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Abstract

Background: Low birthweight (LBW) is a leading cause of neonatal mortality in the United States and a major causative factor
of adverse health effects in newborns. Identifying high-risk patients early in prenatal care is crucial to preventing adverse outcomes.
Previous studies have proposed various machine learning (ML) models for LBW prediction task, but they were limited by small
and imbalanced data sets. Some authors attempted to address this through different data rebalancing methods. However, most of
their reported performances did not reflect the models’ actual performance in real-life scenarios. To date, few studies have
successfully benchmarked the performance of ML models in maternal health; thus, it is critical to establish benchmarks to advance
ML use to subsequently improve birth outcomes.

Objective: This study aimed to establish several key benchmarking ML models to predict LBW and systematically apply
different rebalancing optimization methods to a large-scale and extremely imbalanced all-payer hospital record data set that
connects mother and baby data at a state level in the United States. We also performed feature importance analysis to identify
the most contributing features in the LBW classification task, which can aid in targeted intervention.

Methods: Our large data set consisted of 266,687 birth records across 6 years, and 8.63% (n=23,019) of records were labeled
as LBW. To set up benchmarking ML models to predict LBW, we applied 7 classic ML models (ie, logistic regression, naive
Bayes, random forest, extreme gradient boosting, adaptive boosting, multilayer perceptron, and sequential artificial neural network)
while using 4 different data rebalancing methods: random undersampling, random oversampling, synthetic minority oversampling
technique, and weight rebalancing. Owing to ethical considerations, in addition to ML evaluation metrics, we primarily used
recall to evaluate model performance, indicating the number of correctly predicted LBW cases out of all actual LBW cases, as
false negative health care outcomes could be fatal. We further analyzed feature importance to explore the degree to which each
feature contributed to ML model prediction among our best-performing models.

Results: We found that extreme gradient boosting achieved the highest recall score—0.70—using the weight rebalancing
method. Our results showed that various data rebalancing methods improved the prediction performance of the LBW group
substantially. From the feature importance analysis, maternal race, age, payment source, sum of predelivery emergency department
and inpatient hospitalizations, predelivery disease profile, and different social vulnerability index components were important
risk factors associated with LBW.

Conclusions: Our findings establish useful ML benchmarks to improve birth outcomes in the maternal health domain. They
are informative to identify the minority class (ie, LBW) based on an extremely imbalanced data set, which may guide the
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development of personalized LBW early prevention, clinical interventions, and statewide maternal and infant health policy
changes.

(J Med Internet Res 2023;25:e44081) doi: 10.2196/44081
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Introduction

Background
The recent Centers for Disease Control and Prevention (CDC)
annual report indicates that babies with low birthweight (LBW),
defined as an infant weight of <2500 g by the World Health
Organization [1], accounted for 8.24% of all births in the United
States in 2020 [2]. Alarmingly, LBW was the second leading
cause of neonatal death in the United States after congenital
malformations in 2019 and 2020 [3]. Moreover, babies with
LBW have a higher risk of short- and long-term adverse health
effects than those with a normal birthweight, such as heart and
lung complications and associated chronic diseases [4].
Tremendous financial burdens have also been imposed on the
families of the babies with LBW and health care payers [5].
Previous studies have found that maternal demographics [6],
preexisting health conditions [7], social determinants [8], and
prenatal care level [9] are associated with LBW. Thus, precisely
identifying which pregnant patients may be at the greatest risk
of having a baby with LBW in the preconception or early
pregnancy stages is critical to save neonatal lives and reduce
potentially avoidable medical expenditures through direct
clinical and health policy interventions. Our benchmarking
models and feature importance analysis results have the potential
to aid in this initial clinical screening and identification of
high-risk birthing people and the development of policies that
improve health care quality and invest in communities of most
opportunity.

In recent years, with the exponential growth in the quantity and
dimension of health care data, machine learning (ML) methods
have been introduced to handle complex and high-dimensional
data [10,11]. Numerous studies have shown that ML algorithms
achieved good performance on target prediction [12,13],
outcome estimation [14], and risk factor analysis [15,16] in the
field of precision medicine. Although ML is used as a new
computational method to explore various health problems, the
main challenge of ML applications in the health domain is the
common issue of imbalanced data that disproportionately focus
on the health of minority groups in ways that may generate
adverse events in the whole population [17]. An imbalanced
class distribution poses a challenge to the performance of ML
models. These models trained on imbalanced data sets can
produce misleading results for the intended prediction tasks.
These models often yield suboptimal classification results and
may erroneously treat rare minority examples as noise [18]. In
addition, the use of global performance metrics such as
prediction accuracy to guide the learning process can create a
bias toward the majority class, leading to a lack of awareness
of rare events even if the prediction model achieves high overall
accuracy [18,19]. In the prenatal health care field, ML models

face the same challenges with imbalanced data sets for correct
predictions because of the lower frequency of poor outcomes
compared with normal outcomes. Hence, identifying key
benchmarks is crucial to guiding proper ML use in perinatal
care, maternal health, and other health domains. This is a
considerable knowledge gap that we aimed to fill in this study.

Current documented studies on ML use in perinatal care and
maternal health are scarce. Few previous LBW prediction studies
have achieved good performance on imbalanced small data sets
with limited features (ie, variables) [20,21] or rebalanced
training and testing sets [22,23]. However, the ML results from
these studies could be problematic, misleading, and not
generalizable as they did not disclose their LBW distributions
and methods of effectively handling any data imbalance issues.
In this study, we aimed to conduct a more systematic and
accurate analysis of LBW cases in an extremely imbalanced
data set based on a large delivery population. The data records
were classified into 2 groups based on birth outcomes—LBW
and non-LBW—and the size of the LBW group was less than
a tenth of that of the non-LBW group. The unequal distribution
of these 2 groups caused a substantial imbalance in the data,
which is a common issue in the perinatal health domain because
of the incidence of LBW. In this study, we evaluated the
performance of 7 classic ML models—logistic regression (LR),
naive Bayes (NB), random forest (RF), extreme gradient
boosting (XGBoost), adaptive boosting (AdaBoost), multilayer
perceptron (MLP), and sequential artificial neural network
(ANN)—on the LBW prediction task for a large-scale data set
that linked 266,687 birth records with uniform billing (UB)
hospital records and Medicaid eligibility from the first quarter
of 2015 to the first quarter of 2021 in a southeast state in the
United States. In addition to the target variable, LBW, our data
set contained 155 other variables. In this study, we applied 4
different data rebalancing methods to each of the baseline
models: random undersampling, random oversampling, synthetic
minority oversampling technique (SMOTE) [24], and class
weight adjustment. We conducted extensive experiments to
obtain benchmarking results using the 7 classic ML models on
both the original imbalanced data set and different rebalanced
data sets; as a result, both scholars and health care practitioners
can use our benchmarks to serve as a baseline for their LBW
classifications, especially those who have access to large-scale
imbalanced data sets. We also analyzed the LBW risk factors
to determine the common risk factors that were identified by
the best performing models using the most effective rebalancing
method. The risk factor analysis results could provide
suggestions for initial clinical screening criteria.

Related Work
In this section, we conducted a comprehensive literature review
in the area of perinatal health studies that applied ML methods
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using claims data and identified a limited number of studies
predicting LBW. To garner a more holistic understanding of
the field of ML-based LBW prediction–related studies, Table
1 compares the study data sets, applied methods, prediction
models, best performance, and risk factors. To clearly compare
their input features, we further grouped them into four
categories: (1) physical factors, including basic maternal
information such as age, race, height, weight, and BMI; (2)
social factors, including education level, job category, wealth
index, and residence; (3) medical factors, ranging from different
indicators of medical history such as diabetes and hypertension
to laboratory reports, including indicators of different laboratory
tests; and (4) nutritional factors, representing maternal nutrition
intake records.

Table 1 summarizes the reviewed literature into 3 categories
based on their data size and imbalance issues. The first group
of studies used a small data set consisting of <1000 records
[20,21,25,26]. In this group, 50% (2/4) of these studies reported
the percentage of LBW cases, which highlights the presence of
data imbalance issues [20,21]. However, none of these studies
addressed the data imbalance issue or implemented rebalancing
methods. Although these studies achieved remarkable ML model
performance on a small imbalanced data set, the results could
be misleading and biased toward the majority class (ie,
non-LBW) owing to the data imbalance issue causing them to
learn based on the error rate without considering the class
distribution. The studies in the second group used larger
imbalanced data sets but still did not apply any rebalancing
methods to their imbalanced data sets [22,23,27-29,34]. Their
high accuracy and low area under the receiver operating
characteristic curve (AUROC) scores revealed that misleading
performance remains a persistent issue [33]. The third group
comprises studies that used data rebalancing techniques for their
imbalanced data sets [30-32]. However, these studies only
applied a single data rebalancing method to multiple ML models,
either oversampling [30] or SMOTE [31,32]. Therefore, it was
still unclear which data rebalancing method was optimal for
addressing data imbalance issues in LBW prediction tasks across
different ML models.

Another major issue for studies that used ML models was their
insufficient sample size with a single population. Their small
data sets did not adequately represent the actual demographic
distribution of the data in the population. The 2 primary data
sources of the previous studies were hospital records and
demographic surveys. The studies using survey data that
included the parents’ basic information and the baby’s weight
may have reached a larger sample size. However, no features
from the patient hospital visits were included, such as medical
factors, which are important indicators for determining birth
outcomes [6]. Regarding the studies that used hospital records,
their data features were richer than the survey data, with
common limitations of very small sample sizes and poor data
quality because of data access issues and policy restrictions.

We conducted a comparison of features across all studies and
analyzed the details of the data rebalancing methods for the
applicable studies. Through this comparison, we identified
instances of data leakage and reproducibility issues. To further
justify our recognized concerns, we referenced a previous study
that comprehensively examined and synthesized the problems
surrounding data leakage and reproducibility in ML-based
scientific research [35], and its findings provided a theoretical
basis for our literature review and comparison.

According to the “Summary of features” column in Table 1,
certain studies used the baby’s features or the features only
available after the delivery admission, such as baby sex, baby
delivery method, and gestational age [21,28,30-32]. Using such
features in a model could potentially result in data leakage as
the model would be unable to access this information while
making predictions about a new patient’s outcome. This issue
can be identified as a model using nonlegitimate features [35].

We then compared the data rebalancing process in the studies
that incorporated data rebalancing methods [30-32]. Notably,
all these studies [30-32] applied their data rebalancing methods
to the entire data set before splitting the training and testing
sets, leading to inaccurate and misleading prediction results as
the testing set could not represent the original data distribution
after being rebalanced. In contrast, this issue could lead to
leakage because of a lack of clean separation of training and
test data sets [35]. For example, oversampling was performed
before dividing the data into training and testing sets [30],
resulting in data sets that would not be perfectly separated as
the oversampled data generated from the training set would also
be present in the test set.

To overcome the aforementioned limitation of small data size,
we applied a large-scale data set that combined vital statistics
birth records with UB-04 hospital records and Medicaid
eligibility data. This comprehensive data set contained 266,687
birth records and included 158 features. To prevent the
legitimate feature issue, we only selected the predelivery
variables as the models’ input features. For the imbalanced data
set, to improve the model performance and identify the best
data rebalancing solution for our data set, we applied 4 data
rebalancing methods to the training set only and used the
original testing set to compare the prediction performance of 7
ML models for the LBW prediction task: LR, NB, RF, XGBoost,
AdaBoost, MLP, and sequential ANN. For the performance
evaluation, we focused on reducing the error rate of predicting
the LBW case as non-LBW, which could cause severe real-life
consequences. Moreover, owing to the imbalanced data set, the
accuracy could not adequately examine the performance of the
minority group. Thus, we evaluated the prediction based on the
AUROC score and monitored the recall score, which quantifies
the number of actual LBW cases that are correctly predicted as
LBW.
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Table 1. Summary of low birthweight (LBW) prediction– and classification-related studies.

Identified risk factorsBest performanceaPrediction modelRebalancing
method

Summary of featuresNumber of in-
put features

Data size
(LBW %)

Study

Previous studies with small sample sizes

Mothers’ living com-
munity, age, and
weight

Accuracy: 96.77%;
recall: 1.0; AU-

ROCb: 0.93

Bayes minimum
error rate

NoneMothers’ predeliv-
ery factors: physical,
social, medical, and
nutritional

18101 (not
reported)

Yarlapati et
al [25], 2017

Last weight before
pregnancy, mother’s

CT—accuracy:
89.95%; recall:

LRc, NBd, RFe,

SVMf, NNg, and

CTh

NoneMothers’ predeliv-
ery factors: physical

11189
(31.22)

Senthilku-
mar and
Paulraj [20],
2015

age, number of physi-
cian visits during the
first trimester, and

0.98; AUROC:
0.94

number of previous
premature labors

Pregnancy age, BMI,
and mother’s age

RF—accuracy:
95%; recall: 0.72;
AUROC: 0.89

RF and LRNoneBaby: sex and deliv-
ery method; moth-
ers’ predelivery fac-
tors: physical, social,

17600 (9.5)Ahmadi et al

[21]i, 2017

medical, and nutri-
tional

NoneAccuracy (for
LBW group):

NBNoneMothers’ predeliv-
ery factors: physical,
social, and medical

6219 (not
reported)

Desiani et al
[26], 2019

81.25%; recall (for
LBW group): 0.72;
AUROC: not re-
ported

Previous studies with larger sample sizes without using any rebalancing methods

NoneC4.5—accuracy:
79.23%; recall:

BFj tree, C4.5,
RF, random tree,

NoneMothers’ predeliv-
ery factors: physical
and medical

122702 (not
reported)

Akmal and
Razmy [27],
2020 1.0; AUROC: not

reportedREPk tree, and
logistic model
tree

NoneLR—accuracy:
87.6%; recall: 1.0;
AUROC: 0.59

LR and DTlNoneBaby: sex, singleton,
and delivery
method; mothers’
predelivery factors:

172351
(16.2)

Islam et al

[28]i, 2022

physical, social, and
medical

NoneSVM and
MLP—accuracy:

LR, NB, KNNm,
RF, SVM, and

MLPn

NoneMothers’ predeliv-
ery factors: physical
and social

94498 (not
reported)

Borson et al
[22], 2020

81.67%; recall:
0.82; AUROC: not
reported

Top 3 features: moth-
er’s age, time zone,
and wealth index

RF—accuracy:
93%; recall: un-
known; AUROC:
0.51

LR and RFNoneMothers’ predeliv-
ery factors: physical
and social; fathers’
factors: social

812,055
(<10)

Faruk and
Cahyono
[23], 2018

NoneAccuracy: 92.9%;
recall: not report-
ed; AUROC: 0.56

SVMNoneMothers’ predeliv-
ery factors: physical
and social; fathers’
factors: social

812,055
(<10)

Eliyati et al
[29], 2019

Previous studies using rebalancing methods

NoneAdaBoost—accura-
cy: 98%; recall:

AdaBoosto, CT,
KNN, NB, RF,
and SVM

Oversam-
pling

Baby: sex; mothers’
predelivery factors:
physical and medi-
cal; mothers’ non-

82328
(13.45)

Loreto et al

[30]i, 2019
0.91; AUROC: not
reported

predelivery factor:
gestational age
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Identified risk factorsBest performanceaPrediction modelRebalancing
method

Summary of featuresNumber of in-
put features

Data size
(LBW %)

Study

Gender of the child,
marriage to birth inter-
val, mother’s occupa-
tion, and mother’s age

RF—accuracy:
91.6%; recall:
0.92; AUROC:
0.97

LR, DT, NB,
KNN, RF, SVM,
gradient boost-
ing, and XG-

Boostq

SMOTEpBaby: sex and deliv-
ery method; moth-
ers’ predelivery fac-
tors: physical, social,
and medical

252110 (10)Bekele [31]i,
2022

Diabetes, gestational
age, and hypertension

LR—accuracy:
90.24%; recall:
0.90 (accuracy on
LBW: 33%)

Zero, KNN, NB,
kStar, MLP, ran-
dom tree, SVM,
AdaBoost, LR,
RF, OneR, stack-
ing, stack, DT,
and bagging

SMOTEMothers’ predeliv-
ery factors: physical,
social, and medical;
fathers’ factors: so-
cial; mothers’ non-
predelivery factor:
gestational age

88821
(10.84)

Khan et al

[32]i, 2022

aThe performance measurements are explained in Multimedia Appendix 1 [33].
bAUROC: area under the receiver operating characteristic curve.
cLR: logistic regression.
dNB: naive Bayes.
eRF: random forest.
fSVM: support vector machine.
gNN: neural network.
hCT: classification tree.
iThe study applied features from the baby side or the mothers’ non-predelivery features.
jBF: best first.
kREP: reduced error pruning.
lDT: decision tree.
mKNN: k-nearest neighbors.
nMLP: multilayer perceptron.
oAdaBoost: adaptive boosting.
pSMOTE: synthetic minority oversampling technique.
qXGBoost: extreme gradient boosting.

Methods

Overview
This study applied 7 ML models and 4 distinct rebalancing
methods to predict the LBW group and analyze related risk

factors. The process was carried out in multiple stages, as shown
in Figure 1, which included data preparation, development of
LBW prediction models, model evaluation and selection, and
associated risk factor analysis. This section provides a detailed
description of each stage.

Figure 1. High-level structure of low birthweight prediction study design.
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Study Data
The findings from this retrospective cohort study are based on
266,687 birth records from the first quarter of 2015 to the first
quarter of 2021 from a large health care system in a southeast
state of the United States. All patients’ personal information
was deidentified and not disclosed based on the Health Insurance
Portability and Accountability Act privacy and security policy.
The data set inclusion criteria were based on maternal inpatient
hospitalization or emergency department (ED) visit claims that
included any International Classification of Diseases, 10th
Revision (ICD-10), or Medicare Severity Diagnosis Related
Groups codes for delivery diagnosis or procedure. The exclusion
criteria were abortion, false labor, threatened abortion, and
missing linkage of claim record with the birth record.

As the main target variable of this study, birthweight was
categorized into 3 distinct levels by our data provider: extreme
LBW (ELBW; <1500 g), moderate LBW (1500-2499 g), and
not LBW (≥2500 g) [1]. Owing to the population of very LBW
being <1.45% of the total number of records, we combined the
ELBW and moderate LBW into 1 category (ie, LBW). Thus,
the target variable in this study has 2 categories: LBW (≤2499
g) and not LBW (≥2500 g), which is the national standard
definition [2]. We also categorized the target variable into
ELBW and non-ELBW (≥1500 g) groups to further validate the
models we developed for the LBW prediction task.

In addition to the target variable, each record had 155 variables
from three periods: (1) the 12 months before delivery, (2) during
delivery, and (3) the 12 months after delivery. As our focus was
on identifying factors that could be part of early prenatal
screening for high LBW risk, we only selected the variables
from 12 months before delivery as the input variables to develop
our ML prediction models in this study. Previous studies have
shown that hospital information [36,37], patient demographics
[38,39], patients’ preexisting conditions [40,41], and social
determinants [42] are closely related to LBW outcomes and
could be regarded as the underlying risk factors for LBW. In
this study, the input variables encompassed 2 hospital-related
factors (ie, perinatal care level and hospital baby-friendly status)
and patients’ demographic information, including age, race,
payment source, zip code, first pregnancy status, number of
fetuses delivered, and number of previous deliveries. The study
also considered preexisting maternal conditions, including
cardiovascular disease, hypertension, diabetes, obesity,
substance abuse, mental health, opioid use, gestational diabetes,
pre-eclampsia, intensive care unit stay, sum of inpatient
hospitalizations, sum of ED visits, and composite condition
profiles (chronic and behavioral health). Furthermore, the input
features included the CDC Agency for Toxic Substances and
Disease Registry social vulnerability index (SVI) indicators
[43]. We provide a detailed breakdown of the distribution of
these features in the Results section.

Ethics Approval and Data Compliance
This study was approved by the institutional review board of
the University of South Carolina (approval Pro00100005). For
the research data set used in this project, all data were
deidentified and securely stored in our Health Insurance

Portability and Accountability Act–compliant research server,
and only authorized researchers could access them.

Data Preparation
Before proceeding with data analysis, we cleaned the raw data
that our data provider initially processed. At this stage, we
focused on identifying records with mislabeling, missing values,
or inconsistent scale values. We first dropped the records with
missing values or unknown values in the variables related to
patients’ demographics and birth outcomes to avoid invalid
records and improve data quality. Next, to address all other
missing values that existed in the preexisting condition variables,
we merged them into the “No/Unknown” group [44]. In doing
so, we preserved as much information as possible while avoiding
the inducing bias found in other approaches (eg, complete case
analysis and imputation) that mishandle missing value prediction
[45]. As we focused on the records from a single US state, we
also removed the records in which the mother’s region was
marked as out of state. As a result, the cleaned data set size was
reduced from 266,687 to 255,467 (95.79%) records.

To effectively identify which pregnant patients would be at the
highest risk of delivering a baby with LBW, we removed the
features available only at the delivery phase or after delivery
from our data set. The removed features included delivery
method, gestational age, patients’ disease indicators when
admitted to labor or within 12 months after delivery, and
different indicators for neonatal care. After feature selection,
the ML models’ input features only included the features
available before delivery. We then re-encoded the categorical
variables into numbers to facilitate the use of ML models. When
we analyzed the feature importance to effectively (1)
differentiate each subcategory and (2) improve the
expressiveness of input variables with multiple categories, we
also applied the one-hot encoding method to convert the
variables with multiple categories into multiple binary variables
[46]. For example, the variable of race was converted into 4
binary variables: non-Hispanic White, non-Hispanic Black,
Hispanic, and other non-Hispanic races. For the continuous
variables in our data set, we normalized them into the same
scale between 0 and 1 to speed up learning for faster
convergence in the ML model training process [47]. The final
cleaned data set included 9.01% (23,019/255,467) of LBW
records and 90.99% (232,448/255,467) of non-LBW records
with 54 variables. Of the 23,019 LBW records, there were 3708
(16.11%) cases of ELBW.

ML Models

Overview
In this study, we developed 7 models for the LBW and ELBW
prediction tasks based on different classic ML classification
algorithms that are widely used to solve classification problems
in different domains, especially for binary classification
problems [48]. The applied ML algorithms included LR, NB,
RF, XGBoost, AdaBoost, MLP, and sequential ANN. The most
important ML classification algorithms can be categorized based
on their nature, including decision tree–based algorithms,
perceptron-based techniques, statistical learning algorithms,
and support vector machine (SVM) [49,50]. RF, XGBoost, and
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AdaBoost are the most popular decision tree–based algorithms
with ensemble methods to make the algorithms more robust
than a single decision tree [51]. The perceptron-based techniques
include different neural network models, and MLP and
sequential ANN are powerful neural network classifiers that
enable the learning of nonlinear functions for complex data. NB
and LR are 2 typical statistical learning algorithms. The models
applied in this study covered all the most important ML
classification techniques except for SVM as SVM, a classic and
powerful classifier, is unsuitable for the classification task on
large-scale data owing to the training complexity [52].

In this study, we used the scikit-learn Python library [53] to
develop our classification models. Our sequential ANN model
was developed based on the Keras framework [54]. To evaluate
the performance of a model and improve its ability to generalize
to new, unseen data, we applied a 5-fold cross-validation to
train and test the ML models. In each fold, we preserved the
same proportion of the LBW class in the training and testing
sets as observed in the full data set. To cross-compare the model
performance on different data rebalancing methods, we used
the default setting that was provided by the scikit-learn library
for all the applied ML models. Using the default parameters
setting when building classifiers is a common approach in ML
as it provides a baseline for comparison. By using the default
parameters, we could compare the performance of different
classifiers without the influence of specific hyperparameters or
other choices that could have been made differently for each
classifier. In addition, using the default parameters helped ensure
that the comparison between classifiers was fair and unbiased.
Thus, hyperparameter tuning was not within the scope of this
study, as discussed further in the Limitations and Future
Directions section. In the following subsections, we describe
details of the classification models and their architectures.

LR Model
LR is a classification method that is generally used to find the
hyperplane or line that best separates positive samples from
negative samples. From the provided data set, it learns a linear
connection before introducing a nonlinearity in the form of the
sigmoid function [55]. For our LR model, a maximum number
of iterations of 100 was set for the limited-memory
Broyden-Fletcher-Goldfarb-Shanno solver to converge, and the
inverse of the regularization strength was set to 1.

NB Model
As a classic supervised ML algorithm, NB is widely used for
structural data classification [56]. We built our NB classification
model based on the Gaussian NB module from the scikit-learn
Python library. On the basis of the Bayes theorem, NB considers
each feature to contribute independently to the probability of
the LBW class while ignoring the correlation among the
features. Therefore, the NB model does not require extensive
training data while requiring the training data to represent true
data distributions.

RF Model
RF is a flexible, easy-to-use, and robust supervised ML
algorithm. RF is based on the bagging algorithm and
the ensemble learning technique. The RF model training process

can be highly parallelized and, thus, efficient on large data sets
with high-dimensional input [57]. The RF model could minimize
the impact of outliers during classification owing to the
characteristics of the decision tree structure. The outliers only
affect the leaf nodes to which they belong and do not affect
other leaf nodes. The parameters for the RF model were
configured as follows: the forest contained 100 trees, the
minimum number of samples required to split an internal node
was 2, the minimum number of samples required to be at a leaf
node was 1, and bootstrapped samples were used to build each
tree in the forest.

XGBoost Model
XGBoost is an efficient supervised ML algorithm based on a
distributed gradient-boosted decision tree [58]. It can provide
reliable results and minimize the overfitting issue by using a
parallel tree-boosting strategy. Furthermore, XGBoost can
evaluate each feature’s importance using the importance score.
In our XGBoost model, the parameters were set such that there
were 100 trees and the maximum tree depth was 3. The learning
rate was 0.3. In addition, 100% of the training data were used
to build each tree.

AdaBoost Model
AdaBoost is an ensemble model with a typical boosting
algorithm. In the AdaBoost model, the weight of each basic
learner is adjusted based on the error rate of the results from
the previous iteration. AdaBoost adds more weight to the
samples mislabeled from the previous iterations in the following
iteration [59]. Therefore, the model performance can be
improved after a certain number of iterations. The base estimator
in our AdaBoost model was a decision tree classifier with a
maximum depth of 1, and the number of weak learners was 50.
The learning rate was set to 1.0, which was used to scale each
base estimator’s weight during the training iterations.

MLP Model
MLP is a deep learning network that applies the back
propagation method during the training process. Back
propagation is used to change the connection weights across
layers based on the error rate in the predicted results for
supervised MLP learning [60,61]. To develop the MLP model
for our task, we set the range of hidden layer numbers from 1
to 5, and the neuron number was assigned from 100 to 500 with
the same interval (100) to search for the best hidden layer
structure. We then determined our MLP model structure with
2 hidden layers and 100 neurons in each hidden layer
empirically. A rectified linear unit function was applied in the
model, and the Adam solver for stochastic gradient descent was
used. The learning rate was set to a constant value of 0.001. The
training data were also shuffled before each epoch, and the
maximum number of iterations was set to 200.

Sequential ANN
Sequential ANN models can learn representations of input
features, which can be used to improve classification
performance [54]. The sequential model allows for the creation
of multilayer networks by stacking layers linearly, where the
output from one layer is used as the input for the next layer [54].
Thus, the sequential ANN model is a powerful tool for building
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neural networks for classification tasks and is highly
configurable by adding several types of layers, such as dense
layers, convolutional layers, and recurrent layers, to suit specific
problem requirements. The model can also be trained using
various optimization algorithms such as stochastic gradient
descent to minimize the loss between the predicted and actual
class values. We used the dense approach in this model and the
rectified linear unit activation function to construct 2 hidden
layers. The input dimension of the model corresponds to the
size of the features. The size of the output from the hidden layers
was set to 32. After the hidden layers was an output layer with
a sigmoid activation function and an output size of 1. Given
that our task was a binary classification problem, we used Adam
as the optimizer and binary cross-entropy as the loss function.
There were 100 epochs, and the batch size was 2000 in each
epoch.

Data Rebalancing

Overview
In our data set, the LBW group was 9.01% (23,019/255,467),
and the ELBW group was 1.45% (3708/255,467) after data
cleaning, reflecting an extremely imbalanced data set. Accuracy
is usually an intuitive and effective metric but not when
evaluating the performance on imbalanced data. Considering a
binary classification scenario in which 1% of the samples are

positive, a classifier only needs to output all zeros to obtain an
accuracy of 0.99, leading to meaningless classification results,
which is a common problem in the public health domain. In
addition to using different evaluation metrics, we tried different
solutions at both the data and model levels to improve the ML
model classification ability for predicting the minority group.

Data-Level Data Rebalancing Methods
To handle the imbalanced data problem at the data level,
undersampling and oversampling are the 2 most common
methods. As shown in Figure 2, the undersampling method was
used to reduce the observations from the majority group until
the distribution was balanced between the majority and minority
groups [62]. The oversampling methods extend the size of a
minority group to balance the distribution. The most common
methods include random oversampling and SMOTE [24].
Random oversampling extends the minority size by randomly
duplicating the minority samples, commonly leading to
overfitting issues. SMOTE can alleviate this issue from random
oversampling. For each sample in the minority class, the basic
idea of SMOTE is to calculate the distance from it to all samples
in the minority group and obtain the k-nearest neighbors. Then,
a point between the sample and one of the k-nearest neighbors
is randomly selected as the new synthesized sample of the
minority class [63].

Figure 2. Detail-level structure of data rebalancing methods at the data level. LBW: low birthweight; SMOTE: synthetic minority oversampling
technique.
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Model-Level Data Rebalancing Method
At the model level, we addressed the data imbalance problem
by directly adjusting the majority and minority class weights
to modify the ML model training process, as shown in Figure
3. A higher weight was assigned to the minority group and a
lower weight was assigned to the majority group to make the
model accommodate the imbalanced distribution, and the
adjusted class weight was based on the distribution (equation
1). These strategies force the model to penalize the
misclassification made by the minority class in the training
phase.

Specifically, the scikit-learn Python library has the built-in
parameter “class_weight” for the LR, RF, XGBoost, and
AdaBoost classifiers. The weight for each class is automatically

assigned by the model to be inversely proportional to the
corresponding frequency. The balanced weight for each class
is calculated based on equation 1.

Class weight = total number of samples / (number of
classes × class sample size) (1)

Then, for the LBW prediction on our data set, the LBW class
weight was 5.55, and the non-LBW class weight was 0.55 under
the balanced option. For the ELBW task, the weight of the
ELBW was 34.45, and the non-ELBW class weight was 0.51.
For the NB classifier, the imbalanced distribution was reflected
in the prior probability of the class. Thus, we set the prior
probability as 0.5 for each class to balance the groups. For the
MLP classifier, we will adjust the class weight by modifying
the weights in the loss function in future work.

Figure 3. Data rebalancing at the model level. LBW: low birthweight; ML: machine learning.

Evaluation Metrics
To evaluate the performance of each classification model, we
used 5 different metrics widely used for measuring classification
performance: accuracy, precision, recall, F1-score, and AUROC.
We presented the mean score of each measurement across all
folds in the cross-validation. In our LBW prediction task, the
negative consequences would be more severe if LBW records
were predicted as non-LBW compared with the issue of
non-LBW records being predicted as LBW. Therefore, it was
important to expect a high average recall score in our task, even
compromising on a lower average precision score. Following
this guideline, we focused on the average recall score when
evaluating the model performance.

Results

Feature Understanding—Statistical Data Analysis

Overview
In this section, we analyze the distribution of each variable in
the LBW group. We also applied the chi-square test and used
the P value to determine whether there was a statistically
significant association between the values of each variable and
LBW. We applied the odds ratio (OR) and its CI to measure
the strength and precision of the association between the features
and the outcome [64]. More specifically, in our study, the OR
was used to quantify the difference in the odds of LBW between
the groups within the categorical variables. The CI provided a
confidence range of values that is expected to contain the true
OR. The width of the CI depends on the sample size and the

variability of the data. A narrow CI indicates that the estimate
of the OR is more precise, whereas a wide CI indicates that the
estimate is less precise [64]. For the continuous variables, we
show the CI of the mean value of the variables, which was used
to provide important information about the uncertainty of the
estimate of the population mean. The variables in our data set
were divided into 3 categories: hospital-related variables, SVI
indicators, and mother-related variables. The results for each
category are discussed in the following subsections.

Hospital-Related Variables on LBW
This study included 23,019 LBW records, accounting for 9.01%
(N=255,467) of the total delivery records. Table 2 shows the
LBW distribution for the hospital-related variables: perinatal
care level and baby-friendly status. The hospital perinatal care
level indicates the level of services provided. Basic care
provides services for low- to moderate-risk pregnancies.
Specialty care offers services for the patients of obstetrics and
neonatology at high risk. Subspecialty care provides all aspects
of perinatal care, including intensive care and a range of
continuously available subspecialty consultations as
recommended. Complex care offers additional capabilities and
considerable experience for newborn infants who are the most
complex and critically ill, and pediatric medical and surgical
specialty consultants are available 24 hours a day. We can then
expect that the percentage of LBW increases with the perinatal
care level. Specifically, the rate of LBW in complex care
hospitals was 4 times higher than that in basic care hospitals.
See the more detailed distribution in Table 2.
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The hospital’s baby-friendly status indicates whether the hospital
provides education to help families make informed decisions
about breastfeeding, encourages patients to have skin-to-skin
contact immediately after birth, and provides expert
breastfeeding support during hospitalization at the time of
delivery before discharge. Our data set showed that the
percentage of LBW records in the baby-friendly hospital was

higher than in the non–baby-friendly hospital given that
higher-level hospitals serve the most complex cases and have
more capacity to go through the baby-friendly designation
process.

The P value from the chi-square test reported in Table 2 showed
a statistically significant association between the categories for
each hospital-related variable and LBW (all P<.001).

Table 2. Difference between low birthweight (LBW) and non-LBW groups in hospital-related variables (N=255,467).

LBW versus non-LBW,
odds ratio (95% CI)

All recordsHospital-related variables

P valueNon-LBW group (n=232,448), n (%)LBW group (n=23,019), n (%)

Hospital perinatal care level

0.45 (0.38-0.55)<.00133,183 (14.28)1715 (7.45)Basic care

0.65 (0.54-0.78)<.001110,373 (47.48)8139 (35.36)Specialty care

1.29 (1.07-1.55)<.00186,188 (37.08)12,657 (54.99)Subspecialty care

2.12 (1.71-2.62)<.0011579 (0.68)380 (1.65)Complex care

—a<.0011125 (0.48)128 (0.56)Unknown

Hospital baby-friendly status

1.72 (1.67-1.76)<.00193,883 (40.39)12,371 (53.74)Yes

—<.001138,565 (59.61)10,648 (46.26)No

aReference group for odds ratio.

Vulnerability Index on LBW
Our data set also included different SVI indicators measured at
the census tract level based on the mother’s residence. The SVI
score indicates the potential adverse effects on communities
caused by external stresses on human health, such as natural or
human-caused disasters [43]. The CDC assigned an SVI score
for each of the census tracts based on the social factors for each
SVI variable from US Census data. The social factors for each
SVI variable are as follows: (1) SVI_SocioEconomic: below
poverty, unemployed, low income, or no high school diploma;
(2) SVI_HouseholdComp: aged ≥65 years, aged ≤17 years, aged
>5 years with a disability, or single-parent households; (3)
SVI_MinorityStatus: minority race or insufficient English

language level; and (4) SVI_HousingType: multiunit structures,
mobile homes, crowding, no vehicle, or group quarters.

The range of SVI scores is from 0 to 1. A higher SVI score
means that the community is more vulnerable and less resilient,
requiring more resources to thrive. A lower SVI score indicates
that the community is less vulnerable to external stress. Table
3 shows the distribution of each SVI indicator in our data set
for the LBW and non-LBW groups.

As shown in Table 3, the mean values for all SVI variables in
the LBW group were higher than those of the non-LBW group,
which means that the communities are more vulnerable and
populated with patients susceptible to LBW.

Table 3. Difference between low birthweight (LBW) and non-LBW groups in social vulnerability index (SVI)–related variables (N=255,467).

All records, mean (SD)SVI-related variables

P valueNon-LBW group (n=232,448)LBW group (n=23,019)

<.0010.370 (0.28)0.421 (0.28)SVI_SocioEconomic

<.0010.447 (0.27)0.486 (0.27)SVI_HouseholdComp

<.0010.581 (0.27)0.603 (0.27)SVI_MinorityStatus

<.0010.529 (0.27)0.566 (0.27)SVI_HousingType

<.0010.370 (0.28)0.421 (0.28)SVI_TotalScore

Patient-Related Variables on LBW
Table 4 shows the distribution of the LBW records for each
pregnancy-related variable. Pregnant patient–related variables
included the patients’demographics and preexisting conditions.

In addition, in our data set, patients’ preexisting composite
chronic and behavioral health conditions that are the most
relevant to poor birth outcomes were also included. These were
defined as having an inpatient stay or ED visit with a primary
or secondary code on the record for one of these conditions.
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Chronic conditions included cardiovascular diseases,
hypertension, diabetes, and obesity, and the behavioral health
variables covered substance abuse and mental health. We also
included a variable named "disease profile," which indicates
the patients' chronic and behavioral health conditions. The
percentage of LBW records indicates the proportion of LBW
records among all delivery records for a specific category. We
found that the rates of LBW records in patients aged 10-19 years
and 30-54 years were higher than those in other age groups.
The percentage of LBW in patients self-identifying as
non-Hispanic Black individuals was substantially higher than
that in other racial groups. Patients who enrolled in the Medicaid
program had a higher percentage of LBW than those with other
payment sources. Regarding birth history and plurality
indicators, first-time pregnant patients and those carrying
multiple fetuses were more likely to have LBW than other
pregnant adults. Especially for the number of fetuses delivered,
the percentage of LBW for mothers with multiple fetuses was
9 times higher than for those carrying a singleton. For all
preexisting conditions, the LBW percentage for mothers with
preexisting conditions was higher than for those without them.
We also performed the chi-square test between each input
variable and the target variable. The results showed that the
difference between the categories for each variable in the LBW
group was statistically significant (all P<.001).

Race and payment source are also 2 frequently cited key
indicators to identify health disparities. To investigate the impact
of race and payment source on LBW records, we studied how
LBW distribution was affected by these 2 variables (Table 5).
In our data set, 32.33% (82,592/255,467) of our records were
from patients who self-identified as non-Hispanic Black
individuals, the largest racial group. The percentage of LBW
in self-identified non-Hispanic Black patients (11,400/82,592,
13.8%) was more than twice that of patients who self-identified
as non-Hispanic White (9514/142,682, 6.67%) or Hispanic
(1565/23,938, 6.54%) individuals. Regarding payment source,
62.2% (159,019/255,467) of patients were enrolled in Medicaid,
which was the most common payment source in our data set.
Those who were enrolled in Medicaid were more likely to have
LBW (16,908/159,019, 10.63%) than patients with other
payment sources (6111/96,448, 6.34%). As shown in Table 5,
self-identified non-Hispanic Black patients who were enrolled
in Medicaid had the highest chance of LBW compared with
other groups. Approximately 14.08% (9921/70,451) of the
self-identified non-Hispanic Black patients who were enrolled
in the Medicaid program had LBW, which was substantially
higher than that of other ethnic groups (Table 5).

In addition to statistically different factors on LBW distribution,
we used all predelivery variables from different perspectives,
including hospital, maternal demographics, and preexisting
conditions to predict LBW using ML models.
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Table 4. Difference between low birthweight (LBW) and non-LBW groups in pregnancy-related variables (N=255,467).

LBW versus non-LBW,
odds ratio (95% CI)

All recordsPregnant patient–related variables

P valueNon-LBW group (n=232,448), n (%)LBW group (n=23,019), n (%)

Age group (years)

—a<.00115,093 (6.49)1779 (7.73)10-19

0.90 (0.85-0.92)<.00154,676 (23.52)5798 (25.19)20-24

0.77 (0.73-0.82)<.00171,556 (30.78)6505 (28.26)25-29

0.76 (0.72-0.80)<.00158,967 (25.37)5278 (22.93)30-34

0.97 (0.91-1.03)<.00132,156 (13.83)3659 (15.9)35-54

Race

0.76 (0.69-0.83)<.001133,168 (57.29)9514 (41.33)Non-Hispanic White

1.70 (1.55-1.86)<.00171,192 (30.63)11,400 (49.52)Non-Hispanic Black

0.74 (0.67-0.82)<.00122,373 (9.62)1565 (6.8)Hispanic

—<.0015715 (2.46)540 (2.35)Other non-Hispanic races

Payment source

0.79 (0.74-0.84)<.00172,929 (31.37)4715 (20.48)Private

1.45 (1.36-1.54)<.001142,111 (61.14)16,908 (73.45)Medicaid

0.86 (0.74-1.00)<.0013084 (1.33)218 (0.95)Uninsured

—<.00114,324 (6.16)1178 (5.12)Other

First-time pregnancy

1.23 (1.20-1.26)<.00188,788 (38.2)9941 (43.19)Yes

—<.001143,660 (61.8)13,078 (56.81)No

Number of fetuses delivered

—<.001231,046 (99.4)19,907 (86.48)Singleton

25.76 (24.14-27.48)<.0011402 (0.6)3112 (13.52)Multiple

Cardiovascular disease (previous 12 months)

3.35 (3.18-3.53)<.0016237 (2.68)1946 (8.45)Yes

—<.001226,211 (97.32)21,073 (91.55)No or unknown

Hypertension (previous 12 months)

3.91 (3.70-4.14)<.0014711 (2.03)1723 (7.49)Yes

—<.001227,737 (97.97)21,296 (92.51)No or unknown

Hypertension in pregnancy (previous 12 months)

3.27 (3.07-3.48)<.0014234 (1.82)1315 (5.71)Yes

—<.001228,214 (98.18)21,704 (94.29)No or unknown

Diabetes (previous 12 months)

2.57 (2.35-2.81)<.0012417 (1.04)605 (2.6)Yes

—<.001230,031 (98.96)22,414 (97.37)No or unknown

Gestational diabetes (previous 12 months)

1.73 (1.54-1.94)<.0011941 (0.84)330 (1.4)Yes

—<.001230,507 (99.16)22,689 (98.57)No or unknown

Obesity (previous 12 months)

2.53 (2.36-2.71)<.0014269 (1.84)1038 (4.51)Yes

—<.001228,179 (98.16)21,981 (95.49)No or unknown
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LBW versus non-LBW,
odds ratio (95% CI)

All recordsPregnant patient–related variables

P valueNon-LBW group (n=232,448), n (%)LBW group (n=23,019), n (%)

Substance abuse (previous 12 months)

2.05 (1.97-2.14)<.00116,081 (6.92)3045 (13.23)Yes

—<.001216,367 (93.08)19,974 (86.77)No or unknown

Mental health (previous 12 months)

1.99 (1.92-2.07)<.00121,435 (9.22)3873 (16.83)Yes

—<.001211,013 (90.78)19,146 (83.17)No or unknown

ICU b stay (previous 12 months)

3.24 (2.61-4.03)<.001335 (0.1)107 (0.5)Yes

—<.001232,113 (99.86)22,912 (99.54)No or unknown

Pre-eclampsia (previous 12 months)

12.87 (10.90-15.19)<.001252 (0.1)317 (1.4)Yes

—<.001232,196 (99.89)22,702 (98.62)No or unknown

Chronic conditions (previous 12 months)

2.84 (2.72-2.96)<.00110,867 (4.68)2810 (12.21)Yes

—<.001221,581 (95.32)20,209 (87.79)No or unknown

Behavioral health (previous 12 months)

1.99 (1.92-2.07)<.00122,283 (9.59)4011 (17.42)Yes

—<.001210,165 (90.41)19,008 (82.58)No or unknown

Disease profile (previous 12 months)

0.85 (0.78-0.92)<.0017147 (3.07)1741 (7.56)Chronic only

0.55 (0.51-0.60)<.00118,563 (7.99)2942 (12.78)Behavioral health only

—<.0013720 (1.60)1069 (4.64)Both chronic and behavioral
health

2.30 (0.28-0.32)<.001203,018 (87.34)17,267 (75.01)Either or both chronic and behav-
ioral health

aReference group for odds ratio.
bICU: intensive care unit.

Table 5. Percentage of low birthweight by race and payment source.

Other, n/N (%)Uninsured, n/N (%)Medicaid, n/N (%)Private, n/N (%)Race

525/9172 (5.7)113/1971 (5.7)5532/67,682 (8.17)3344/63,857 (5.24)Non-Hispanic White

484/3572 (13.5)45/371 (12)9921/70,451 (14.08)950/8198 (11.6)Non-Hispanic Black

136/2269 (6)50/804 (6)1202/18,065 (6.65)177/2800 (6.3)Hispanic

33/489 (7)10/156 (6)253/2821 (9)244/2789 (8.7)Other non-Hispanic races

Model Performance of LBW Prediction

Model Performance on the Original Clean Data
First, we compared the model performance based on the original
clean data set without data rebalancing. As shown in Table 6,
all ML models achieved >85% average overall accuracy,
whereas the average recall score for the LBW group was <0.4.

NB had the best performance for the LBW group, with a recall
score of 0.35. The high accuracy could be misleading as the
data set was highly imbalanced and the model tended to be more
biased toward the majority class to achieve higher accuracy.
The issue of imbalanced data is also a frequent problem in public
health as the study target is often the minority class. In our study,
because of the focus on predicting the minority class (LBW),
it was crucial to adequately handle the imbalanced data and
achieve good performance in the minority group.
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Table 6. Model performance comparison on the original imbalanced dataset.

Average AUROCaAverage F1-scoreAverage recallAverage precisionAverage accuracyModel

0.570.240.140.690.92LRb

0.620.290.350.250.85NBc

0.570.220.150.420.90RFd

0.570.240.150.700.92XGBooste

0.570.230.140.700.92AdaBoostf

0.570.240.150.670.92MLPg

0.570.230.140.640.92Sequential ANNh

aAUROC: area under the receiver operating characteristic curve.
bLR: logistic regression.
cNB: naive Bayes.
dRF: random forest.
eXGBoost: extreme gradient boosting.
fAdaBoost: adaptive boosting.
gMLP: multilayer perceptron.
hANN: artificial neural network.

Model Performance on Rebalanced Data
Table 6 shows that all applied prediction models achieved good
overall accuracy; however, the recall scores were very low,
meaning that the models could not accurately identify most
LBW cases in the testing set. These models tend to predict the
case as non-LBW to obtain higher accuracy from the highly
imbalanced data set. To reduce the impact of data imbalance
on our ML prediction task, we applied undersampling, random
oversampling, SMOTE, and class weight adjustment methods
to balance the LBW and non-LBW groups on the training set
and then evaluated the models on the original testing set. In
Table 7, we compared the ML models’ performance using each
rebalancing method.

Using the undersampling technique, the recall scores of the
predictive models showed substantial improvement. Among
them, RF achieved the highest recall score of 0.62, and the
AUROC score also increased from 0.57 to 0.63. Except for NB,
all the other models achieved a recall score of >0.60, and MLP
had the highest AUROC score of 0.72, which was a substantial
improvement over its previous score of 0.57. Although NB
obtained the lowest recall score, it had the highest precision
score.

We evaluated the models’ performance after applying the
random oversampling technique to the training set. LR,
XGBoost, and AdaBoost achieved the highest recall score of
0.61 and the highest AUROC score of 0.67. The recall scores
of the NB and RF models were noticeably lower than those of
the other models.

When using another oversampling technique, SMOTE, the
highest-performing model was LR, with a recall score of 0.58

and an AUROC score of 0.66. However, the other models’
performances with the SMOTE method were considerably lower
than that of the LR model. In comparison with the other
rebalancing techniques, the models trained on the
SMOTE-rebalanced data set had the lowest performance.

Upon cross-comparing the recall scores of the models, we
discovered that the weight rebalancing method was not
appropriate for all models. XGBoost achieved the highest recall
score of 0.70 and the highest AUROC score of 0.67 among all
the other models trained using weight rebalancing. This recall
score was also the highest among all the other models trained
using other rebalancing methods. However, the performances
of other models, such as RF and AdaBoost, were similar to the
performances of those trained using the original imbalanced
data.

In summary, the recall score substantially improved from 0.15
to 0.70 using the weight rebalancing technique and XGBoost.
The composite measurement AUROC score increased from
0.57 to 0.67 using all rebalancing methods except for SMOTE.
XGBoost outperformed or was at least comparable with all other
ML models consistently for different rebalancing methods
except for SMOTE. Furthermore, most of the applied models
demonstrated improved performance using the random
undersampling or random oversampling techniques. However,
SMOTE was the least effective rebalancing method based on
the models’ performance.

To further validate the methodology that we applied to the LBW
prediction task, we applied the same techniques to the ELBW
prediction task and cross-compared the performance before and
after the rebalanced training set using 5-fold cross-validation.
The results are presented in Table 8.

J Med Internet Res 2023 | vol. 25 | e44081 | p. 14https://www.jmir.org/2023/1/e44081
(page number not for citation purposes)

Ren et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 7. Model performance comparison—rebalanced data.

Average AUROCaAverage F1-scoreAverage recallAverage precisionAverage accuracyMethod and model

Random undersampling

0.670.280.610.180.72LRb

0.630.280.390.220.83NBc

0.630.240.620.150.65RFd

0.670.280.610.180.71XGBooste

0.670.280.610.180.72AdaBoostf

0.720.280.600.180.72MLPg

0.650.260.610.170.69Sequential ANNh

Random oversampling

0.670.280.610.180.72LR

0.630.280.380.230.83NB

0.570.220.260.190.83RF

0.670.280.610.180.72XGBoost

0.670.280.610.180.72AdaBoost

0.670.280.600.180.72MLP

0.650.260.610.170.69Sequential ANN

SMOTEi

0.660.280.580.180.73LR

0.630.280.390.220.82NB

0.590.260.220.310.89RF

0.590.260.220.310.89XGBoost

0.630.310.360.270.85AdaBoost

0.630.300.380.250.84MLP

0.630.240.550.160.69Sequential ANN

Weight rebalancing

0.670.280.610.180.72LR

0.630.280.390.220.82NB

0.560.200.180.210.87RF

0.670.260.700.160.64XGBoost j

0.550.180.240.150.81AdaBoost

aAUROC: area under the receiver operating characteristic curve.
bLR: logistic regression.
cNB: naive Bayes.
dRF: random forest.
eXGBoost: extreme gradient boosting.
fAdaBoost: adaptive boosting.
gMLP: multilayer perceptron.
hANN: artificial neural network.
iSMOTE: synthetic minority oversampling technique.
jModel with the best performance is italicized.
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Table 8. Model performance comparison for the extreme low birthweight prediction task.

Average AUROCaAverage F1-scoreAverage recallAverage precisionAverage accuracyMethod and model

Before rebalancing

0.580.150.170.130.93LRb

0.660.090.450.050.87NBc

0.810.270.660.170.95RFd

0.580.160.180.140.97XGBooste

0.580.160.180.140.97AdaBoostf

0.580.160.180.140.97MLPg

0.510.040.020.150.98Sequential ANNh

Random undersampling

0.770.080.800.040.74LR

0.670.100.460.050.87NB

0.750.080.770.040.74RF

0.770.090.800.050.75XGBoost

0.770.080.790.040.75AdaBoost

0.720.070.720.040.71MLP

0.760.070.820.040.69Sequential ANN

Random oversampling

0.770.080.800.040.75LR

0.670.100.460.050.88NB

0.520.050.060.040.96RF

0.770.090.780.050.76XGBoost

0.770.090.780.050.76AdaBoost

0.720.080.710.050.71MLP

0.690.080.570.040.80Sequential ANN

SMOTEi

0.740.090.680.050.80LR

0.710.090.590.050.82NB

0.530.080.060.110.98RF

0.620.120.300.070.94XGBoost

0.710.100.570.050.85AdaBoost

0.580.090.210.060.94MLP

0.630.080.370.050.88Sequential ANN

Weight rebalancing

0.740.070.770.040.71LR

0.740.070.770.040.71NB

0.850.180.800.010.89RF

0.610.060.850.030.61XGBoost

0.840.140.840.070.85AdaBoost j

aAUROC: area under the receiver operating characteristic curve.
bLR: logistic regression.
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cNB: naive Bayes.
dRF: random forest.
eXGBoost: extreme gradient boosting.
fAdaBoost: adaptive boosting.
gMLP: multilayer perceptron.
hANN: artificial neural network.
iSMOTE: synthetic minority oversampling technique.
jModel with the best performance is italicized.

RF achieved the best performance on the original imbalanced
data set with a recall score of 0.66. After applying the data
rebalancing methods, similar to the results for the LBW
prediction task, XGBoost also achieved the highest recall score
of 0.85 using weight rebalancing, but the AUROC score was
only 0.61. The AdaBoost model achieved the second-highest
recall score of 0.84 and the second-highest AUROC score of
0.84 using weight rebalancing. Therefore, the AdaBoost model
using the weight rebalancing model was the best-performing
model for the ELBW prediction task. Similar to the results of
the LBW prediction task, SMOTE was the least effective
rebalancing method compared with the other 3 methods applied.

Compared with the LBW prediction task, the ELBW prediction
task achieved substantially higher recall and AUROC scores,
both exceeding 0.80. The performance difference between these
2 tasks suggests that the distinction between the ELBW and
non-ELBW groups is more apparent than the distinction between
the LBW and non-LBW groups. In the following subsection,
we will analyze the importance of features for the LBW
prediction task to identify crucial patterns for recognizing the
target group from the input features.

Feature Importance Analysis
Feature importance analysis is the most common model
interpretability method that provides the importance of each
input feature on the target variable prediction. The feature
importance score quantifies the features’ contribution to the
model prediction output [65]. In this study, we selected the
model with the best performance for each data rebalancing
method to analyze the feature importance for the LBW
prediction—the model performance considered by the recall
scores. We compared the feature importance ranking before and
after by applying the data rebalancing method and focusing on
the features whose importance scores increased after the data
rebalancing methods were applied. The increased recall score
indicates that the prediction models achieved higher accuracy
in the LBW group after being trained on the rebalanced data
set. The increased importance scores indicate that these features
contributed more to the accurate identification of LBW cases.

As SMOTE was the least effective rebalancing method
compared with the other 3 methods applied, we did not consider
SMOTE in the feature importance study. In the LBW prediction
task, as the XGBoost model outperformed other models
consistently using different rebalancing methods, we compared
the top 20 features of the XGBoost models before and after
rebalancing using undersampling, random oversampling, and
weight rebalancing. As the features’ importance scores were
calculated based on their contributions during classification,

the high importance scores indicated that these features were
more critical in identifying the LBW group.

We conducted an analysis of these most important features using
Shapley additive explanations (SHAP) values and generated
the SHAP summary plots (Figures 4 and 5), which indicate the
relationship between the value of the features and the impact
on the prediction. The point colors from red to blue represent
the feature values from high to low. The related SHAP value
for each feature value represents this feature value’s contribution
to the LBW prediction task.

As shown in Figure 4, mother’s race—non-Hispanic Black
(momracehis_2), perinatal care level—subspecialty (plevel_3),
number of fetuses delivered (plur), first-time pregnancy
(vr_firstpreg), the sum of inpatient hospitalizations
(Pre12_IP_SUM), mother’s age—35 to 54 years (age5_5),
perinatal care level—basic (plevel_1), payment source—private
(pay5_1), disease profile—either or both chronic and behavioral
health (pre12_Disease_Preg_0.0), hospital baby-friendly status
(baby-friendly), the sum of ED visits (Pre12_ER_SUM),
payment source—Medicaid (pay5_2), rurality index (a
measurement of rurality based on different indicators, such as
population, extent of urbanized area, and distance to the nearest
metropolitan area), SVI socioeconomic, preexisting substance
abuse (pre12_Subabuse), SVI total score, SVI minority status,
preexisting hypertension (pre12_HTN), and preexisting
gestational hypertension (pre12_hyper_preg) were the most
critical features before and after using weight rebalancing.
Among these features, there were 3 social determinant
indicators: SVI socioeconomic, SVI total score, and SVI
minority status. A high importance score means that the social
determinants based on patients’ residence were very important
for LBW prediction.

Compared with the feature importance ranking before applying
any rebalancing method, the feature mother’s
race—non-Hispanic White (momracehis_1) became the top
feature after weight rebalancing. Regarding the common features
for both before and after weight rebalancing, the features of
increased importance included the number of fetuses delivered,
mother’s age—35 to 54 years, perinatal care level—basic
(plevel_1), disease profile—either or both chronic and
behavioral health, and SVI socioeconomic. The increased
importance scores from the models that applied rebalancing
methods indicate that these features contributed more to the
accurate identification of LBW cases because the prediction
models achieved higher recall score in the LBW group after
being trained on the rebalanced data set. Comparing the rankings
in Figure 4 based on the SHAP value, we find that a lower value
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of SVI minority status has a more substantial negative impact
on the model output after weight rebalancing.

Figure 5 illustrates that the 20 most important features identified
by XGBoost using both random under- or oversampling were
identical to those displayed in Figure 4 and only differed slightly
in ranking and SHAP value.

Figure 4. Top 20 feature importance ranking of extreme gradient boosting before (left) and after (right) using weight rebalancing. SHAP: Shapley
additive explanations.

Figure 5. Feature importance comparison of extreme gradient boosting after random oversampling (left) and random undersampling (right). SHAP:
Shapley additive explanations.
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Among the binary categorical features, we found that the “Yes”
category for the features, including mothers’race—non-Hispanic
Black, perinatal care level—subspecialty, first-time pregnancy,
mothers’ age—35 to 54 years, hospital baby-friendly status,
payment source—Medicaid, preexisting substance abuse,
preexisting hypertension, and preexisting gestational
hypertension, had substantially positive contributions to the
model outcome. Conversely, the “No” category for perinatal
care level—basic, payment source—private, disease
profile—either or both chronic and behavioral health, and
mother’s race—non-Hispanic White had a negative impact on
the model outcome. We also found that a higher number of
fetuses delivered and a higher sum of inpatient hospitalizations
had a substantially positive contribution to the model outcome.

Discussion

Principal Findings
In this study, we analyzed 255,869 birth records from 2015 to
2021 in a southeastern state in the United States. Among all the
data records, there were 9% (23,019/255,869) of LBW records.
To identify the LBW records based on all selected predelivery
features, we applied 7 classic ML models to classify the LBW
and non-LBW records. To effectively handle the data imbalance
problem, we explored 4 popular rebalancing methods and
cross-compared the models’ performance for each method.
Notably, we found that the highest recall score (0.70) was
achieved by the XGBoost model after applying the weight
rebalancing method to the model, indicating a considerable
improvement compared with previous studies.

The findings of this study indicate that the SMOTE method was
the least effective of the rebalancing methods. This could be
because the SMOTE method generates synthetic samples in the
minority class by interpolating between the feature values of
the existing minority class samples, which can create unrealistic
samples that do not accurately represent the true distribution of
the minority class. This can lead to overfitting and reduced
model generalization. Furthermore, the SMOTE method may
increase the overlap between the minority and majority classes,
resulting in a more challenging classification problem. In some
instances, SMOTE may even introduce noise into the data set,
leading to a reduction in model performance.

We then performed the feature importance analysis based on
the SHAP value for the best-performing model in random
undersampling, random oversampling, and weight
rebalancing—XGBoost. We compared the top 20 feature
importance ranking using these 3 rebalancing methods and
focused on the common important features. We found that the
20 most important features identified by XGBoost using those
3 rebalancing methods were identical. The common features
were then analyzed using SHAP values, which indicated that
certain binary categorical features such as patient
race—non-Hispanic Black, perinatal care level—subspecialty,
and first-time pregnancy have substantially positive
contributions to the model output if these binary features equal
to “Yes (1).” In addition, a higher number of fetuses delivered
and a higher sum of inpatient hospitalizations had a substantially
positive contribution to the model output.

On the basis of the frequency analysis, we found that the LBW
risk in adolescent and advanced maternal age groups was higher
than in other age groups. This finding is consistent with previous
research [66]. On the basis of the patients’ race, we found that
the connection between LBW and non-Hispanic Black patients
was substantially higher than that in the other racial groups.
Previous studies conducted in other US states have also found
that the LBW risk in non-Hispanic Black mother groups was
higher than that in other racial groups [67-69], suggesting the
negative impacts of experiencing racism and health disparities
[70].

One of our aims was to precisely identify patients at the greatest
risk of having a baby with LBW by providing evidence-based
research to inform changes to Medicaid policy that would
support early intervention for these patients. In our model, we
observed that patients who were enrolled in the Medicaid
program did have a higher chance of having a baby with LBW
than those who used other payment sources. Another critical
health disparity–related finding was that non-Hispanic Black
patients who were enrolled in Medicaid programs had a
substantially higher LBW risk than other groups, noting the
great importance of early holistic care services for these patients.
Given the disproportionate burden to the Medicaid program of
treating patients with high-cost deliveries, including but not
limited to the care of their newborns receiving neonatal intensive
care services, Medicaid investments addressing the social
determinants of health identified in our models present an
opportunity to improve maternal and child health outcomes,
reduce disparities, and save state dollars.

Our study also indicated that first-time pregnant patients were
more likely to have LBW than other experienced mothers,
consistent with a previous study conducted outside the United
States [71]. Regarding plurality indicators, pregnant women
carrying multiple babies had a substantially higher LBW risk
than other mothers, confirming a national report on the
contribution of singletons, twins, and triplets to LBW [72]. The
risk of LBW in patients with any preexisting condition,
including cardiovascular disease, hypertension, gestational
hypertension, diabetes, gestational diabetes, obesity, substance
abuse, mental health, and pre-eclampsia, was 2 times higher
than in those without preexisting conditions, which is consistent
with other study findings [73-75]. Our feature importance
analysis results also aligned well with our statistical analysis
and previous findings. The preexisting condition feature, that
is, disease profile—either or both chronic and behavioral health
conditions—was identified as an important feature in all 3
models as pregnant patients with preexisting health conditions
contribute more to differentiating the LBW and non-LBW
records. Regarding the social determinants, we found that the
residence of the patients with an LBW birth was more vulnerable
than that of patients with a non-LBW birth.

The important features found in our study can be used by
clinicians to identify the pregnant patients at the highest risk at
an early stage of their pregnancy through early prenatal care
screening tools. These identified patients could be advised to
obtain access to additional support for a healthy pregnancy
through group prenatal care and doula and community health
worker services, as well as through primary and specialist
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treatment for the management of comorbidities of high feature
importance. As fetal growth and development are a dynamic
process with many uncertainties, it is important to note that
predicting LBW using only features available in the early stages
of pregnancy and before any further examinations may not
always be accurate, thus leading to unnecessary stress and
anxiety for the expectant parents. As such, health care
professionals and providers should be cautious in considering
the potential benefits and drawbacks of sharing such information
with patients and making decisions in the best interest of the
patient’s overall health and well-being.

Limitations and Future Directions
This study had several limitations. As our data were collected
based on the linkage of vital statistics birth records with ED
visits and inpatient hospital record data, there are a certain
number of missing values in different variables owing to the
mother not meeting the inclusion criteria for a measure or having
no visits. These missing values could introduce different biases
to our data after we cleaned the data set. Moreover, the
preexisting conditions and other categorical variables in our
data set were aggregated and categorized into broad groups
based on the agency information disclosure policy. These broad
categories directly lead to data records with high similarity in
our data set and, thus, impose obstacles to effectively improve
ML model performance.

Another limitation involves information asymmetry. During
pregnancy, patients may need to visit an obstetrics physician
regularly for different diagnoses. If the diagnosis results indicate
that the mother has a higher risk of adverse birth outcomes, the
physician will recommend the pregnant adult for early
intervention and adjust the treatment schedule to make a positive
impact on the birth outcome. Unfortunately, we did not have
outpatient diagnosis information accessible to us in this study,
limiting our ability to provide additional valuable insights.

The lack of model generalization experiments was also a
limitation of this study. The model generalization capability

indicates the model performance on the data set that it was not
specifically trained on. Thus, it is an important aspect of ML
models as it helps improve the reliability and robustness of the
model. However, the complexity and volume of data from
various sources, combined with privacy and security concerns,
can make the health care data collection process slow and
challenging. Thus, the results from the benchmarking models
are only focused on the specific data that we used in this study
rather than preparing different data sets and producing the
experiments for model generalizability.

For future studies, we will work with our data providers to
extract more information to differentiate the identical records
in the current data set, focusing on incorrectly predicted records,
and introduce novel classification methods to improve model
performance. In contrast, we will develop a deep neural network
model with an optimized architecture and loss function to further
improve the performance of LBW prediction for a highly
imbalanced data set. Furthermore, we will also focus on
developing a transfer learning model to exploit the external data
set to enrich the information and improve the model performance
for the LBW group. Moreover, we will also use the external
data set to examine the benchmarking models’ generalizability
to improve the models’ reliability and robustness. We are also
working with our data providers to include additional features,
such as adequacy of prenatal care, which will address the data
limitation regarding the lack of outpatient records.

As a result, this study contributes substantially to the current
perinatal care literature by being the first study to systematically
apply both ML and rebalancing methods to more effectively
handle extremely imbalanced data set issues for higher quality
of prediction. In doing so, this study provides a set of
benchmarking results that can be used to adapt health care
policies, particularly for Medicaid, and support clinicians with
early prenatal interventions for pregnant patients likely at the
highest risk of LBW.
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