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Abstract

Background: In megacities, there is an urgent need to establish more sensitive forecasting and early warning methods for acute
respiratory infectious diseases. Existing prediction and early warning models for influenza and other acute respiratory infectious
diseases have limitations and therefore there is room for improvement.

Objective: The aim of this study was to explore a new and better-performing deep-learning model to predict influenza trends
from multisource heterogeneous data in a megacity.

Methods: We collected multisource heterogeneous data from the 26th week of 2012 to the 25th week of 2019, including
influenza-like illness (ILI) cases and virological surveillance, data of climate and demography, and search engines data. To avoid
collinearity, we selected the best predictor according to the weight and correlation of each factor. We established a new
multiattention-long short-term memory (LSTM) deep-learning model (MAL model), which was used to predict the percentage
of ILI (ILI%) cases and the product of ILI% and the influenza-positive rate (ILI%×positive%), respectively. We also combined
the data in different forms and added several machine-learning and deep-learning models commonly used in the past to predict

influenza trends for comparison. The R2 value, explained variance scores, mean absolute error, and mean square error were used
to evaluate the quality of the models.

Results: The highest correlation coefficients were found for the Baidu search data for ILI% and for air quality for ILI%×positive%.
We first used the MAL model to calculate the ILI%, and then combined ILI% with climate, demographic, and Baidu data in
different forms. The ILI%+climate+demography+Baidu model had the best prediction effect, with the explained variance score

reaching 0.78, R2 reaching 0.76, mean absolute error of 0.08, and mean squared error of 0.01. Similarly, we used the MAL model
to calculate the ILI%×positive% and combined this prediction with different data forms. The
ILI%×positive%+climate+demography+Baidu model had the best prediction effect, with an explained variance score reaching

0.74, R2 reaching 0.70, mean absolute error of 0.02, and mean squared error of 0.02. Comparisons with random forest, extreme
gradient boosting, LSTM, and gated current unit models showed that the MAL model had the best prediction effect.
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Conclusions: The newly established MAL model outperformed existing models. Natural factors and search engine query data
were more helpful in forecasting ILI patterns in megacities. With more timely and effective prediction of influenza and other
respiratory infectious diseases and the epidemic intensity, early and better preparedness can be achieved to reduce the health
damage to the population.

(J Med Internet Res 2023;25:e44238) doi: 10.2196/44238
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Introduction

Acute respiratory infectious diseases have long represented a
threat to human health. Every large-scale outbreak of acute
infectious diseases will have a significant impact on human life,
health, and social development [1]. On March 11, 2020, the
World Health Organization (WHO) officially declared
COVID-19 as a global pandemic. To date, there have been
613,410,796 confirmed COVID-19 cases and 6,518,749 deaths
worldwide [2]. In addition, an influenza pandemic may occur
every 10-50 years [3]. Influenza viruses readily mutate and
spread quickly. Influenza epidemics, outbreaks, and even
pandemics have always threatened human health and
socioeconomic development. The Spanish influenza (H1N1)
outbreak in 1918 caused approximately 50 million deaths
worldwide, the Asian influenza (H2N2) outbreak in 1957 caused
approximately 1-2 million deaths, Hong Kong influenza (H3N2)
in 1968 caused approximately 1 million deaths, and influenza
A (H1N1) in 2009 caused approximately 200,000 deaths [4-7].

Owing to the constant variation in viruses and increased global
connectivity, new respiratory infectious diseases have caused
a heavy disease burden and economic losses to humanity.
Especially in megacities, with the growth of the population and
the expansion of urbanization, the contradiction between humans
and animals has become increasingly significant. In addition,
aging issues in megacities are of concern, with older individuals
being more likely to become infected with serious acute
respiratory infectious diseases. The rapid urbanization process
in megacities leads to population aggregation and residential
congestion. Moreover, air pollution, climate warming, and other
issues in megacities have created new opportunities for the
emergence of infectious diseases [8]. Therefore, in megacities,
there is an urgent need to establish more sensitive forecasting
and early warning methods for acute respiratory infectious
diseases to monitor their epidemic trends and minimize losses.

Seasonal influenza has long been one of the major problems of
public health [9]. The spread and prevalence of influenza are
affected by many factors, including climate, population mobility,
population immunity, and social economy. In past research,
multisource data have been used for improved modeling of
disease outbreaks. Ginsberg et al [10] proposed using Google
search engine data to estimate the trend of influenza outbreaks,
finding a high correlation between the disease search trend and
the actual number of influenza infections. Subsequently,
researchers began using similar data sources, including Yahoo,
Wikipedia, Baidu search, and other platforms, to establish
prediction models for influenza and other acute respiratory
infectious diseases [11]. Some studies also found that

environmental factors such as absolute humidity, temperature,
and sunlight were helpful for the prediction of influenza [12,13].
China has established a national influenza surveillance system,
which plays an important role in influenza surveillance.
However, the national influenza surveillance system mainly
analyzes confirmed influenza cases, excluding pharmacy,
meteorological, and other data that may affect influenza.
Therefore, the current system may have a lag in the detection
of an influenza epidemic.

Surveillance approaches of influenza usually include time-series
analysis, time-space analysis, infectious disease dynamics, and
machine-learning and deep-learning methods [14]. Different
approaches have their own advantages and disadvantages. For
example, the time-series method is effective in the short-term
prediction of an influenza trend, but may not be suitable for the
long-term prediction of influenza [15]. The dynamic model of
infectious disease can better predict the trend of an influenza
epidemic from the aspect of the transmission mechanism;
however, the process of model establishment is complex, and
population mobility and other factors need to be considered
[16]. Machine learning can process a large amount of data in a
short time, which is a fast and accurate approach. Cheng et al
[17] used machine-learning methods (autoregressive integrated
moving average, random forest, support vector regression, and
extreme gradient boosting [XGBoost]) to accurately predict the
trends of influenza-like illness (ILI) in Taiwan. Choo et al [18]
established a more sensitive influenza screening model by using
the gated current unit (GRU) model. Jang et al [19] used news
data to predict influenza, and the results showed that the long
short-term memory (LSTM) model could accurately predict
influenza. However, most traditional machine-learning methods
may not be equipped to use multisource heterogeneous data to
effectively complete prediction tasks. Therefore, although the
modeling process of deep learning is also complex, it may be
able to solve the problem of incorporating multisource
heterogeneous data.

In this study, we integrated heterogeneous data from different
sources such as ILI case data from hospitals, climate data, search
engine data, and social economy data, because data from
different sources may capture different influenza incidence
signals in the population to varying degrees. The aim was to
establish a new and better-performing deep-learning model to
predict influenza trends from multisource heterogeneous data
in a megacity.
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Methods

Study Design
In this study, we chose Beijing as the research object to represent
a megacity, because Beijing is the capital of the People’s
Republic of China, a central national city. By the end of 2021,
Beijing had more than 20 million permanent residents.
Furthermore, the center of Beijing is located at a longitude of
116°20 east and a latitude of 39°56 north. Influenza is more
prevalent in winter with significant peaks in this season. We
first collected multisource heterogeneous data from the 26th
week of 2012 to the 25th week of 2019, including ILI cases,
data of virological surveillance, climate and demography data,
and data from search engines. We then aligned these multisource
heterogeneous data with time as the label. Simultaneously, since
we observed that the absolute values of some dimensional data
were not on the same order of magnitude, we normalized all
data to be between 0 and 1 for further analysis and training.
Because some variables may be collinear or strongly correlated,
we performed correlation analysis and weight analysis to select
the best data set before using the data for modeling. Finally, we
performed deep-learning modeling for the filtered data of the
percentage of ILI cases (ILI%) and the product of ILI% and the
influenza positive rate (ILI%×positive%). We used data from
the 26th week of 2012 to the 45th week at the end of 2018 to
train the model, predicted the data from the 46th week of 2018
to the 25th week of 2019, and compared the obtained data with
the actual data to observe the model’s fitting effect. The specific
modeling process is described in detail in the Procedure section
below.

Data Collection

ILI Cases
The Beijing Municipal Influenza Monitoring System conducts
case screening for patients in the fever clinic, internal medicine
clinic, internal medicine emergency department, children’s
internal medicine clinic, and children’s internal medicine
emergency department of sentinel hospitals; registers those who
meet the definition of influenza-like cases; and summarizes the
number of influenza-like cases in each age group (0-4, 5-14,
15-24, 25-59, and ≥60 years) every day. An ILI case is defined
as a patient with fever (axillary temperature≥38 ℃), cough, or
sore throat. In this study, the monitoring data of ILI cases
reported by more than 140 medical institutions above the third
level in the Beijing Medical Institutions Infectious Disease
Monitoring and Early Warning System were used for analysis.
We collected ILI data from the 26th week of 2012 to the 25th
week of 2019. The ILI% was calculated as the proportion of
ILI case reports relative to the total number of outpatient and
emergency visits in the same period.

Virological Surveillance
The national influenza surveillance network in China is led by
the Chinese Center for Disease Control and Prevention (CDC),
with 554 sentinel hospitals and 407 network laboratories. The
network laboratory conducts pathogenic monitoring of influenza
virus on the respiratory specimens of ILI cases and monitors
the activity level and variation of influenza virus. We also

obtained influenza virological surveillance data from the 26th
week of 2012 to the 25th week of 2019. The average weekly
positive influenza test rate was obtained by dividing the number
of influenza-positive samples by the total number of samples
tested during the week. We used ILI%×positive% to express
the intensity of influenza activity during the study period.

Climate and Demography
Climate data were obtained from the China Meteorological Data
Sharing Service System [20]. We collected meteorological data
from Beijing from the 26th week of 2012 to the 25th week of
2019. The data comprised the mean temperature per week
(Tmean), maximum temperature per week (Tmax), minimum
temperature per week (Tmin), mean relative humidity (RH) per
week, mean air pressure per week (Apmean), mean wind speed
per week, mean precipitation per week, and mean sunlight hours
per week. The absolute humidity (AH) calculation formula was
a s  f o l l o w s :

AH={6.112×e[(17.67×T)/(T±243.5)]×RH×2.1674}/(273.15+T)
[21,22]. We defined the weekly temperature difference as
Tmax–Tmin. Air quality data were obtained from the Beijing
Municipal Environmental Monitoring Center [23]. We also
collected the mean weekly air quality data for Beijing from the
26th week of 2012 to the 25th week of 2019. Air quality was
divided into six grades according to the air quality index (AQI):
Grade I (excellent, AQI=0-50), Grade II (good, AQI=51-100),
Grade III (slight pollution, AQI=101-150), Grade IV (moderate
pollution, AQI=151-200), Grade V (severe pollution,
AQI=201-300), and Grade VI (severe pollution, AQI>300). We
collected the gross domestic product (GDP) data of Beijing
from 2012 to 2019 and information on statutory holidays from
the 26th week of 2012 to the 25th week of 2019 [24]. According
to the Chinese lunar calendar, we set a holiday week at 1 and a
week without a holiday at 0.

Search Engine
The Baidu search engine is one of the most widely used search
engines in China. The Baidu search index represents the
keyword search trend of many Baidu internet users, which can
be used to understand internet users’ concerns and monitor
public opinion trends [25]. We selected “influenza” as the
keyword and the time range from the 26th week of 2012 to the
25th week of 2019. The search data were based on personal
computer and personal mobile phone data.

Procedure

Normalization, Correlation, and Weight Analysis
We normalized all data to fit in the range of 0-1. Because some
dimensional data may have collinearity or strong correlations,
to avoid the impact of collinearity on the model, we performed
correlation analysis and weight analysis on all variables to select
the best data set for training. The Pearson correlation coefficient
(r) was used to measure the linear correlation in which a greater
absolute value of the correlation coefficient indicates a stronger
correlation; that is, a correlation coefficient closer to 1 or –1
indicates a stronger correlation and a correlation coefficient
closer to 0 indicates a weaker correlation. We calculated the
Pearson correlation coefficient between each variable to observe
the correlations between the variables. As a traditional
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machine-learning model, the random forest model can score the
importance of different variables and dimensional
characteristics, and further evaluates the contribution of each
independent variable to the dependent variable results. We
constructed a random forest model to explore the influence
weight of independent variables on ILI% and ILI%×positive%.

Model Construction
In this study, we aimed to fully explore the inherent
characteristics of multisource heterogeneous data and establish
the mapping from characteristics to results through building
and training models to effectively predict ILI% and
ILI%×positive%.

Based on LSTM, we innovatively built a new multiattention
deep-learning model (MAL) (Figure 1). We first set up an LSTM

layer. Subsequently, three different attention modules were
connected in parallel: Channel Attention, Spatial Attention, and
the concatenation of Channel Attention and Spatial Attention.
Different attention modules not only focuses the model on key
nodes in the time series but also focuses the model on features
with high weight, which can promote the improvement of model
performance. We then added the flatten layers to fully obtain
the information after passing the different attention modules
and concatenating the three branches. To prevent the gradient
from disappearing, the second concatenate was conducted after
the first concatenate, with the two branches passing through the
global pooling layer. Finally, a full connection was made
through the dense layer, and the predicted values of ILI% and
ILI%×positive% were obtained as output.

Figure 1. Structure of the multiattention deep-learning model (MAL) based on long short-term memory (LSTM). Schematic diagram representing
multisource heterogeneous data input to the MAL model, including climate, Baidu searrch, demography, and other data. The curves of five independent
variables are displayed: maximum temperature per week (Tmax), mean relative humidity per week (Hmean), mean precipitation per week, the mean
temperature difference per week (dT; Tmax–Tmin), and air quality index (AQI).
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We used the data from the 26th week of 2012 to the 45th week
at the end of 2018 to conduct the training model, predicted the
data from the 46th week of 2018 to the 25th week of 2019, and
finally compared the predicted data with the actual data to
observe the model fitting effect. The following parameters were

adopted for model evaluation: R2, explained variance score,

mean absolute error, and mean squared error. An R2 and
explained variance score close to 1 indicate a good prediction
effect of the model. A mean absolute error and mean squared
error close to 0 further indicate the good prediction effect of the
model.

Model Comparison
To evaluate the scientific validity and robustness of the selected
data set and model constructed, we compared the performance
of the MAL models built with the data from ILI%+climate,
ILI%+demography, ILI%+Baidu, ILI%+climate+Baidu,
ILI%+climate+demography, ILI%+demography+Baidu, and
ILI%+climate+demography+Baidu to verify whether the
prediction effect was improved after data from different sources
were fused into a model. Similarly, we compared the
performance of the MAL models for the data from
ILI%×positive%+climate, ILI%×positive%+demography,
ILI%×positive%+Baidu, ILI%×positive%+climate+Baidu,
I L I % × p o s i t i v e % + c l i m a t e + d e m o g r a p h y ,
ILI%×positive%+demography+Baidu, and
ILI%×positive%+climate+demography+Baidu.

Several common models such as random forest, XGBoost, GRU,
and LSTM were also used for comparison with our MAL model.
Random forest refers to a classifier that uses multiple trees to
train and predict samples. For many data forms, random forest
can produce a classifier with high accuracy. XGBoost is an
integrated machine-learning algorithm based on a decision tree,
which is suitable for classification, regression, sorting, and other
problems. This method is fast and effective, can handle
large-scale data, and supports user-defined loss functions. GRU
is a gating mechanism in recurrent neural networks and can be

applied to short-term or long-term prediction. LSTM is a
time-recurrent neural network of a deep-learning model that
can effectively solve the problem of gradient explosion or
disappearance of a simple circular neural network, and is
suitable for processing and predicting notable events with long
intervals and delays in time series.

Statistical Analysis
We performed all statistical analyses with Python (version 3.6.0)
and Tensorflow (version 2.0.0) software.

Ethics Considerations
This study was approved by the Ethics Committee of the
Chinese Academy of Medical Sciences & Peking Union Medical
College, Beijing, China (review number
CAMS&PUMC-IEC-2021-032).

Results

Description of Data From Various Sources
We calculated the weekly average of data collected from various
sources at different times. The average weekly number of ILI
cases was the highest from the 26th week in 2018 to the 25th
week in 2019, with 21,142 cases. We also calculated other
variables as shown in Table 1.

We built random forest models to explore the impact weight of
different source variables on ILI% and ILI%×positive%. We
found that Baidu’s “influenza” search index had the highest
correlation with ILI% and AQI had the highest impact weight
with ILI%×positive% (Table 2). To avoid collinearity between
variables, we performed a correlation analysis of different
variables. Tmean, Tmax, Tmin, and Apmean were highly
correlated (absolute value of r>0.9; Figure 2). Therefore, we
used Apmean with the highest weight in the modeling process
for predicting ILI% and removed Tmean, Tmax, and Tmin, and
used Tmean with the highest weight in the modeling process
for predicting ILI%×positive% and removed Tmax, Tmin, and
Apmean.
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Table 1. Average value of different source variables for different time periods.a

2018-20192017-20182016-20172015-20162014-20152013-20142012-2013Variables

21,14219,10014,31813,88712,35112,30013,748ILIb cases, n

45.0045.0030.0039.0047.0037.0026.00Influenza-positive cases, n

18.3517.9718.6418.2018.4218.5516.32Maximum temperature (℃)

6.176.327.066.856.586.935.45Minimum temperature (℃)

12.1711.6511.5811.3511.8411.6210.87Temperature difference (℃)

11.9011.7712.4612.2212.1212.2910.53Mean temperature (℃)

51.3053.7355.4754.9450.8350.0558.48Relative humidity (g/m3)

994.01993.48993.77993.75993.46992.97993.18Atmosphere pressure (hPa)

1.701.691.661.771.7690.171.85Wind speed (m/s)

1.271.381.561.541.221.661.67Precipitation (cm)

7.026.976.676.526.636.676.51Sunlight (weeks)

115.38108.65159.13100.3870.1964.4270.19AQIc

443.00428.00284.00215.00218.00205.00117.00Baidu search index for “in-
fluenza”

aIn each time period, data were collected from the 26th week of the first year to the 25th week of the subsequent year.
bILI: influenza-like illness.
cAQI: air quality index.

Table 2. Impact weight of variables from different data sources on the proportion of influenza-like illness cases (ILI%) and the product of influenza-like
illness cases and the influenza positive rate (ILI%×positive%).

WeightVariables

ILI×positiveILI

0.0810.085Search index

0.0720.083Weekly temperature difference

0.0660.081Sunlight

0.0740.077Mean air pressure per week

0.0670.076Mean relative humidity per week

0.0690.074Mean wind speed per week

0.0830.073Mean temperature per week

0.0880.072Air quality index

0.0800.070Minimum temperature per week

0.0730.069Maximum temperature per week

0.0670.066Week

0.0520.060Precipitation

0.0610.057Gross domestic product

0.0570.046Year

0.0100.011Holiday
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Figure 2. Pearson correlation analysis of different variables. Apmean: mean air pressure per week; Aqi: air quality index; dT: the weekly temperature
difference; GDP: gross domestic product; Hmean: mean relative humidity per week; Spmean: mean wind speed per week; Tmax: maximum temperature
per week; Tmean: mean temperature per week; Tmin: minimum temperature per week.

MAL of ILI% and Other Source Data
We first used the MAL to model ILI% and then combined and
modeled ILI% with climate, demography, and Baidu data in
different forms (ILI%+climate, ILI%+demography,
ILI%+Baidu, ILI%+climate+demography, ILI%+climate+Baidu,
I L I % + d e m o g r a p h y + B a i d u ,  a n d
ILI%+climate+demography+Baidu) to compare the effects of
the different combinations. The explained variance score of

ILI%+climate+demography+Baidu reached 0.78 and the R2

reached 0.76, which were higher than the corresponding values

obtained for the other combinations. Similarly, the mean
absolute error of ILI%+climate+demography+Baidu was 0.08
and the mean squared error was 0.01, which were lower than
the corresponding values of the other combinations (Table 3).
This showed that the ILI%+climate+demography+Baidu model
had the best prediction effect. We then drew a prediction
diagram for the ILI%+climate+demography+Baidu model.
These results also showed that the model can accurately predict
the two peaks from the 46th week in 2018 to the 25th week in
2019 (Figure 3).
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Table 3. Multiattention-long short-term memory (MAL) deep-learning model of influenza-like illness case proportion (ILI%) in various combinations
with other source data.

Mean squared errorMean absolute errorExplained variance scoreR2Data source combinations

0.02280.11070.73310.6365ILI%

0.02070.08960.69960.6702ILI%+climate

0.01990.09550.75040.6830ILI%+demography

0.01870.09360.74550.7022ILI%+Baidu

0.01910.09160.70370.6952ILI%+climate+demography

0.01880.07570.74380.6998ILI%+climate+Baidu

0.02010.08930.76600.6801ILI%+demography+Baidu

0.01480.07650.78010.7638Alla

aAll data sources included: ILI%+climate+demography+Baidu.

Figure 3. Prediction diagram for the ILI%+climate+demography+Baidu multiattention long short-term memory (MAL) deep-learning model. ILI%:
percentage of influenza-like illness cases.

MAL of ILI%×Positive% and Other Data Sources
We first used the MAL to model ILI%×positive% alone, and
then combined and modeled ILI%×positive% with climate,
demography, and Baidu data in different forms
(ILI%×positive%+climate, ILI%×positive%+demography,
ILI%×positive%+Baidu, ILI%×positive%+climate+demography,
I L I % × p o s i t i v e % + c l i m a t e + B a i d u ,
ILI%×positive%+demography+Baidu, and
ILI%×positive%+climate+demography+Baidu) to compare the
effects of the different combinations. The explained variance
score of ILI%×positive%+climate+demography+Baidu reached

0.74 and the R2 reached 0.70, which were higher than the
corresponding values of the other combinations. Similarly, the
m e a n  a b s o l u t e  e r r o r  o f
ILI%×positive%+climate+demography+Baidu was 0.02 and
the mean squared error was 0.02, which were lower than the
corresponding values of the other combinations (Table 4). This
showed that the ILI%×positive%+climate+demography+Baidu
model had the best prediction effect. We then drew a prediction
diagram for the ILI%×positive%+climate+demography+Baidu
model. The results also showed that the model can accurately
predict the two peaks from the 46th week in 2018 to the 25th
week in 2019 (Figure 4).
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Table 4. Multiattention-long short-term memory (MAL) deep-learning model of the product of the percentage of influenza-like illness cases and
influenza-positive rate (ILI%×positive%) in combination with other source data.

Mean squared errorMean absolute errorExplained variance scoreR2Data source combinations

0.02340.11280.57190.5593ILI%×positive%

0.01800.08860.66100.6609ILI%×positive%+climate

0.01830.09500.69420.6556ILI%×positive%+demography

0.01920.09820.65390.6375ILI%×positive%+Baidu

0.01790.09110.66900.6613ILI%×positive%+climate+demography

0.01880.09410.70710.6449ILI%×positive%+climate+Baidu

0.01700.08980.68290.6788ILI%×positive%+demography+Baidu

0.01610.01580.73960.7025Alla

aAll data sources included: ILI%×positive%+climate+demography+Baidu.

Figure 4. Prediction diagram for ILI%*positive%+climate+demography+Baidu multiattention long short-term memory (MAL) deep-learning model.
ILI%*positive%: product of the percentage of influenza-like illness cases and the influenza-positive rate.

Comparison of ILI% and Other Source Data Between
Different Models
We modeled different combinations of ILI% and other data
sources, and compared the performance of traditional
machine-learning models (random forest and XGBoost) and
other deep-learning models (LSTM and GRU) with that of our

MAL model. The results showed that the MAL model with the
ILI%+climate+demography+Baidu combination had the best

prediction effect. The R2 was 0.76 and the explained variance
score was 0.78, which were higher than the corresponding values
of the other models; the mean absolute error was 0.08 and the
mean squared error was 0.01, which were lower than the
corresponding values of the other models (Table 5).
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Table 5. Comparison of the percentage of influenza-like illness cases (ILI%) and combinations of other source data between different models.

AllILI%+demogra-
phy+Baidu

ILI%+cli-
mate+Baidu

ILI%+climate+de-
mography

ILI%+BaiduILI%+demog-
raphy

ILI%+cli-
mate

ILI%Model performance

R2

0.05310.08350.10620.1345–0.02190.06570.0121–0.0564RFa

0.33270.31530.32760.37430.31970.38270.34250.3841XGBb

0.61160.57050.57180.56610.56210.59190.61020.5891LSTMc

0.64610.57810.57680.52060.52630.52320.53870.4775GRUd

0.76380.68010.69980.69520.70220.68310.67020.6365MALe

Explained variance score

0.34490.45240.46030.47780.31780.42710.37350.3349RF

0.41020.41570.41080.43720.41620.45450.41800.4567XGB

0.69010.69550.71310.73360.69740.68330.73530.7283LSTM

0.70060.68210.66860.62920.68760.62290.61950.6027GRU

0.78010.76600.74380.70370.74550.75040.69960.7331MAL

Mean absolute error

6.40626.34376.21876.06256.46876.21886.21876.4062RF

4.92095.10844.99634.94315.04734.89804.97814.8522XGB

0.09470.10430.10660.11380.10930.10480.10620.1156LSTM

0.10370.10820.10340.10680.11710.11310.11010.1205GRU

0.07650.08930.07570.09160.09360.09550.08960.1107MAL

Mean squared error

99.281296.093793.718790.7501107.156297.9687103.5937110.7812RF

69.970671.793670.505465.606971.325764.729668.939664.5927XGB

0.02430.02690.02680.02720.02750.02560.02440.0258LSTM

0.02220.02650.02650.03010.02970.02990.02890.0328GRU

0.01480.02010.01880.01910.01870.01990.02070.0228MAL

aRF: random forest.
bXGB: extreme gradient boosting.
cLSTM: long short-term memory.
dGRU: gated current unit.
eMAL: multiattention-long short-term memory.

Comparison of ILI%×Positive% and Other Source
Data Between Different Models
We modeled different combinations of ILI%×positive% and
other data sources, and compared the performance of traditional
machine-learning models (random forest and XGBoost) and
other deep-learning models (LSTM and GRU) with that of our

MAL model. The results showed that the MAL with the
ILI%×positive%+climate+demography+Baidu combination

had the best prediction effect. The R2 was 0.70 and the explained
variance score was 0.74, which were higher than the values of
the other models; the mean absolute error was 0.02 and the
mean squared error was 0.02, which were lower than the values
of the other models (Table 6).
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Table 6. Comparison of the product of the proportion of influenza-like illness cases and influenza-positive rate (ILI%×positive%) in combination with
other data sources between different models.

AllILI%×posi-
tive%+demogra-
phy+Baidu

ILI%×posi-
tive%+cli-
mate+Baidu

ILI%×positive%+cli-
mate+demography

ILI%×posi-
tive%+Baidu

ILI%×posi-
tive%+demog-
raphy

ILI%×posi-
tive%+cli-
mate

ILI%×posi-
tive%

Model perfor-
mance

R2

0.24820.05630.1066–0.06620.0548–0.09750.03510.0174RFa

0.62410.61310.58560.45780.62990.48430.46740.4559XGBb

0.63210.60260.59760.59660.47810.50370.49330.4796LSTMc

0.63220.52260.53960.54010.48170.50820.51780.4402GRUd

0.70250.67880.64490.66130.63750.65560.66090.5593MALe

Explained variance score

0.36150.37110.42130.28790.32730.29850.37210.3268RF

0.63050.62590.58590.46170.63570.48860.46780.4617XGB

0.66790.60380.65680.68010.62250.65010.49380.4996LSTM

0.63810.60460.61620.56070.59040.61910.63040.5665GRU

0.73960.68290.70710.66900.65390.69420.66100.5719MAL

Mean absolute error

3.46874.03123.96874.25004.21874.46874.15624.0625RF

2.58082.52612.78293.04272.50672.83043.10222.8446XGB

0.08680.10220.10450.09510.12210.11720.11070.1146LSTM

0.08770.10970.11850.10810.11640.10150.10010.1134GRU

0.01580.08980.09410.09110.09820.09500.08860.1128MAL

Mean squared error

30.843738.718736.656243.750038.781245.031239.593740.3125RF

15.424115.874116.999122.242515.183921.157921.850022.3243XGB

0.01950.02110.02130.02130.02760.02630.02680.0275LSTM

0.01940.02530.02440.02430.02740.02600.02550.0296GRU

0.01610.01700.01880.01790.01920.01830.01800.0234MAL

aRF: random forest.
bXGB: extreme gradient boosting.
cLSTM: long short-term memory.
dGRU: gated current unit.
eMAL: multiattention-long short-term memory.

Discussion

Principal Findings
Our research purpose was to explore a new, better-performing
deep learning model to predict influenza trends from multisource
heterogeneous data in a megacity. The highest correlation
coefficients were found for Baidu query data for ILI% and air
quality for ILI%×positive%. In addition to these variables,
temperature, sunlight, air pressure, humidity, and wind speed
had high correlation coefficients for ILI%, whereas temperature,
Baidu query data, air pressure, wind speed, and humidity had
high correlations for ILI%×positive%. We established the MAL
model and predicted the ILI% and ILI%×positive%. We also

combined the data in different forms and evaluated the
performance of several common machine-learning and
deep-learning models to predict influenza trends for comparison.
We first used the MAL to model ILI% and then combined and
modeled ILI% with climate, demography, and Baidu data in
d i f f e r e n t  f o r m s .  We  f o u n d  t h a t  t h e
ILI%+climate+demography+Baidu combination had the best
prediction effect. Similarly, we used the MAL to model
ILI%×positive% and combined this with different data forms.
We found that the ILI%×positive%+climate+demography+Baidu
combination had the best prediction effect. The comparison
with random forest, XGBoost, LSTM, and GRU models showed
that the newly established MAL model had the best prediction
effect using multisource data.
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The combination of multisource heterogeneous data and
multichannel surveillance could reduce forecasting errors
introduced from a prediction based purely on internet-derived
data or climatic data. The fact that the models combining ILI%
or ILI%×positive% with climate, demography, and Baidu search
data had the best prediction effect indicated that the emergent
risk of seasonal influenza could be assessed using multiple
forms of surveillance data. Both internet-based query and
climate data have been previously suggested in developing
predictive models for climate-sensitive infectious diseases based
on spatiotemporal models [26]; traditional surveillance data are
necessary and the moderate symptomatic surveillance system
could be further exploited. The WHO has developed “pandemic
and epidemic intelligence” as a new model for the surveillance
of emerging threats, which is expected to expand for increased
anticipation and preparation for future threats. Traditional
surveillance is inadequate when only data for confirmed cases
are available [27]. Risk factors and the absence of symptomatic
data lead to reduced detection of multipoint triggering
mechanisms for infectious diseases. Therefore, moderate
surveillance channels must be created to increase detection
sensitivity and accuracy.

In our results, the search engine data had one of the highest
correlation coefficients for ILI% and proved to be a powerful
variable for estimating epidemic status. During the current
COVID-19 pandemic, Twitter could estimate the prevalence of
COVID-19 in the United States [28]. Baidu data could also be
used to forecast dengue fever. However, studies have also shown
that some search engines may overestimate peak amplitude [29].
Therefore, investigating the regulations of various combined
keywords and search policies in search engine data by using
machine-learning methods will be necessary in future studies.
Based on the findings of this study, we also encourage the use
of search engine query surveillance, particularly in developing
countries and regions with the greatest number of internet users,
such as Asia (53.6%) and Africa (11.9%) [30].

Natural factors may substantially influence the epidemic of
respiratory infections more than social factors. Our study showed
that natural factors had a greater impact weight on ILI cases,
whereas economic factors such as GDP, holidays, and social
factors had a lower impact weight on ILI cases. Several studies
have indicated that climate is the key factor in forecasting
climate-sensitive infectious diseases such as dengue and other
vector-borne diseases. Seasonal influenza is also a
climate-sensitive disease. However, social measures have
remained stable. Therefore, we have not found a significant
impact of social factors, because the COVID-19 pandemic
response provided an opportunity to identify the social public
health measures that have a significant impact on influenza
protection [31-33].

Deep learning is a new aspect of machine learning. In recent
years, deep learning has made unprecedented achievements in
classification, detection, recognition, prediction, and other tasks,
and has attracted extensive attention from all levels of society.
Deep learning can solve problems that are difficult to solve by
traditional machine learning, such as high-dimensional and
jumbled data. Owing to the COVID-19 epidemic, there has been
a gradual increase in exploration and research on the prediction

and early warning of respiratory infectious diseases using deep
learning. Yi et al [34] improved pneumonia surveillance ability
using a revolutionary, scalable, and interpretable deep neural
network. Jung et al [35] used a deep-learning model based on
self-attention to predict influenza in a region, and the results
showed that the model was effective in predicting the trend of
influenza. An overview study summarized the application of
existing deep-learning and medical image analysis methods,
systematically discussed the problems associated with
deep-learning methods and the COVID-19 imaging mode, and
reported several promising research results [36].

In the past, the influenza surveillance of the CDC in China was
mainly conducted using only confirmed case data; hence, there
was a time lag in influenza surveillance. In the future, we should
prepare for respiratory infectious disease epidemics, especially
emerging acute respiratory infectious diseases. Therefore, it is
important to improve and optimize the prediction and early
warning system of respiratory infectious diseases. Researchers
began to use machine learning, deep learning, artificial
intelligence, and other methods in combination with big data
to establish multichannel and multisource prediction and early
warning models. Furthermore, it is essential to establish a trinity
working system of detection, decision-making, and early
warning. In this study, we first used ILI cases, search engine,
and other data, which occurred before the case was confirmed,
to predict the outbreak of influenza in advance. In addition,
owing to the diversity of data sources, it is difficult for
traditional models to simultaneously input multiple variables
for prediction. Therefore, we innovatively established a
deep-learning model (MAL), which can model ILI cases and
other monitoring data from different sources at the same time.
The results also showed that this model has a good effect on
predicting the trend of seasonal influenza. Therefore, we believe
that this study can advance the time of influenza outbreak
prediction and provide a reference for future technologies to
predict influenza trends from different sources. Thus, our
research can help establish an auxiliary decision-making system
for public health emergencies.

Study Limitations
This study had a few limitations. First, owing to the limited
availability of data, many influencing factors and symptom
surveillance data were not available or sufficiently detailed.
Second, circulating virus strains, specimen collection rates, case
selection bias, and health care–seeking behaviors could affect
virological surveillance. Finally, we innovatively used a
deep-learning model to predict the trend of influenza in a
megacity. Although this method is applicable to seasonal
influenza, it may not be applicable to the prediction of chronic
respiratory infectious diseases.

Conclusions
In summary, our findings demonstrated that the MAL model
performs better in predicting influenza than traditional
machine-learning and deep-learning models. The prediction and
early warning model for influenza and other acute respiratory
infectious diseases still needs to be improved. We believe that
the model developed in this study can advance the time of
influenza outbreak prediction and provide a reference for future
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technologies to predict influenza trends from different sources.
Based on further timely and effective prediction of influenza

epidemic intensity, early and better preparedness can be
implemented to reduce the health damage to the population.
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