes)

Kaur et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


The symptom question responses were generally yes or no, with
a few that had a subjective severity scale. The symptoms
included were fever; persistent cough; unusual fatigue; unusual
shortness of breath or trouble breathing; sore or painful throat;
loss of smell or taste; unusually hoarse voice; unusual chest
pain or tightness; skipping meals; gastrointestinal symptoms
(diarrhea, vomiting, and abdominal pain); eye infection; and
rash or sores involving the mouth, hands, or feet.

During the first study session, participants also responded within
the app to a one-time onboarding questionnaire, which included
the participants’ ethnicity, race, duration of current symptoms,
symptoms experienced at enrollment, number of days since
coming to the hospital, location from where the participant came
(home or nursing home), preexisting health conditions (asthma,
COPD, congestive heart failure, diabetes, and hypertension),
use of supplemental oxygen at home on a regular basis (yes or
no), and smoking behavior (both tobacco and vaping).

Clinical data collected at each site included: brand and model
of COVID-19 PCR test kit, result and date of test, and laboratory
diagnosis (COV +ve or COV –ve); vital signs during the 12
hours before enrollment (highest body temperature, highest
heart rate, lowest systolic blood pressure, highest respiratory
rate, and lowest SpO2); disease severity at enrollment, classified
as severe (one or more of dyspnea, hypoxia, or >50% lung
involvement on imaging within 24-48 hours, including any
patient on supplemental oxygen via nasal cannula) or mild (not
severe or critical, including patients with no or mild pneumonia
without supplemental oxygen) and any increase through the
hospital stay; respiratory support requirement (room air or nasal
cannula with highest flow rate); imaging results, if available;
and mortality. Imaging results were investigated for the presence
of opacities or infiltrates that were not fully explained by
effusions, lobar or lung collapse, nodules, cardiac failure, or
fluid overload and marked as present or not present. Adverse
events possibly related to the study, as well as enrollment in
other COVID-19 therapeutic trials, were also tracked.

Voice Sample Processing
Voice samples recorded on participant smartphones were
securely transmitted and stored on a cloud server using Health
Insurance Portability and Accountability Act–compliant
architecture as wav files at 44.1 kHz and down sampled to 16
kHz before further processing. Each file is then checked for
quality using an “Elicitation Check” (ELCK) algorithm, scored
with the RRVB model, and assigned a positive or negative result
based on the comparison to a threshold (fixed at 65). The steps
are explained in the following sections.

ELCK Algorithm
Meaningful RRVB model scores required that the recorded
audio was compliant with the required elicitation, which was
6-second–held “ahh” vowel (as in the word “father”), at constant
volume, pitch, and tone quality. Sonde Health developed a
proprietary algorithm called ELCK based on existing data sets
separate from this study to automatically reject voice samples
that do not sufficiently adhere to the intended elicitation. This
algorithm could not be applied in real time during data
acquisition and was therefore applied retroactively to the

recorded audio. Samples deemed noncompliant according to
the ELCK algorithm were excluded from the per-protocol
analysis. Live product deployments included ELCK during
voice sample collection so that analyzed recordings would meet
quality criteria, minimizing the likelihood of processing and
scoring less-reliable voice samples. This would also reduce the
rate of sample rejection, as users would be prompted to repeat
the voice sampling if necessary.

RRVB Scoring
Voice samples were subsequently analyzed to produce RRVB
scores, which ranged from 0 to 100, with higher scores
indicating similarity of the participant’s selected vocal feature
values to those of people diagnosed with asthma. The RRVB
scores analyzed in this study were produced by first calculating
predetermined acoustic feature values required as inputs to the
model from the audio files and then feeding them into the RRVB
model. Details regarding the original RRVB model data set,
model building, and testing (separate from the COVID-19 study)
are provided in Multimedia Appendix 1.

RRVB Screening
The RRVB model scores were converted to binary results to
facilitate screening use cases. This was achieved by assigning
positive or negative results to the RRVB model scores relative
to an established threshold (fixed at 65). Specifically, scores
below the threshold were considered negative, whereas scores
at or above the threshold were considered positive (Multimedia
Appendix 1).

Statistical Considerations

General Methodology
The data collected in this study were documented using
summary tables. Categorical variables were summarized as
frequencies and percentages. P values were calculated for ORs
using a 2-sided likelihood ratio test. A .05 significance level
was used, unless noted otherwise. No adjustments for covariates
or multiple comparisons were applied.

Handling of Dropouts and Missing Data
Participants who failed to continue conducting the app study
sessions were considered dropouts. This did not affect the
primary end point analysis, which was based on day-1 data only,
which all the participants provided. HVs, by definition, were
considered negative for fever (vital signs were not obtained for
HVs). Therefore, in the analysis regarding fever status, all
numbers (true positive, true negative, false positive, and false
negative) had 0.5 added to the calculation of the OR. This
adjustment approach was used in other subgroup analyses that
would otherwise lead to a noncalculable OR. No other
imputation for the missing data was performed.

Analysis Population
The per-protocol analysis cohort of participants was defined
based on the following criteria:

1. Participants other than HVs who did not have a confirmed
COVID-19 diagnosis status were excluded from the analysis
set.
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2. ELCK result: any voice samples that failed to meet the
quality criteria according to the ELCK algorithm (described
in the ELCK Algorithm section) were excluded from the
analysis.

Statistical Analyses
The primary endpoints were sensitivity, specificity, and OR of
RRVB screening results versus enrollment group as ground
truth labels (COV +ve, COV −ve, or HVs). Sensitivity and
specificity were summarized using the estimate and a 95%
Wilson binomial CI for each proportion. The OR was
summarized using the estimate and the 95% likelihood ratio CI.
The null hypothesis that the true OR equals 1 was tested using
a 2-sided likelihood ratio test. The OR was calculated as the
odds of positive RRVB model screening results versus negative
RRVB model screening results for the positive class divided
by the analogous odds for the negative class. The positive class
would typically be either COV +ve or COV −ve, whereas the
negative class would be HVs, unless otherwise noted. The
interpretation of these end points (detection metrics) for different
definitions of the positive and negative classes is further
addressed in the Discussion section.

The primary analysis was repeated separately by geographic
region to determine whether vocal analysis was equally effective
at different geographic locations. As sample sizes permitted,
the analyses of sensitivity, specificity, and OR were also
performed separately by demographic, symptom, and clinical
factors.

Various additional analyses were performed. The sensitivity,
specificity, and OR of COVID-19 screening based on
temperature alone (presence of fever: highest temperature in
the 12 hours before enrollment was >99.5 °F [>37.5 °C]) were
measured orally for each participant. The US CDC states a
cutoff of 100.4 °F (38 °C) for fever screening in COVID-19,
but we chose to use the lower value for increased screening
sensitivity, similar to others [28]. The second examined the
sensitivity, specificity, and OR of COVID-19 screening based
on RRVB model screening results and temperature. A positive
screen required a temperature of >99.5 °F (>37.5 °C) or a
positive RRVB model screening result (or both). The primary
analysis was also repeated separately by symptom status
(asymptomatic, no respiratory but other symptoms, and
respiratory symptoms) to determine whether vocal analysis was
equally effective in patients who experienced respiratory
symptoms and those who did not. Finally, the primary analysis
was conducted separately based on disease severity and the
presence or absence of objective imaging findings.

Ethics Approval
All research protocols were reviewed and approved before study
initiation by the following ethics committees or institutional
review boards: Deenanath Mangeshkar Hospital
(IHR_2020_Jul_BP_375), Montefiore Medical Center (IRB#
2020-11934, reference #066166), Brigham and Women's
Hospital (IRB 2020P002840), and University of California, San
Diego (201718X). In addition, all participants provided
electronic informed consent in the study app before participating
in the study, as approved by each institution’s review board.

This study was conducted in accordance with the principles of
good clinical practice. Study data collected through the study
app were deidentified, as participants were identified through
their participant ID only; each participating site maintained a
separate linking table to enable approved data from medical
records to be entered into the study data set, but no personally
identifiable information was included. Participants created
accounts on the study app by using their email or mobile phone
number; these credentials were stored in physically and
functionally separate servers and were not accessible to the
research staff. The study app and databases were hosted on
Amazon Web Services Cloud servers. Participants received
incentives in the form of electronic gift vouchers (US sites, US
$25) or cash compensation (India site, INR 500 [US $6.1]) upon
enrollment in the study.

Results

Enrollment, Demographics, and Clinical Presentation
A total of 497 participants were enrolled (Table 1) across the 4
study locations (COV +ve: n=155, 31.2%; COV −ve: n=147,
29.6%; HVs: n=187, 37.6%; without COVID-19 test results:
n=8, 1.6%) between September 10, 2020, and April 28, 2021.

The per-protocol analysis cohort examining responses from
study day 1 included 283 participants (COV +ve: n=97, 34.3%;
COV −ve: n=70, 24.7%; and HVs: n=116, 41%). Participants
(214/497, 43.1%) not included in the per-protocol analysis
cohort were excluded for the following reasons:

1. COVID-19 tests were not ordered, or the results were not
available (8/214, 3.7%), and

2. The participants failed voice sample quality control
algorithm ELCK (206/214, 96.3%).

The large number of excluded participants owing to failing the
ELCK is further addressed in the Discussion section.

Demographic and clinical characteristics for the analysis cohort
of the 3 subgroups are provided in Table 2 and can be
summarized in that the HV subgroup had a higher representation
of female, mostly Asian and White individuals, balanced
between the 2 geographies. The COV +ve and −ve subgroups
had relatively more male individuals and a more diverse racial
and language background, with a higher number of participants
from India versus the United States.

Clinically, the COV +ve subgroup appeared sicker than the
COV −ve subgroup, both in terms of disease severity and the
presence of findings on imaging (see the Methods section). Vital
signs in the period up to 12 hours before enrollment trended
worse for the COV +ve group, although these differences were
modest.

Patient-reported factors trended in the same direction, with a
higher prevalence of all symptom types in COV +ve than in
COV −ve group. Most patients who were COV +ve (59/97,
61%) reported 1 or more respiratory symptoms on the day of
enrollment, which was markedly higher than that for COV −ve
(31/70, 44%), and the reporting of any symptom was 86%
(83/97) and 71% (50/70), respectively. These symptom reports
were derived from the study onboarding questionnaire,
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separately from symptom reports made during voice sample
recording on day 1, which were reported later.

The onset of symptoms and arrival at the hospital indicated that
the COV +ve subgroup had generally been ill longer than the
COV −ve group on day 1. The overall rate of preexisting health
conditions was higher in COV +ve than in COV −ve group
(41/97, 42%, vs 23/70, 33%). Asthma, COPD, and congestive
heart failure were more prevalent in COV −ve group, whereas
hypertension and diabetes were more prevalent in COV +ve.
The HV group had a much lower prevalence of preexisting

health conditions (15/116, 12.9%) than the other groups. Asthma
diagnosis was correlated with the enrollment group, being 2 to
3 times more prevalent in COV +ve and COV −ve groups than
in HVs, but low enough in actual prevalence (11.3% and 17.1%)
that this would not likely be a significant confounder.

Stratification factors that are not shown in Table 2 were mostly
answered similarly by both the COV +ve and COV −ve groups:
nearly all came from home to the hospital, did not use
supplemental oxygen at home on a routine basis, and indicated
that they had never smoked or vaped.

Table 1. Patient disposition.

Without any results, n (%)COV –vec, n (%)COV +veb, n (%)HVsa, n (%)

Overall

8 (1.6)147 (29.6)155 (31.2)187 (37.6)Enrolled patients (n=497)

0 (0)70 (24.7)97 (34.3)116 (41)Per-protocol analysis cohort (n=283)

The United States

6 (3)50 (25.3)54 (27.3)88 (44.4)Enrolled patients (n=198)

0 (0)24 (19.4)35 (28.2)65 (52.4)Per-protocol analysis cohort (n=124)

India

2 (0.7)97 (32.4)101 (33.8)99 (33.1)Enrolled patients (n=299)

0 (0)46 (28.9)62 (39)51 (32.1)Per-protocol analysis cohort (n=159)

aHV: healthy volunteer.
bCOV +ve: COVID-19 positive.
cCOV –ve: COVID-19 negative.
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Table 2. Demographics and clinical presentation.

COV –vec (n=70)COV +veb (n=97)HVa (n=116)Variable

Demographics, n (%)

Sex

32 (46)58 (60)41 (35.3)Male

38 (54)39 (40)75 (64.7)Female

Age category (years)

66 (94)86 (89)113 (97.4)≥18 to <65

4 (6)11 (11)3 (2.6)≥65

Language

26 (37)32 (33)78 (67.2)English

4 (6)11 (11)0 (0)Spanish

40 (57)54 (56)38 (32.8)Marathi

Are you Hispanic or Latino?

13 (19)18 (19)8 (6.9)Yes

57 (81)79 (81)108 (93.1)No

Race

2 (3)1 (1)1 (0.9)American Indian or Alaska Native

44 (63)64 (66)65 (56)Asian

10 (14)5 (5)9 (7.8)Black or African American

0 (0)0 (0)0 (0)Native Hawaiian or Other Pacific Islander

5 (7)9 (9)34 (29.3)White

8 (11)14 (14)6 (5.2)Other

1 (1)4 (4)1 (0.9)Multiracial

Geographic Region

24 (34)35 (36)65 (56)The United States

46 (66)62 (64)51 (44)India

Clinical findings (medical chart)

Disease severity, n (%)

2 (3)2 (2)116 (100)N/Ad

63 (90)79 (81)0 (0)Mild

5 (7)16 (17)0 (0)Severe

Opacities or infiltrates on imaging, n (%)

47 (67)62 (64)116 (100)N/A (no imaging performed or result not available)

18 (26)14 (14)0 (0)Not present

5 (7)21 (22)0 (0)Present

Vital signs (averages per group, 12-hour period before enrollment), mean

9999N/AHighest body temperature (Fahrenheit)

8791N/AHighest heart rate (bpm)

125123N/ALowest systolic blood pressure (mm Hg)

2020N/AHighest respiratory rate (bpm)

9897N/ALowest SpO2

Patient-reported information (day 1), n (%)
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COV –vec (n=70)COV +veb (n=97)HVa (n=116)Variable

Which symptoms are you experiencing today?e

21 (30)47 (48)0 (0)Cough

24 (34)42 (43)0 (0)Fever

14 (20)24 (25)0 (0)Shortness of breath

7 (10)20 (21)0 (0)Sore throat

7 (10)10 (10)0 (0)Diarrhea

4 (6)15 (16)0 (0)Loss of smell

5 (7)19 (20)0 (0)Loss of taste

31 (44)59 (61)0 (0)Any respiratory symptoms (cough, shortness of breath, and sore
throat)

50 (71)83 (86)0 (0)Any symptom (≥1)

20 (29)14 (14)116 (100)I have no symptoms

How many days ago did you first come to the hospital?

31 (44)30 (31)0 (0)Today

10 (14)17 (18)0 (0)Yesterday

13 (19)17 (18)0 (0)2-3 days ago

2 (3)15 (16)0 (0)4-5 days ago

5 (7)17 (18)1 (0)>5 days ago

9 (13)1 (1)115 (98.8)N/A (HV)

How many days ago did you first experience symptoms of your current illness?

7 (10)2 (2)1 (0.9)Today

13 (19)5 (5)0 (0)Yesterday

21 (30)26 (27)0 (0)2-3 days ago

5 (7)17 (18)0 (0)4-5 days ago

7 (10)47 (49)1 (0.9)More than 5 days ago

17 (24)0 (0)114 (98.3)I have no symptoms

Do you currently have any of the following health conditions?e

12 (17)11 (11)7 (6)Asthma

2 (3)1 (1)1 (0.9)COPDf

4 (6)0 (0)0 (0)CHFg

9 (13)17 (18)3 (2.6)Diabetes

12 (17)29 (30)6 (5.2)Hypertension (high blood pressure)

47 (67)56 (58)101 (87)None of the above

23 (33)41 (42)15 (12.9)Any of the above

aHV: healthy volunteer.
bCOV +ve: COVID-19 positive.
cCOV –ve: COVID-19 negative.
dN/A: not applicable.
eMore than 1 category may apply; therefore, the percentages may sum to >100%.
fCOPD: chronic obstructive pulmonary disease.
gCHF: congestive heart failure.
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Primary End Point Results
For the primary end point (Table 3), discrimination performance
for COV +ve group versus HV, the model exhibited 73.2%
sensitivity, 62.9% specificity, and OR 4.64 (95% CI 2.58-8.33;
P<.001). Discrimination between COV −ve group and HVs
resulted in 58.6% sensitivity, 62.9% specificity, and OR 2.40
(P=.005).

Performance according to the primary end points by subgroup
(Table 4; COV +ve vs HVs only) indicated better performance
for female participants than for male participants. Despite
displaying a lower sensitivity among male participants, the

specificity was approximately 20% higher. However, the
difference in the OR (5.42 vs 2.99) was not statistically
significant (P=.33). For the US study sites, the sensitivity was
77.1%, specificity was 53.8%, OR was 3.94 (P=.004), whereas
for samples collected in India, the sensitivity was 71%,
specificity was 74.5%, and the OR was 7.15 (P<.001). Age
group analysis indicated a similar sensitivity >65 and <65 years
of age (81.8% vs 72.1%, respectively), but the number of
participants in the older age group was relatively small,
especially in the HV cohort. Subgroups according to ethnicity,
race, and preferred language were also reported; however, no
statistically significant differences were observed.

Table 3. Primary end points.

P valueEstimate (%; 95% CI)

<.001COVID-19 positive vs healthy volunteers

73.2 (63.6-81.0)Sensitivity

62.9 (53.9-71.2)Specificity

4.64 (2.58-8.33)Diagnostic odds ratio

.005COVID-19 negative vs healthy volunteers

58.6 (46.9-69.4)Sensitivity

62.9 (53.9-71.2)Specificity

2.4 (1.31-4.40)Diagnostic odds ratio
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Table 4. Primary end points: demographic breakdown.

P valueDiagnostic odds ratio (%;
95% CI)

Specificity, estimate (%;
95% CI)

Sensitivity, estimate (%; 95% CI)

<.0014.64 (2.58-8.33)62.9 (53.9-71.2)73.2 (63.6-81.0)Overall

Region

.0043.94 (1.56-9.95)53.8 (41.9-65.4)77.1 (61.0-87.9)The United States

<.0017.15 (3.10-16.47)74.5 (61.1-84.5)71 (58.7-80.8)India

Sex

.0122.99 (1.27-7.06)48.8 (34.3-63.5)75.9 (63.5-85.0)Male

.0015.42 (2.33-12.59)70.7 (59.6-79.8)69.2 (53.6-81.4)Female

Age (years)

<.0014.37 (2.38-8.01)62.8 (53.6-71.2)72.1 (61.8-80.5)≥18 to <65

.139 (0.52-155.25)66.7 (20.8-93.9)81.8 (52.3-94.9)≥65

Ethnicity

.104.33 (0.74-25.30)62.5 (30.6-86.3)72.2 (49.1-87.5)Hispanic or Latino

<.0014.7 (2.49-9.85)63 (53.6-71.5)73.4 (62.8-81.9)Not Hispanic or Latino

Race

>.991 (0.01-92.43)25 (2.7-80.2)75 (19.8-97.3)American Indian or Alaska Native

<.0016.19 (2.88-13.27)70.8 (58.8-80.4)71.9 (59.9-81.4)Asian

.602 (0.15-26.74)33.3 (12.1-64.6)80 (37.6-96.4)Black or African American

N/AN/AN/AN/AaNative Hawaiian or Other Pacific Is-
lander

.182.86 (0.61-13.40)58.8 (42.2-73.6)66.7 (35.4-87.9)White

.077.33 (0.88-61.33)66.7 (30.0-90.3)78.6 (52.4-92.4)Other

>.990.78 (0.02-32.37)25 (2.7-80.2)70 (29.9-92.7)Multiracial

Language

<.0015.61 (2.08-15.15)56.4 (45.4-66.9)81.3 (64.7-91.1)English

.931.18 (0.02-69.98)50 (5.5-94.5)54.2 (28.6-77.7)Spanish

<.0018.38 (3.22-21.79)76.3 (60.8-87.0)72.2 (59.1-82.4)Marathi

Preexisting conditions

<.0015.19 (2.51-10.74)63.4 (53.6-72.1)75 (62.3-84.5)None

.392.33 (0.34-16.18)67.1 (25.0-84.2)63.6 (35.4-84.8)Asthma

.176.5 (0.46-91.93)66.7 (20.8-93.9)76.5 (52.7-90.4)Diabetes

.047.67 (1.12-52.32)66.7 (30.0-90.3)79.3 (61.6-90.2)Hypertension

.043.63 (1.06-12.44)60 (35.7-80.2)70.7 (55.5-82.4)One or more of asthma, COPDb,

CHFc, diabetes, or hypertension

aN/A: not applicable.
bCOPD: chronic obstructive pulmonary disease.
cCHF: congestive heart failure.

Impact of Clinical Factors
Disease severity did not affect RRVB sensitivity in the COV
+ve subgroup: 73.4% (n=79, mild disease) versus 75% (n=16,
severe disease), but it did in the COV −ve subgroup: 55.6%
(n=63) versus 100% (n=5), respectively. Although the high
performance in patients with severe disease in the COV −ve
subgroup has a wide CI owing to the small sample size, it is

helpful to realize that these are the only patients in the COV
−ve group for whom respiratory complications are highly likely.
Although diagnostic information in this group was not captured,
the definition of severe disease implies respiratory involvement
(see the Methods section). Therefore, the RRVB would be
expected to identify those patients effectively, whereas COV
−ve with mild disease likely include conditions with and without
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respiratory involvement. The effectiveness of RRVB detection
in such a heterogeneous group would be expected to be reduced.
The absence of a marked difference in the COV +ve group could
be explained by the fact that COVID-19 is a respiratory disease
and that regardless of the disease severity, respiratory
involvement is present in all patients. With this line of reasoning,
the severity analysis outcomes suggest that the RRVB detection
ability is best when the patient’s condition includes a respiratory
component.

To explore whether RRVB correlated with other objective
clinical findings, the outcomes were compared with the results
of imaging. For the 20.5% (58/283) of participants with imaging
results in the analysis set, a nonsignificant relationship was
found between positive findings and positive RRVB (OR 1.42;
P=.50). There is no expectation that a perfect relationship exists,
as the pathophysiology of the imaging findings and positive
RRVB outcomes are not necessarily the same.

Imaging findings alone were associated with COVID-19 status
(58/283, 20.5%; OR 5.40; P=.006). The combination of findings
on imaging and a positive RRVB outcome had a nonsignificant
trend with a positive COVID-19 diagnosis (n=40; OR 3.41;
P=.08), whereas the combination of no findings on imaging and
a negative RRVB had a strong association with a negative
COVID-19 diagnosis (n=18; OR 16.00; P=.03). The latter
combination of negative RRVB and negative imaging results
would be useful in ruling out COVID-19.

The performance for the subset of COV +ve and HV participants
with risk factors for COVID-19 owing to one or more of the 5
preexisting conditions (n=56; 70.7% sensitivity; 60% specificity;
OR 3.63; P=.04) was slightly lower than that of the subgroup
of participants with no risk factors (n=157; 75% sensitivity;
63.4% specificity; OR 5.19; P<.001). The same pattern was
observed for COV −ve versus HVs in these 2 subgroups (n=38;
56.5% sensitivity; OR 1.95 vs n=148; 59.6% sensitivity; OR
2.55, respectively; specificity is same as previously mentioned).
The fact that preexisting conditions did not meaningfully alter
RRVB detection performance appears to rule out a major
confounding effect of the higher rate of preexisting conditions
(including asthma and the data set on which the RRVB model
was trained) in the COV +ve and COV −ve groups versus HVs.

Impact of Symptom Status
Although the inclusion criteria of the study require COV +ve
and COV −ve to have at least 1 COVID-19 associated symptom
at baseline to be eligible for the study, not all patients had
respiratory-related symptoms. An analysis was conducted to
assess sensitivity in participants who reported one or more of
the predefined respiratory symptoms (trouble breathing, cough,
sore throat, or hoarse voice) versus those who did not
(“respiratory-asymptomatic”) at the time of voice recording on
day 1.

The sensitivity in the respiratory-symptomatic COV +ve group
(n=51) was 78.4% versus 67.4% in the respiratory-asymptomatic
group (n=46). For COV −ve, the sensitivity was 55.6% (n=27)
versus 60.5% (n=43), respectively. Because the RRVB model
was developed based on identifying people with a diagnosis of
asthma, it is to be anticipated that the detection performance is

enhanced in those people experiencing respiratory symptoms
compared with those who are not. The findings in the
asymptomatic group suggest that RRVB risk scores may be
able to detect objective clinical findings that are not (yet)
perceived by patients. As a comparator, the lowest oxygen
saturation values in these patients in the 12-hour period before
enrollment were normal (respiratory-symptomatic group mean
SpO2 96.5% versus 97.1% in the asymptomatic group).

Extending this line of analysis beyond respiratory symptoms,
25 COV +ve and 29 COV −ve participants reported no
symptoms during voice recording on day 1 and can therefore
be categorized as completely asymptomatic. For these
participants, the sensitivity was 68% and 48.3%, respectively.
For participants who reported between 1 and 3 symptoms (of
any kind), the sensitivity was 71.8% (n=39) and 72% (n=25),
whereas for participants who reported ≥4 symptoms, the
sensitivity was 78.8% (n=33) and 56.3% (n=16), respectively.
Although not a preplanned analysis, this incidental finding gives
a range of approximately 65% to 80% sensitivity of the RRVB
in COVID-19 for a range of symptom burdens.

Combined Approaches: RRVB, Temperature
Screening, and Symptoms
RRVB sensitivity to COVID-19 compared favorably with
temperature, the predominant quantitative symptom measure
used for screening in locations where social distancing options
are limited. With a cutoff of >99.5 °F (>37.5 °C), only 15.6%
(15/96) of patients who were COV +ve and 14.7% (10/68) of
patients who were COV −ve were identified. Using a cutoff
temperature of >100.4 °F (>38 °C) led to the identification of
8.8% (8/96) of patients with COVID-19. Combining temperature
with RRVB score (either providing a positive outcome) provided
78.1% sensitivity, 62.9% specificity, OR 6.06 (P<.001) for COV
+ve group versus HVs and 64.7% sensitivity, 62.9% specificity,
OR 3.11 (P<.001) for COV −ve versus HVs. The substantial
increase in sensitivity with the use of the RRVB demonstrates
a potentially significant public health benefit compared with
temperature alone.

Because of the enrollment criteria, classification based on the
presence or absence of self-reported symptoms on day 1 might
be expected to yield perfect performance (100% sensitivity and
specificity). However, some participants who were COV +ve
and −ve reported no symptoms during voice recording on day
1 and would be misclassified using such a method. Likewise,
some HV did in fact report symptoms and would be
misclassified as well.

Classification using self-reported symptoms for the COV +ve
group versus HVs yielded 74.2% sensitivity, 90.5% specificity,
and OR 27.5 (P<.001), whereas the COV −ve group versus HVs
yielded 58.6% sensitivity, 90.5% specificity, and OR 13.5
(P<.001). Note that these numbers differ from what might be
expected based on Table 2, but the symptom reports were based
on the onboarding survey (not at the time of voice recording).
Given the study design, the sensitivity was surprisingly low for
both groups and provided a useful comparator to the RRVB
sensitivity.
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As in the analysis with fever, the RRVB results could be
combined with self-reported symptoms to enhance the overall
detection performance. Here, we assessed various basic options
in patients who were COV +ve versus HVs. In contrast to fever,
which has low sensitivity, the prevalence of nonfever symptoms
is relatively high. Combining these measures (>1 of any
symptom or positive RRVB) yielded 91.8% sensitivity, 55.2%
specificity, and OR 13.7 (P<.001). Applications that require

high specificity may benefit from an approach that requires both
a positive RRVB and >1 symptom to be reported, which has
55.7% sensitivity, 98.3% specificity, and OR 71.6 (P<.001).
The very high specificity would lend itself well to population
screening approaches where a high positive predictive value is
required, despite the lower sensitivity of this approach (Tables
5-7).

Table 5. Number of patients for each diagnosed respiratory condition and healthy controls used in model construction and validation.

Male, n (%)Female, n (%)Respiratory condition

784 (46.28)910 (53.72)Asthma (n=1694)

432 (69.1)193 (30.9)COPDa (n=625)

399 (49)415 (51)Persistent cough (n=814)

42 (43)56 (57)Interstitial lung disease (n=98)

693 (40.64)1012 (59.35)None (healthy controls; n=1705)

aCOPD: chronic obstructive pulmonary disease.

Table 6. Number of patients and healthy volunteers split by model building versus validation.

Healthy, nAsthma, nSex

Female

681601Train

331309Validate

Male

467517Train

226267Validate
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Table 7. Performance measures of the respiratory-responsive vocal biomarker model score with cutoff to produce binary outcome, applied across a
range of respiratory conditions (combined for females and males).

Estimate (95% CI)Condition and statistics

66 (62-70)Sensitivity (%)

69 (65-73)Specificity (%)

4.3 (3.4-5.5)ORa

COPDb (n=625)

77 (74-80)Sensitivity (%)

73 (69-77)Specificity (%)

9.1 (7.0-11.8)OR

Persistent cough (n=814)

55 (52-58)Sensitivity (%)

72 (68-76)Specificity (%)

3.1 (2.5-4.0)OR

Interstitial lung disease (n=98)

65 (55-74)Sensitivity (%)

68 (64-72)Specificity (%)

3.9 (2.5-6.2)OR

aOR: odds ratio.
bCOPD: chronic obstructive pulmonary disease.

Discussion

RRVB Detection Performance in COVID-19 Data Set
The results of our study demonstrated the generalizability of an
asthma-derived RRVB to patients who were COV +ve. The
performance characteristics (sensitivity, 73.2%; specificity,
62.9%; OR 4.64; P<.001) were similar to those obtained in the
original model development and validation for asthma, COPD,
ILD, and persistent cough (OR 3.1-9.1). These results are
noteworthy, as COVID-19 represents a different respiratory
condition than that was used to train the model, suggesting that
the model is generally responsive to a common set of
physiological changes across these and potentially other
respiratory diseases. In addition, the study was conducted in
geographies and languages beyond those used for the original
model development. Age, sex, race and ethnicity, geography,
and language did not alter the performance characteristics in a
statistically meaningful way. We believe that the use of a simple
and universal elicitation (“ahh”) is a major factor in this
generalizability, as the sound is ubiquitous across most major
languages. Limiting the RRVB model to a relatively small
number of voice acoustic features during development and
testing also likely contributes to the selection of the most robust
features associated with the condition of interest and avoiding
overfitting on the training data.

Although our RRVB model results in COVID-19 appear less
impressive compared with the high 90% range claimed by some
other reports [11,19], it remains to be seen whether the model
performance would be maintained when applied to independent
data sets without recalibration. Indeed, one study investigating
generalization across test sets showed poor ability to do so [24].

Moreover, the intent of this study was not to optimize
performance for COVID-19 detection by training on a
COVID-19–specific data set but rather to test whether the
existing model was generalizable to COVID-19 without
modification. It should be clear that the use of this detection
capability is not as a confirmatory COVID-19 test. Negative
results may not ensure the absence of infection, and positive
results should be subjected to further clinical evaluation.

The inclusion of a COV −ve group in this study, enrolled using
the same criteria as the COV +ve group, provides several
insights. Although diagnoses were not available for this group
(COVID-19 was ruled out by a negative PCR test), they likely
represent a mix of acute illnesses, including respiratory and
nonrespiratory conditions. Sensitivity in this group overall was
considerably lower than that of COV +ve group (58.6% vs
73.2%), which would be anticipated if this group included a
subset of patients without respiratory involvement, consistent
with the lower prevalence of self-reported symptoms that include
respiratory complaints. In fact, because it is not known which
participants in this group have a respiratory condition and which
do not, the assignment of true or false positives and true or false
negatives cannot be referenced to the actual diagnosis. Out of
convenience, we therefore consider all participants in the COV
−ve subgroup as positives to permit calculation of the
performance metrics. The performance so calculated in this
group is lower than that in COV +ve group, thereby being
consistent with the intended functioning of the RRVB. For the
5 participants in the COV −ve group who were classified as
having severe disease, respiratory involvement was highly likely,
and indeed, the RRVB identified all 5 participants.
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Symptom Status Versus RRVB Detection Ability
We found that RRVB sensitivity increased in proportion to
symptom burden, especially for COV +ve: 78.4% in patients
reporting at least 1 respiratory symptom versus 67.4% in those
who did not. The number of symptoms (of any kind) also
affected the performance. This was an incidental finding in a
post hoc analysis, as by design, all patients were intended to
have at least 1 COVID-19–associated symptom. Nonetheless,
some patients appeared asymptomatic by self-report at the time
of voice recording on day 1, and these were still detected by the
RRVB model, albeit at a 10% to 15% lower sensitivity than
that for symptomatic patients. The decrease in sensitivity is to
be expected, as the vocal biomarker pattern used in the detection
of respiratory impairment is likely weaker or absent in
asymptomatic individuals. The correlation between symptom
presence or severity and RRVB outputs suggests potential
applications in incorporating vocal biomarker outputs into
predictive models for clinical outcomes for COVID-19 [29] or
long-term health monitoring of individuals (eg, remote patient
monitoring, chronic disease management, etc), but would require
clinical studies that pair voice recordings with other clinical
assessments over an extended period.

The correlation between RRVB scores and respiratory symptoms
noted could lead to higher scores in groups with a higher
prevalence of underlying respiratory conditions, such as the
COV +ve and COV −ve groups as opposed to the HV group
(asthma prevalence: 11.3%, 17.1%, and 6%, respectively). As
noted in the Results section, subgroup analysis of participants
without any underlying conditions showed similar performance
characteristics to the overall group and the subgroup of
participants with >1 underlying conditions (OR 5.19 vs 4.64 vs
3.63, nonsignificant differences), indicating that our results
cannot be explained by the differences in the prevalence of
underlying respiratory conditions.

The symptom-based classification of COV +ve (or −ve) group
versus HVs had relatively low performance, especially
considering that the study design aimed to have all patients

present with at least 1 symptom and HVs with no symptoms.
For the COV +ve group, this approach yielded a sensitivity of
74.2%, which was essentially no better than that of the RRVB
approach (73.2%). For the COV −ve group versus HVs, the
situation was the same, with a sensitivity of 58.6% for both the
symptom and RRVB approaches. Comparison with fever shows
an even greater difference, as only about 15% of patients who
were COV +ve and COV −ve were identified using a threshold
of 99.5 °F (37.5 °C). Thus, the RRVB detection approach
outperforms fever and any single symptom and is on par with
the use of all COVID-19–associated symptoms recommended
by the CDC. One potential way to combine RRVB results with
self-reported symptoms is to combine them, and it requires both
to be positive to obtain an overall positive screening result.

A simple flowchart, as shown in Figure 2, illustrates how this
could be implemented in a digital triaging tool that first obtains
a voice sample for RRVB analysis and continues with a
CDC-recommended symptom questionnaire only if the RRVB
screening result is positive (improving the user experience by
not requiring a symptom survey each time). The final screening
result is then determined by reporting at least 1 symptom.
Additional elements could be added regarding COVID-19
exposure risks and the ability to bypass voice triaging if the
user indicates feeling sick at the outset. On the basis of the
results of this study, such a tool would detect patients who were
COV +ve versus healthy individuals with a sensitivity of 55.7%
and specificity of 98.3%. In applications where this level of
sensitivity is adequate, it would provide a scalable and low-cost
triaging method that would identify individuals for further
follow-up with a high positive predictive value (eg, assuming
a COVID-19 prevalence of 5%, positive predictive value would
be 63%). Although this tool would likely also identify
individuals with infectious diseases other than COVID-19, this
is a benefit rather than a drawback because such individuals
may also need clinical care and could also pose a risk of disease
transmission. These ideas could be tested with a confirmatory
study that screens the general population for early detection of
COVID-19.
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Figure 2. Illustrative digital triaging tool to identify people who are more likely to test positive for COVID-19 (or other acute conditions with respiratory
involvement) with 4 main steps. Voice sample recording and respiratory-responsive vocal biomarker analysis occur in step 3 and determine whether a
symptom survey is required (step 4). A negative respiratory-responsive vocal biomarker screening outcome bypasses the survey and produces an overall
pass on screening, whereas a positive respiratory-responsive vocal biomarker screening outcome followed by at least 1 symptom being reported will
result in a screen failure (positive respiratory-responsive vocal biomarker followed by no symptoms reported will produce a screen pass). Additional
steps can be added to address risks that are not otherwise captured, for example, COVID-19 exposure risks (step 2) and the ability to bypass the
respiratory-responsive vocal biomarker triaging step by indicating that the person knows they are sick (step 1). CDC: Centers for Disease Control and
Prevention.

Interpretation of Detection Ability
Although the RRVB model is not intended to provide a disease
diagnosis, we have evaluated its performance using conventional
diagnostic measures such as sensitivity (true positive rate),
specificity (true negative rate), and OR. The ground truth labels
necessary to calculate these measures were simply defined by
the enrollment groups: patients who were COV +ve are defined
as the positive class and HVs as the negative class (similarly
when analyzing COV −ve vs HVs). Because the RRVB do not
“detect” COVID-19, calculating performance in this way
introduces some confounders. For example, participants with
preexisting conditions such as asthma could be construed as a
positive class regardless of the enrollment group because the
RRVB model was trained to detect people with asthma.
Including the preexisting conditions into the class definition
would alter the assignment of participants and potentially result
in different sensitivity and specificity. Likewise, the presence
or absence of respiratory involvement (whether from objective
clinical findings such as imaging or self-reported symptoms)
could similarly be used to determine the class assignments,
yielding yet another potentially different performance level.
Ultimately, the “correct” definition of class and the resulting
sensitivity, specificity, and OR should be based on the intended
use.

Limitations
The findings presented here should be interpreted with several
limitations. First, a relatively large number of participants were
excluded from the per-protocol analysis cohort because their
voice sample recordings failed the automated ELCK quality
control (206/497, 41.4%; Methods section). The ELCK was
designed to eliminate less-reliable scores if the voice elicitation
did not sufficiently adhere to the instructions for use. Indeed,
conducting the primary end point analysis of COV +ve group
versus HVs with the inclusion of voice samples that failed

ELCK (n=341) reduced the performance (sensitivity, 70.3%;
specificity, 58.6%; OR 3.35; P<.001). In contrast, for COV −ve
versus HV analysis, the sensitivity improved to 67.3% (n=333).
Additional examination revealed that the RRVB model scores
for samples that failed ELCK were, on average, 3 to 4 points
higher for COV +ve group and HVs compared with samples
that passed ELCK, whereas for COV −ve, the average score
increase was much larger (8.6). An exhaustive analysis of the
effect of ELCK on the RRVB performance is unlikely to provide
much additional insights. Limiting the analysis presented here
to those samples that pass ELCK produces modest changes in
the observed performance but is likely a better reflection of the
underlying RRVB model performance.

RRVB-based products deployed in real-world scenarios require
solutions such as the ELCK to ensure reliable elicitation scoring.
These solutions can include recording additional samples if the
first attempt fails. For instance, an ongoing unpublished study
using the same RRVB platform in cystic fibrosis patients
requested a new voice sample if ELCK failed, up to 3 per
session. Of the 3975 voice samples, the ELCK success rates on
the first, second, and third attempts were 95.9%, 70.1%, and
34.8%, respectively. Only <1% of the sessions remained
unsuccessful after 3 attempts, and offering the second and third
attempt enabled approximately 80% of the failed initial attempts
to receive a usable output. Although the effectiveness of the
approach may vary based on the population and setting, it
appears reasonable to expect benefits in most scenarios. The
higher rate of ELCK rejection in this study may reflect a more
challenging acoustic environment (background noise and other
talkers) in a hospital setting.

Because we have demonstrated the extension of an
asthma-derived RRVB model to COVID-19 without loss of
detection ability, it can be expected that future variants of
COVID-19 will also be detectable with this model, but perhaps
not at the same level of performance. The data for this study
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were collected primarily from September 2020 to December
2020, before the emergence of variants, and patients were
therefore infected with the original strain of SARS-CoV-2. The
first variant (alpha) appeared to have a similar prevalence of
respiratory symptoms as the original strain [30,31], whereas
later variants presented a different symptom prevalence in large
population studies [32]. As this study has indicated a relationship
between detection sensitivity and the presence and severity of
symptoms (both respiratory and overall), COVID-19 variants
with a higher prevalence or severity of symptoms could be
expected to lead to higher detection sensitivity and vice versa.
On the basis of our findings in patients who were asymptomatic
versus symptomatic, a range of approximately 65% to 80%
sensitivity may be reasonable for anticipating future COVID-19
variants (whereas specificity is defined based on healthy people
and would not be affected by the characteristics of variants).

The performance described in this report cannot be directly
extended to applications in which the patients or user population
is different. Performance is determined not only by how well
the vocal biomarker patterns match those that were used to train
the RRVB model but also by the prevalence and severity of
those vocal biomarker patterns in the test population. For
example, when applying the current RRVB model to the
screening of a presumptive healthy population for the early
detection of (asymptomatic) COVID-19, it could be anticipated
that individuals who are COV +ve include a larger fraction of
patients who are asymptomatic or mildly sick than was the case
in this study. Performance in this application may, therefore,
be different because of the observed impact of disease severity
and symptom burden on the detection performance. This would
have to be tested in a use-case study that incorporates the
intended use into the study design, for example, using a triaging
tool, as described previously and in Figure 2. Furthermore,
pediatric patients were not tested and would require additional
studies.

Another limitation is that the specificity of the RRVB model
has not been tested within a broader population context in which
many more chronic and acute conditions are present. Although
the model was trained to differentiate an asthma population
from healthy controls and has been shown to be generalized
across other respiratory conditions (COPD, ILD, cough, and
COVID-19), it has not been tested with nonrespiratory
conditions, and it is possible that its detection ability has a
component that simply distinguishes sick from healthy
individuals. The reported specificity of 62.9% is to be
understood in the context of the negative class consisting of
solely HVs, although here we defined “healthy” as not having
an acute condition with COVID-19–like symptoms. It did not
rule out other preexisting chronic conditions, which were present
in 12.9% of HV cases (asthma, COPD, diabetes, and
hypertension were included in the study onboarding survey).
To understand the specificity of the RRVB model for respiratory
conditions alone, the model can be tested on other nonrespiratory
conditions.

As the results of this study have indicated, COV +ve and COV
−ve statuses can both lead to a positive RRVB output. An
analysis that would mix these groups in a detection task versus
HVs would find that individuals in both groups will be detected.

However, the RRVB output provides no way to help identify
whether the patient is more likely to have a COV +ve or COV
−ve result. Therefore, its utility is not in identifying a patient
as having COVID-19 but in indicating which patients are more
likely to test positive for COVID-19, captured numerically by
the OR. During a pandemic, such capabilities may be useful,
as they would allow identification of a subset of people from a
larger population as being at high risk; these individuals could
then receive appropriate follow-up examinations to obtain a
definitive diagnosis. Some portions of positive RRVB outputs
will be found to be completely healthy (false positive), whereas
others will be found to be negative for COVID-19 but positive
for another acute condition that the RRVB model detected based
on their respiratory vocal biomarkers. Whether the latter case
should be identified as a false positive or true positive depends
on the goals of the overall screening process.

Finally, a recent paper has highlighted some general concerns
with vocal biomarker–based approaches for the detection of
COVID-19 [33]. Most of the concerns were related to the level
of control over the participant populations, environmental
conditions during voice sample recording, validity of ground
truth labels, and potential confounders from
non–COVID-associated attributes between groups. These were
generally well controlled in this study (Methods section).
Uniquely, the results presented on this study were derived from
an existing model that was developed from a completely
independent data set in a different patient population, which
avoids overfitting to this particular COVID-19 data set or
COVID-19–specific confounders. An evaluation that remains
to be done is to determine the level of specificity of the RRVB
model with respect to other conditions, including nonrespiratory
conditions, as highlighted earlier. Currently, we have
demonstrated a general capability to identify patients across
several conditions that all have respiratory impairment as a
common symptom, similar to how a thermometer generally
identifies immune system activation.

The analogy with thermometers is worth further consideration.
Thermometers are, by design, not specific to a particular disease,
yet they have arguably been one of the most widely distributed
and valuable medical devices ever invented. From the foregoing
statement, it may also be clear that our RRVB model does not
differentiate between COVID-19 and other diseases with
respiratory symptoms. By design, it detects a subset of voice
acoustic changes that generally occur across multiple pulmonary
conditions, and its intended uses may include serving as an aid
in identifying individuals more likely to test positive for
COVID-19 and potentially for other infectious and chronic
diseases. This risk stratification and monitoring can serve as a
valuable public health tool in a variety of settings. Rather than
seeing the lack of diagnostic specificity as a limitation, we
believe that generalizability is a valuable feature. A
well-validated general “respiratory thermometer” function
compatible with smartphones and other voice-enabled devices
could be a key enabler to increasing care access and timelines
for respiratory illnesses in a broad range of health care resource
settings. When this thermometer-like risk stratification function
is used appropriately for early patient identification, the data
and experience gained by validating a single RRVB model
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across a growing number of use cases can potentially catalyze
its accelerated development and adoption. Although voice alone
may never provide a definitive diagnosis for COVID-19,
successful deployment of general RRVB technology across
multiple disease categories is a path forward to generating the
required data sets, at sufficient scale and diversity, necessary
to gain confidence for widespread vocal biomarker technology
adoption.

Future Work
The general ability of the RRVB model to detect respiratory
conditions could lead to various screening and monitoring
applications. As explored in this report, one such application
might be the early detection of potential COVID-19. This work
would need to be extended in several ways to enable such
capability.

First, a study replicating the intended use within a more general
population would establish what performance could be expected
for this application. Although this study has demonstrated the
basic ability to detect patients who are COV +ve versus HVs,
a prospective cohort study that recruits participants from a
representative population would demonstrate its application in
the real world.

Refining approaches to reject voice recordings that do not meet
specifications in real time would be necessary to ensure that all
or most uses will result in reliable RRVB model outputs. We
demonstrated the use of an ELCK algorithm for this purpose,
but it was subsequently applied and led to the elimination of
many otherwise eligible voice recordings. More broadly, the
entire tool needs to be easily understood and used properly
without requiring considerable training or assistance to be
effective as a population screening method. Recording proper
voice elicitations in a suitably quiet environment is one of the
more challenging requirements for this type of technology.

Finally, the RRVB model would not likely be the only
component in a digital COVID-19–triaging tool, and it should
be combined with other metrics such as patient-reported
symptoms and temperature screening; an example of such a
triaging tool is provided in Figure 2. Although we have
presented the performance for simple combinations of these
measures, more advanced combinations that use patterns of
symptoms in combination with fever and RRVB may provide
superior detection abilities. Data from this study could be used
in the training of such an approach and then validated using
newly collected data from future studies.

Conclusions
The vocal biomarker approach for the identification of patients
with asthma and healthy controls was successfully generalized
to the detection of patients presenting to hospitals with
COVID-19. Validating this machine learning model on a newly
collected data set in different disease conditions provides
confidence that robust vocal biomarker applications can be
developed. We found that the detection performance in
COVID-19 was influenced by self-reported symptom burden,
suggesting that monitoring applications for conditions with
fluctuations in respiratory function may also be possible. Vocal
biomarker identification was superior in the detection of
COVID-19 compared with temperature screening (fever) and
comparable with self-reported symptoms according to the CDC
guidelines. Combining vocal biomarker detection, self-reported
symptoms, and fever status could provide valuable public health
monitoring capabilities during pandemics. Although RRVB
detection has a lower per-specimen sensitivity than molecular
testing, it does not require any supplies, kits, or resources other
than the user’s own smartphone. Testing is self-directed, without
the need for skilled technicians, and the results are immediately
available to the user. These factors together represent a unique
profile relative to conventional testing approaches.
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