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Abstract

Background: Sepsis costs and incidence vary dramatically across diagnostic categories, warranting a customized approach for
implementing predictive models.

Objective: The aim of this study was to optimize the parameters of a sepsis prediction model within distinct patient groups to
minimize the excess cost of sepsis care and analyze the potential effect of factors contributing to end-user response to sepsis alerts
on overall model utility.

Methods: We calculated the excess costs of sepsis to the Centers for Medicare and Medicaid Services (CMS) by comparing
patients with and without a secondary sepsis diagnosis but with the same primary diagnosis and baseline comorbidities. We
optimized the parameters of a sepsis prediction algorithm across different diagnostic categories to minimize these excess costs.
At the optima, we evaluated diagnostic odds ratios and analyzed the impact of compliance factors such as noncompliance, treatment
efficacy, and tolerance for false alarms on the net benefit of triggering sepsis alerts.

Results: Compliance factors significantly contributed to the net benefit of triggering a sepsis alert. However, a customized
deployment policy can achieve a significantly higher diagnostic odds ratio and reduced costs of sepsis care. Implementing our
optimization routine with powerful predictive models could result in US $4.6 billion in excess cost savings for CMS.

Conclusions: We designed a framework for customizing sepsis alert protocols within different diagnostic categories to minimize
excess costs and analyzed model performance as a function of false alarm tolerance and compliance with model recommendations.
We provide a framework that CMS policymakers could use to recommend minimum adherence rates to the early recognition and
appropriate care of sepsis that is sensitive to hospital department-level incidence rates and national excess costs. Customizing
the implementation of clinical predictive models by accounting for various behavioral and economic factors may improve the
practical benefit of predictive models.

(J Med Internet Res 2023;25:e43486) doi: 10.2196/43486
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Introduction

Recent advancements in machine learning (ML) and the
proliferation of health care data have led to widespread
excitement about using these technologies to improve care [1,2].
Predictive analytic models in domains such as sepsis [3-5], acute
kidney injury [6], respiratory failure [7], and general
deterioration [8] have been proposed to improve the timely
administration of lifesaving treatments and mitigate expensive
downstream complications. It has been argued that a more
tailored approach that accounts for implementation constraints
that may differ across care settings can further enhance the
adoption of such systems [9].

Despite its importance, the process of implementing predictive
analytics solutions has received little attention relative to the
development of the underlying ML models [10]. Algorithms
are becoming more sophisticated, and the infrastructure that
allows real-time interoperable deployment of predictive analytics
solutions is expanding [11,12]. This increase in potential and
complexity underscores the practical importance of
understanding the implementation policy layer, which captures
the clinical workflow, response protocols, and operational
constraints. Notably, the dominant evaluation methods within
the ML community, such as the area under the receiver operating
characteristic curve, often do not consider the effect of this
policy layer on model performance [13]. Moreover, such
performance metrics do not consider the user response to
prediction and the effectiveness of the treatment protocols [14].
However, the operational constraints can often go beyond
behavioral factors and may encompass quality improvement
mandates and cost-saving objectives [15].

This work focuses on the management of sepsis—a common
and lethal condition caused by a dysregulated host response to
infection [16]—although our framework can be applied to other
hospital-acquired conditions [17]. Sepsis afflicts over 49 million

people worldwide and accounts for over 11 million deaths per
year [18]. In 2018, the US Medicare program (including
fee-for-service and Medicare Advantage) incurred US $41.5
billion in sepsis-related inpatient hospital admissions and skilled
nursing facility care costs [19].

We propose a framework for improving the implementation of
ML-based electronic health record alerts. Our framework aims
to minimize the costs of sepsis to payers, which are potentially
avoidable through early detection, timely administration of
antibiotics, and prevention of overtreatment (ie, excess costs)
[5,20,21]. Importantly, these costs can differ by diagnostic
category (and by extension, hospital departments) due to
differences in incidence rates, patient susceptibility, and
physician adherence. Thus, an additional contribution of this
work is our estimation of the excess costs of sepsis at the
diagnostic-category and national level, that is, the costs paid by
the Centers for Medicare and Medicaid Services (CMS). Our
optimization framework uses these cost estimates and selects
specific decision thresholds for each diagnostic category,
differing from other cost-benefit frameworks that set decision
thresholds uniformly [22,23]. We simulate how thresholds and
model outcomes can crucially depend on physician adherence
and sepsis incidence rates. In summary, we provide a framework
that CMS policymakers could use to recommend minimum
adherence rates to the early recognition and appropriate care of
sepsis that is sensitive to hospital department-level incidence
rates and national excess costs. This tailored approach results
in higher cost savings and diagnostic accuracy.

Methods

We conducted a retrospective observational study with the
following 3 broad steps: data collection, excess cost estimation,
and cost minimization (Figure 1). This was done in accordance
with STROBE (Strengthening the Reporting of Observational
Studies in Epidemiology) guidelines [24].
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Figure 1. Overall framework for assessment of attributable cost to sepsis and optimization of predictive model parameters. (A) Data collection, (B)
Data manipulation, (C) Minimizing additional costs from sepsis by choosing sensitivity/specificity pairs across departments. AUROC: area under the
receiver operating characteristic curve; DRG: diagnosis-related group; MDC: major diagnostic category; MS-DRG: Medicare Severity Diagnosis-Related
Group; UC: University of California.

Ethics Approval
The use of deidentified data utilized in this study was approved
by the institutional review board of University of California
(UC) San Diego (approval 800257). The requirement for
informed consent was waived by the institutional review board
committee, as the use of deidentified retrospective data does
not require patient consent under the Health Insurance
Portability and Accountability Act privacy regulations.

Data Sets and Definitions
We collected Medicare claims data from patients 18 years or
older at UC San Diego Health (UCSDH), an academic health
system, between October 2016 and July 2020. These data
included the following necessary components: (1) the Medicare
Severity Diagnosis-Related Groups (DRGs) [25] diagnosis code
for each patient and their corresponding DRG weights, (2) the
total amount paid by Medicare for the patient, and (3) the
Charlson comorbidity index of the patient upon admission. We
included patients with International Classification of
Diseases-Tenth Revision (ICD-10) codes for severe sepsis
(ICD-9: 99592 and ICD-10: R6520) and septic shock (ICD-9:
78552 and ICD-10: R6521). We selected these because of their
inclusion in the CMS Quality Measure for Severe Sepsis and
Septic Shock, which has impacted sepsis care across the United
States and provides a standardized approach to management
[26]. Throughout this paper, the term “sepsis” refers to the
definitions of severe sepsis and septic shock. The major
diagnostic categories (MDCs) are formed by dividing all

possible principal diagnoses into 25 mutually exclusive
diagnosis areas, which roughly correspond to hospital
departments.

Excess Cost of Sepsis
Our efforts to quantify the costs of missed diagnoses (ie, false
negatives) provide a new estimate of the avoidable costs of
severe sepsis and septic shock across broad diagnostic
categories. To quantify, we used granular insurance claims data
under the Medicare prospective payment system. We focused
on hospitalized Medicare patients, as payments are specific to
DRGs—a payment classification system determined mainly by
the diagnosis that caused a patient to become hospitalized. This
system groups clinically similar conditions that require similar
levels of inpatient resources. This categorization also allows us
to show the public value of our optimization routine. We
excluded patients from sepsis-related DRGs (870, 871, 872)
from our analysis because our objective was to assess the excess
inpatient cost of sepsis for other DRGs. As such, we gathered
all patients with severe sepsis and septic shock in nonsepsis
DRGs and a group of control patients in those same DRGs. This
strategy allowed a cost comparison between individuals with
similar primary diagnoses (ie, underlying conditions) but
different secondary sepsis diagnoses. These data included 670
patients diagnosed with severe sepsis and septic shock across
131 DRGs and 19,565 control group patients.

We adjusted for other underlying factors that drive cost
differences between patients with sepsis and no sepsis by
matching a comparison individual to each patient with sepsis
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[27]. For each patient with sepsis, this matching procedure
selected from all comparison individuals within the same DRG
code/weight the patient with the most similar Charlson
comorbidity index to the given patient with sepsis. This
matching procedure does not guarantee conditional
independence (ie, causality between sepsis and excess costs),
but we use it to approximate excess costs for the sake of
simulation. Further, limiting the selection to patients within the
same DRG weight accounts for changes in DRG payments over
time. With sets of patients with sepsis matched to control
patients, we subtracted the Medicare payments made for the
matched patients from the payments made for the patients with
sepsis. This difference represents the excess costs that Medicare
paid for sepsis above the underlying costs attributable to the
primary patient diagnosis.

We repeated this procedure for all patients with sepsis to form
a distribution of excess costs across DRGs. We then averaged
these DRG-specific excess cost estimates by MDC, which
comprises 16 mutually exclusive diagnosis areas within our
data set [28]. We show that the added costs from sepsis
diagnoses vary dramatically by these diagnostic categories and,
by extension, different hospital departments.

In an effort to calculate the national excess cost of sepsis, we
then scaled our excess cost estimates to the national level to
show the public impact of early detection and treatment (see
Multimedia Appendix 1 for more details). To scale, we first
multiplied UCSDH payments by the ratio of UCSDH payments
to average US payments by DRG [29]. Then, we scaled the total
patients treated at UCSDH to the national number of patients
with sepsis by using the share of Medicare patients treated at
UCSDH. Lastly, we aggregated the payments across all patients.
We have validated this scaling approach, as shown in
Multimedia Appendix 1, and we found that we closely estimated
the total national inpatient sepsis costs documented in Medicare
cost data [30] (among sepsis DRGs 870-872) by scaling UCSDH
total sepsis costs to the national level.

Modeling and Optimization
We used the sepsis prediction model by Shashikumar et al [5]
to develop an optimization framework that chooses the model’s
classification thresholds to minimize the additional costs from
sepsis by the MDCs. In the context of sepsis prediction,
classification thresholds determine above which probability the
model tags a patient as septic. Although we optimized across
diagnostic categories, our routine could also be implemented
across hospital departments or, alternatively, across more
granular patient subpopulations. The intuition behind the value
of our implementation rests on the idea that diagnostic categories
may determine whether patients with sepsis are costly relative
to patients with no sepsis, which could potentially merit
customized classification thresholds that account for these
category-specific nuances. Additionally, departments could
have different rates of sepsis, which may require different
thresholds to avoid a large number of missed detections. By
allowing algorithmic sensitivity to adjust to these idiosyncrasies,
ML algorithms may further reduce costs. Our optimizer is
constrained by the predictive model’s area under the curve
(AUC): as the optimizer chooses a higher sensitivity to sepsis

to reduce the costs of sepsis, the specificity of the model
decreases, increasing the false alarm rate. As noted above, false
alarms can also be costly: treating patients with broad-spectrum
antibiotics can cause adverse effects and is expensive. Thus,
the algorithm must balance the trade-off between the cost of
undertreatment and overtreatment.

Let FNi represent the number of false negatives (ie, the missed
cases of sepsis) within a given MDC category, and let Cost_FNi

represent the cost of missing sepsis within this category. The
miss rate (ie, 1 – sensi) is a quantity that depends on the selection
of the risk score threshold within the given MDC category i.
Furthermore, let the estimated functional form f( ) provide a
mapping from the chosen sensitivity to the false positive rate
(or false alarm rate). Note that this function is constrained by
the model AUC and reflects the balance of model sensitivity
and false alarms (see fifth point in Multimedia Appendix 1).
This function may also vary by MDC, but for simplicity, we
use a common functional form f( ). The optimization routine is
given by the following formula:

Notice that the algorithm chooses sensitivity values (ie, sensi)
across 16 broad diagnostic categories (ie, i) to minimize costs.
The left-hand side of the objective function captures the excess
costs or the cost of false negatives: the MDC’s average cost of
false negatives multiplied by the number of patients with sepsis
in the diagnostic category (ie, N_septici) multiplied by the miss
rate. The right-hand side of the objective function captures the
costs of false positives: the false alarm rate multiplied by the
number of patients who are not septic in the MDC (ie,
N_controlsi) multiplied by the average costs of false negatives
divided by the conversion factor α. This conversion factor is a
variable that maps the cost of false positives to the cost of false
negatives, as there may be costs of overtreatment (eg,
administering antibiotics if patients do not have sepsis). Our
simulations, as detailed below, consider various levels of α,
allowing for comparisons across different parameter
assumptions. We also included parameters in the model that
characterize physician adherence to sepsis alarms and tolerances
to false alarms (ie, overtreatment). For simplicity, our model
implicitly assumes that most sepsis costs are associated with
the downstream consequences of sepsis, such as organ failure,
need for intensive care, and prolonged hospitalization [15]. As
such, we assume the costs of broad-spectrum antibiotics and
other early sepsis treatments are negligible and thus excluded
from our analysis [31].

Simulations
We simulate a series of outcomes by implementing sepsis
prediction algorithms with flexible classification thresholds.
Simulation parameters and definitions are provided in Table 1.
These parameters constitute several factors in the policy layer
of ML algorithm implementation and may vary across hospitals
and departments. There are potentially other factors when
implementing an algorithm that will affect outcomes (eg, the
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effectiveness of treatment), but we focus on a few salient factors
that have arisen, namely, antimicrobial resistance and issues

stemming not from imperfect algorithms but from imperfect
adherence to alarm triggers.

Table 1. Simulation parameters.

RangeDescriptionParameter

17-27The costs associated with overtreating sepsis (eg, costs of antibiotics, patient side effects)Cost of false alarms (α)

0.5-1.0The rate at which physicians comply with the algorithm recommendations to treatPhysician adherence (γ)

0.82, 0.87, 0.9The area under the receiver operating characteristic curve, which is a commonly used
measure of predictive accuracy

Area under the curve

10-120Odds of a positive test in patients with disease relative to the odds of a positive test in
patients without disease

Diagnostic odds ratio

Model Performance and False Alarm Tolerance
The first simulation illustrates the cost savings generated when
choosing classification thresholds across diagnostic categories.
The simulation presents cost savings achieved when using 3
different artificial intelligence models [5] with various levels
of predictive performance (ie, receiver operating characteristic
curve and AUC). These 3 artificial intelligence models are taken
from the literature, and we apply them “out-of-the-box” by
feeding them into our optimization framework. Each model’s
receiver operating characteristic curve determines the levels of
sensitivity and specificity that the algorithm can achieve and
determines the trade-offs between underdiagnosis and
overdiagnosis. We also simulated excess cost outcomes over a
range of different tolerances to false alarms (eg, higher tolerance
means that the costs of overtreatment are lower). This exercise
illustrates the returns of allowing flexible classification
thresholds across diagnostic categories for various ML
algorithms and cost assumptions. We then calculated and
presented the diagnostic odds ratios (DORs) at each accuracy
level and cost assumption, given the optimized classification
thresholds.

Physician Adherence
We then reformulated the optimizer to account for physician
adherence. For a given classification threshold, low adherence
leads to a lower detection rate as alarms are ignored. To illustrate
the effects of physician adherence on costs, we ran a similar
simulation to the above, but rather than considering 3 models
of differing accuracy, we varied the adherence rate. Hence, the
simulation calculated excess costs at the set of optima for
different adherence parameters and costs of false alarms. Lower
levels of γ indicate a lower level of physician adherence (see
equation S2 in Multimedia Appendix 1).

Comparison to the Uniform Classification Threshold
Chosen by Optimizer
We underscored the gains from optimizing classification
thresholds by department. To this end, we did the same set of
simulations when allowing only 1 classification threshold across
departments. We then calculated the excess costs for different
false alarm costs and accuracy levels at the optimal threshold.
We also calculated the DORs at these optima.

Comparison to the Uniform Classification Threshold
We calculated the excess costs if the algorithm implementers
use a uniform 80% sensitivity, representing a clinically useful
target detection rate [5]. We calculated excess costs at different
false alarm costs, physician adherence, and accuracy levels, and
we calculated the DORs at the optima.

Results

Calculation of Excess Costs of Sepsis
Figure 2 shows the distribution of mean excess inpatient sepsis
payments by DRG. The distribution’s mean is US $23,929, and
its median is US $8124. Importantly, this implies that, on
average, patients with sepsis generate US $24,000 more charges
than patients who are not septic within the same DRG (matched
on baseline severity). Differences between payments for patients
within the same DRG weight exist because Medicare reimburses
extra for costlier hospital encounters. Patients with high
cost-to-charge ratios receive additional payments to compensate
for hospital losses, called as outlier payments [29]. Thus, if the
costs of sepsis treatment or other nonsepsis treatments exceed
a certain threshold, Medicare compensates the hospital a certain
percentage of the costs above the standard Medicare payment.
Hence, outlier payments drive the difference in Medicare
payments within the same DRG weight. Notice that outlier
payments also explain why some patients with sepsis are less
costlier than patients with no sepsis: outlier payments for these
patients with no sepsis happen to be higher for other care
unrelated to sepsis. DRGs in the left tail of the distribution are
those in the “Infectious and Parasitic Diseases, Systemic or
Unspecified Sites” MDC code, which suggests that sepsis may
lead to better treatment outcomes or, conversely, sepsis may
hasten hospital discharge through death. By contrast, DRGs in
the “Pre-MDC” seem to trigger outlier payments that are quite
large relative to patients with no sepsis. The aggregated excess
costs by MDC category are presented in Table S1 of Multimedia
Appendix 1, which shows that sepsis can additionally cost
Medicare up to US $85,000 per patient.

The second set of results describe the outcomes of a simulation
of excess cost savings and DORs achieved by ML algorithms
with fine-tuned classification thresholds. We estimate that the
excess cost for inpatient sepsis cases in the United States is US
$5.2 billion per year before predictive analytics implementation
(see Multimedia Appendix 1 for details). Note that this estimate
does not consider those patients whose primary diagnostic
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category is sepsis. Rather, it includes those who belong to
nonsepsis DRGs who have secondary sepsis diagnoses. The
former group incurs a total cost of roughly the same amount as
the excess costs associated with our study’s patient cohort (see
Figure 3). Additionally, our excess cost estimate ignores excess
utilization of inpatient providers, skilled nursing facilities, and
costs incurred due to the high 30-day sepsis readmission rates,
which is estimated to be 20% [32,33]. Thus, our estimate likely
provides a lower bound on excess costs.

Our simulation results show the savings achieved with our
implementation across various assumptions. Our first set of

results describes 3 simulation routines that differ by the degrees
of freedom with which classification thresholds are chosen: (1)
corresponding to 80% sensitivity, (2) uniform across all
diagnostic categories, and (3) distinct and optimized for each
diagnostic category. We present cost savings for each degree
of freedom across various assumptions on ML accuracy and
false-positive costs. Our second set of results provides the DORs
for degrees of freedom (1-3) at the optima chosen to minimize
costs across the same ML accuracy and false-positive cost
assumptions.

Figure 2. Distribution of mean excess sepsis payments over all diagnosis-related groups. This is the distribution of excess costs, as presented in Figure
3, but limited to the University of California San Diego Health cohort.

Figure 3. Venn diagram of the Medicare inpatient population (2016-2019) by diagnosis-related group and severe sepsis diagnosis. The US $5 billion
total costs of severe sepsis and sepsis diagnosis-related groups with severe sepsis or septic shock International Classification of Diseases codes were
calculated using University of California San Diego Health Medicare claims data and scaled to the national level. Note that these are total costs rather
than excess costs. DRG: diagnosis-related group; ICD: International Classification of Diseases.

Cost Savings

Uniform Classification Threshold
The first results detail cost savings when using a uniform
recommendation of 80% sensitivity and applying it throughout
the hospital at different false-positive costs and various levels
of ML accuracy. Note, this implementation differs from the
other two as the threshold is not optimized. Figure 4A shows

that as the cost of false positives decreases (ie, higher α values),
classification thresholds are chosen more aggressively, which
leads to higher cost savings as more patients with sepsis are
diagnosed and treated. Similarly, as the predictive power of the
model increases (ie, higher AUC), savings increase. The most
influential factor in cost savings is the model’s predictive power,
with excess cost savings ranging from US $2.3 billion to US
$3.9 billion.
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Figure 4. (A) Model cost savings when threshold is 80% sensitivity across departments. (B) Model cost savings when one threshold is chosen, but it
is the same across departments. (C) Model cost savings when threshold is chosen across departments. (D) Model cost savings by each model type (A),
(B), and (C). The cost savings estimates in (D) are for area under the curve=0.9 and α=20 across the 3 models. We choose α=20 to align with the
maximum penalty for false alarms in the PhysioNet challenge [4]. AUC: area under the curve; ROC: receiver operating characteristic curve.

Uniform Classification Threshold Chosen by Optimizer
Instead of relying on a uniform recommended threshold,
implementers may choose one to minimize costs throughout
the hospital. The simulation of this implementation shows to
what extent cost savings would differ. Figure 4B shows that for
every AUC-α pair, cost savings are higher when the threshold
is chosen. Where savings are the highest, an optimized uniform
threshold can save over US $400 million relative to the uniform
recommended level (US $3.9 billion cost savings with 80%
uniform and US $4.3 billion cost savings with uniform chosen).
Cost savings exhibit similar patterns across α and AUC values
as the above model.

Heterogenous Classification Thresholds Chosen by
Optimizer
Further, implementers could optimize thresholds across broad
diagnostic categories (or hospital departments). Figure 4C shows
that the gains from choosing heterogenous thresholds by MDCs
are the highest for lower-accuracy models. This discrepancy is
illustrated by the difference between cost savings in the uniform
model versus the heterogeneous model, with cost savings at
AUC of 0.82 as high as US $3.7 billion when using
heterogeneous thresholds compared to US $3 billion with the
uniform model. At the pair where the highest savings are
achieved, heterogeneous thresholds can save over US $300

million relative to uniform thresholds (US $4.3 billion cost
savings with uniform and US $4.6 billion with heterogeneous)
and almost US $700 million compared to the 80% standard.
Cost savings exhibit similar patterns across α and AUC values
as the above models.

Comparison of Cost Savings Across Degrees of Freedom
Figure 4D shows that heterogenous thresholds would increase
cost savings by almost US $700 million each year, relative to
80% uniform thresholds and by as much as US $300 million
each year, relative to a uniform chosen threshold. These
calculations assume an AUC of 0.9 and an α of 20 across the
3 models. An α of 20 aligns with the maximum penalty for false
alarms in the PhysioNet challenge [4], and an AUC of 0.9 is
close to the predictive accuracy of the latest advancement in
sepsis predictive analytics by Shashikumar et al [5].

DOR: Objective Measure of Accuracy

Uniform Classification Threshold
We present an objective measure of accuracy, called the DOR,
attained at each AUC-α pair, given the optimal thresholds.
Figure 5A illustrates that the highest levels of diagnostic
accuracy are achieved when costs are the lowest, suggesting
that cost minimization can simultaneously maximize algorithmic
performance. Naturally, more predictive models also lead to
higher DOR values.
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Figure 5. (A) Model diagnostic odds ratio when threshold is 80% sensitivity across departments. (B) Model diagnostic odds ratio when one threshold
is chosen, but it is the same across departments. (C) Model diagnostic odds ratio when threshold is chosen across departments. (D) Model diagnostic
odds ratio by each model type (A), (B), and (C). The cost savings estimates in (D) are for area under the curve=0.9 and α=20 across the 3 models. We
choose α=20 to align with the maximum penalty for false alarms in the PhysioNet challenge [4]. AUC: area under the curve; ROC: receiver operating
characteristic curve.

Uniform Classification Threshold Chosen by Optimizer
Optimizing the uniform threshold leads to higher DORs at each
AUC-α pair. This improvement is prominent in most accurate
models, where DOR can differ by as much as 30 between
different degrees of freedom (Figure 5B).

Heterogenous Classification Thresholds Chosen by
Optimizer
Heterogenous thresholds further increase the DOR at every
point relative to the previous 2 alternatives. In Figure 5C, we
see that DOR reaches up to 116 at the highest point.

Comparison of Cost Savings Across Degrees of Freedom
Figure 5D shows that DOR can increase by as much as 50 when
switching from a uniform recommended threshold to
heterogeneous thresholds, even though DOR is not directly
maximized. Interestingly, minimizing excess sepsis costs also
leads to higher DOR.

Savings When Accounting for Provider Adherence
We present results from a set of simulations that fix AUC at
0.87 but which vary the costs of false positives and physician
adherence to alarm triggers. Not surprisingly, savings are the
highest when adherence is high (see Figure S1 in Multimedia
Appendix 1). This result highlights the value of adequate
training and quality controls to ensure that physicians and
frontline workers who interact with these technologies use them
appropriately. Measures to improve physician adherence to
alarm triggers could increase cost savings by as much as US $1
billion (US $3 billion at γ=0.5, α=17; US $4 billion at γ=1.0,
α=17).

Discussion

This work estimates the national excess costs of sepsis to CMS
and provides a framework for implementing predictive models
in clinical settings. Our framework focuses on the policy
interface layer of ML implementation, as shown in Figure 6,
and chooses classification thresholds or the points above which
a patient is deemed septic across broad diagnostic categories to
minimize the costs of undertreatment and overtreatment. We
illustrate that implementing such algorithms nationwide could
potentially save the CMS over US $4.6 billion each year from
inpatient hospital-related costs alone. As much as 12.3% of
these savings are attributable to our framework for
implementation alone, relative to adhering to uniform
classification thresholds. We find that diagnostic accuracy would
also improve by as much as 68%.

Our work expands the frontier of research on clinical predictive
models in several directions. First, we provide a methodology
for calculating the excess costs of a given condition and apply
that method to sepsis care. Second, to our knowledge, we are
the first to provide a framework for optimizing the parameters
of predictive models according to the patient subpopulation.
Third, our framework is the first to explicitly balance the costs
of undertreatment (ie, false negatives) and overtreatment (ie,
false positives) by using a constrained optimization routine.
Fourth, we allow for a flexible set of hospital-specific
parameters that can be rationalized and set by the implementer.
Among these, we include the possibility of imperfect adherence
to triggered alarms (ie, behavioral failures) or other factors that
might influence the effectiveness of the sepsis treatments, given
the alarm is followed (imperfect treatment). We also include a
flexible parameter identifying the costs of false positives (ie,
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overtreatment). Since this cost is a difficult value to ascertain
and is specific to a given hospital and condition, we allow the
user to set this parameter at a level that they deem reasonable.

We show that across various assumptions on physician
adherence and overtreatment costs, our framework can
dramatically increase excess cost savings.

Figure 6. Clinical decision support implementation layers. These layers (and the corresponding key attributes) include the (1) platform layer
(interoperability, scalability, and fault-tolerant), (2) artificial intelligence layer (accuracy, generalizability, and interoperability), (3) policy layer (specific
and applicable to local hospital workflows, optimality with respect to enterprise’s objectives), and (4) behavioral layer (usability, compliance).

By contrast, recent work in predictive analytics considers the
cost of prediction in terms of the number of laboratory tests and
their associated costs [32]. However, these approaches overlook
the more significant costs incurred from avoidable hospital
expenses and insurance payouts that could be prevented by more
timely and appropriate health care. Our implementation directly
minimizes these costs to optimize predictive analytics. Our
approach also allows hospitals and practitioners to reap savings
under current DRG-based payment models and value-based
care systems [33]. For example, under the increasingly used
model of capitation payments, hospitals are allotted a payment
for a fixed number of patient lives. Our implementation allows
hospitals to optimize their predictive analytics within patient
subgroups and provide targeted treatment depending on the
needs of those subgroups. Excess cost savings from this targeted
approach would be directly reaped by hospitals, incentivizing
the adoption of new prediction technologies.

A comparison of results across different model parameter values
and inclusion criteria offers several broader insights. First,
improving provider compliance to algorithmic recommendations
can yield substantial cost savings. These savings are as large as
those reaped when setting classification thresholds by broad
diagnostic categories, highlighting the importance of dedicating
time and resources to the behavioral layer (see Figure 5) of the
clinical decision support process. By improving compliance to
algorithmic recommendations and optimizing model parameters
by patient subpopulation, costs can be further reduced by as
much as 40%. Thus, the value proposition of new predictive
models depends on how well algorithms are implemented.

Second, our model could be extended to allow provider
compliance rates that vary by department. These heterogenous
compliance rates could, in turn, affect cost-savings outcomes.
Further, one could simulate the potential savings of educational
interventions that improve compliance rates within
low-compliance departments.

Third, broadening the inclusion criteria of these technologies
may lead to much higher excess cost savings. Our strategy, for

example, only includes patients with ICD codes corresponding
to severe sepsis and septic shock. By contrast, if the inclusion
criteria were expanded to cover patients with any sepsis ICD
code [34] that maps to the sepsis DRG codes (ie, 870-872), the
excess cost savings could double (see Multimedia Appendix
1). Moreover, if predictive technologies were deployed beyond
inpatient settings such as in outpatient clinics, skilled nursing
facilities, or via at-home wearable devices [35], cost savings
could further increase.

Lastly, the cost of false alarms can greatly affect the potential
for cost savings. If the costs of sepsis overtreatment are high
relative to the costs of undertreatment (eg, worst-case
antimicrobial resistance scenarios), cost savings are limited.
Identifying these costs, thus, is critical to identifying optimal
classification thresholds. However, these costs could vary by
hospital or department and may merit more specific calculations.

Our analysis, of course, has limitations. First, it is difficult to
estimate the true excess costs of sepsis. Our estimates, which
compare patients within the same DRG and with similar baseline
comorbidity indices, attempt to isolate the effect of sepsis on
excess costs. Our estimates, however, are an imperfect attempt
at identifying the causal effect of sepsis on costs and could
include other factors that increase costs apart from sepsis.
Second, our analysis uses data from only one hospital. Obtaining
fine-grained costs from hospitals is an arduous process; thus,
we are limited by our sample size. Further, we do not account
for the value of lives saved from improved treatment and any
costs incurred after discharge, despite readmissions from sepsis
being extremely common and expensive [36]. Thus, we analyzed
the excess costs of patients with sepsis for whom sepsis is a
nonprimary diagnosis while accounting for other primary
reasons for hospital admission. This allowed us to analyze
avoidable costs that could be prevented by early sepsis detection
during hospital care. Third, there are other factors not discussed
here that could push providers to not respond to alerts (eg, wrong
person alerted, outdated data, repeated alerts). Finally, a patient’s
MDC category is often not known until discharge, which may
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complicate prospective patient-level analysis. However, our
proposal is focused on driving department-level policies from
retrospective data for the implementation of predictive analytic
algorithms. Further, recent work has demonstrated the feasibility
of predicting DRG codes in real time [37,38]. Despite these
limitations, we believe that our analysis serves as a useful
framework for the deployment of predictive analytics in clinical
settings and underscores the potential savings when these models
are deployed in a manner that directly considers costs.

We show that fine-tuning prediction technologies to perform
well under behavioral and cost constraints can improve patient
outcomes while reducing health care spending. We estimate
that CMS could save over US $4.6 billion each year from
inpatient hospital-related costs alone and that diagnostic
accuracy would improve by as much as 68% through the use
of an ML algorithm to predict sepsis. Our results suggest that
the value proposition of new prediction technologies can be
improved through fine-tuning within a clinical setting.
Prospective studies are needed to validate these findings.
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