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Abstract

Background: Social media has emerged as an effective tool to mitigate preventable and costly health issues with social network
interventions (SNIs), but a precision public health approach is still lacking to improve health equity and account for population
disparities.

Objective: This study aimed to (1) develop an SNI framework for precision public health using control systems engineering to
improve the delivery of digital educational interventions for health behavior change and (2) validate the SNI framework to increase
organ donation awareness in California, taking into account underlying population disparities.

Methods: This study developed and tested an SNI framework that uses publicly available data at the ZIP Code Tabulation Area
(ZCTA) level to uncover demographic environments using clustering analysis, which is then used to guide digital health
interventions using the Meta business platform. The SNI delivered 5 tailored organ donation–related educational contents through
Facebook to 4 distinct demographic environments uncovered in California with and without an Adaptive Content Tuning (ACT)
mechanism, a novel application of the Proportional Integral Derivative (PID) method, in a cluster randomized trial (CRT) over
a 3-month period. The daily number of impressions (ie, exposure to educational content) and clicks (ie, engagement) were
measured as a surrogate marker of awareness. A stratified analysis per demographic environment was conducted.

Results: Four main clusters with distinctive sociodemographic characteristics were identified for the state of California. The
ACT mechanism significantly increased the overall click rate per 1000 impressions (β=.2187; P<.001), with the highest effect
on cluster 1 (β=.3683; P<.001) and the lowest effect on cluster 4 (β=.0936; P=.053). Cluster 1 is mainly composed of a population
that is more likely to be rural, White, and have a higher rate of Medicare beneficiaries, while cluster 4 is more likely to be urban,
Hispanic, and African American, with a high employment rate without high income and a higher proportion of Medicaid
beneficiaries.

Conclusions: The proposed SNI framework, with its ACT mechanism, learns and delivers, in real time, for each distinct
subpopulation, the most tailored educational content and establishes a new standard for precision public health to design novel
health interventions with the use of social media, automation, and machine learning in a form that is efficient and equitable.

Trial Registration: ClinicalTrials.gov NTC04850287; https://clinicaltrials.gov/ct2/show/NCT04850287
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Introduction

Health care expenditures, especially in the United States,
continue to rise [1], but tens of billions of dollars can be saved
yearly with prevention [2]. Cardiovascular diseases such as
heart failure and stroke are among the most prevalent and
incidental health issues. Hypertension hits 1 in 3 adults [3] and
costs US $131 billion a year [3]. The ever-increasing incidence
of end-stage organ failure along with the current shortage of
organ donors, especially from underrepresented demographics,
produce both disease and economic burdens [4]. These burdens,
however, can be largely prevented with health interventions
that raise awareness about organ donation with tailored
educational materials on a large scale [5,6]. Yet, the
development of such tailored and large-scale educational
interventions remains a major public health challenge.

Social network interventions (SNIs) enable the development of
large-scale and tailored educational interventions but also need
to account for population disparities. SNIs have been
increasingly adopted for health behavior change [5-9] because
they leverage the traces of digital information left by users on
social media to accurately reach the target population. In
addition to assessing the primary outcome of the intervention,
SNIs also provide exposure and engagement metrics that enable
high-resolution assessments of the intervention performance in
real time [5,6,10-12]. Health educational interventions are
targeted at populations that are further stratified into subgroups
with distinct demographics. SNIs that disregard the underlying
disparities between these subgroups, however, can amplify the
existing disparities [13-18]. The design of health educational
interventions, therefore, needs to continuously monitor the
engagement and performance of targeted educational contents
within each subgroup to precisely reinforce these educational
contents accordingly [5].

The design of SNIs with real-time monitoring and tailored
reinforcement of educational contents requires a precision public
health approach with the use of automation. Precision public
health interventions are designed to deliver the right intervention
to the right recipients [19-22]. SNI, the right intervention, is a
powerful tool to deliver large-scale interventions to well-defined
groups, and clustering analysis is a machine learning technique
to stratify groups, the right recipients, within any population.
Instead of 1 single intervention delivering the same content to
the overall population, the use of automation enables SNIs to
deliver multiple interventions, accounting for existing
demographic environments. SNIs with automation, therefore,

simultaneously deliver precise interventions to each
demographic environment, automatically monitoring, learning,
and reinforcing, in terms of efficiency, the best educational
contents. Current SNIs, however, disregard existing distinct
demographic environments within their targeted populations
and lack the automation necessary to reinforce efficient and
tailored educational contents.

Automatic and efficient SNIs depend on controllability with
high-resolution assessments. The former provides acceptable
dynamic performance to a system by using control based on
feedback [23]. This way, the controllability allows the
continuous adjustment of intervention parameters by assessing
how far the SNI is from the desired goal. On the other hand,
high-resolution assessments allow a deeper understanding of
patterns and behaviors at both group and individual levels
[22,24,25]. Such an understanding can make the interventions
more accurate, improving the chances of achieving the expected
goals.

We proposed a SNI framework for health-behavior change using
an Adaptive Content Tuning (ACT) mechanism to increase
awareness, taking into account population disparities. For this
purpose, we used a proportional-integral-derivative (PID)
controller as the ACT mechanism, which is a simple and
effective control mechanism widely used in industry and other
scenarios [26], for example, health [27-30]. Combining public
precision health with control systems engineering, we were able
to implement an optimal SNI using demographic environments
in California, uncovered by clustering analysis, as the target
population. The educational contents delivered had a focus on
organ donation and were tailored based on the distinct clusters
uncovered using machine learning. Our findings showed that
the ACT mechanism increased SNI engagement. Our work has
implications for how precision public health will design novel
health interventions with the use of social media, automation,
and machine learning.

Methods

Overview
The SNI framework is a precision digital education approach
developed to enable, test, and improve large-scale and equitable
access to health literacy by automating four components: (1)
population stratification into demographic environments, (2)
cluster-randomized assignment, (3) personalized digital content
delivery, and (4) ACT (Figure 1).
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Figure 1. . Illustration of the social network intervention’s (SNI) 4 components diagram. The framework stratifies the population into demographic
environments based on socioeconomic data (population stratification). In a cluster-randomized trial research design, the ZCTAs from the uncovered
clusters are randomly assigned to optimal, nonoptimal, and control arms (cluster-randomized assignment). The optimal and nonoptimal arms are targeted
with digital content through social media (digital content delivery). To enable optimal SNI, an adaptive content tuning component adjusts the digital
content daily budget to guarantee an efficient intervention (adaptive content tuning). ZCTA: zip code tabulation area.

Study Design, Study Setting, and Participants
This was a 3-month, prospective, cluster randomized trial (CRT)
to evaluate the engagement performance of optimal and
nonoptimal SNIs on health educational content delivered as ads
using Meta’s Business Platform (Facebook) [31] and a novel
ACT mechanism (described below) applied to different
demographic environments defined at the ZIP Code Tabulation
Area (ZCTA) level.

The study setting was the Meta Business Platform [31] from
August 15 to November 13, 2020. Participants were Facebook
users residing in California. The eligibility criteria were as
follows: having a Facebook account and residing in California.
The intervention was delivered in 2 phases: preoptimization,
from August 15 to September 28, and postoptimization, from
September 29 to November 13.

Study Outcome
The main study outcome was the number of link clicks per 1000
impressions (C/I) on the health educational content, which is a
measure of social media engagement retrieved from Facebook
and used as a surrogate marker of awareness [5,6,9-12]. Link
clicks are the number of clicks on links within the ad content,
and impressions are the total number of times the ad content
was on screen for the target audience [9,31].

Study Variables
The study variables were the use of ACT mechanism
optimization (optimal and nonoptimal) and the type of
demographic environment (4 uncovered clusters). The ACT
mechanism was applied to the optimal group, and the
demographic environments are defined at the ZCTA level.
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Population Stratification Into Demographic
Environments
California’s population was stratified into demographic
environments based on socioeconomic information. A total of
24 features, including age, gender, spoken language, nationality,
access to the health system, income, education, as well as race
and ethnicity, were gathered for the state of California from the
American Community Survey [32] at the ZCTA level (Figure
1). Organ donor registration counts obtained from California’s
Donor Registry (Donate Life California) were used as an
external validation for the clustering analysis. The acquired
demographic data were used as an input to a machine learning
methodology [33] to stratify the target population into groups
of ZCTAs with similar demographics, considering a diverse set
of possible clustering retrievals. The methodology consists of
a clustering analysis that automatically selects the most suitable
number and composition of groups using a range of clustering
algorithms and metrics (Figure 1). The range of cluster size k
was from 2 to 20, and the algorithms considered were K-means
[34], Gaussian Mixture Model [35], and Hierarchical
Agglomerative [36], which are well-known clustering
algorithms. In its first step, a set of clustering retrievals for each
k is obtained for each algorithm. Five clustering metrics were
then simultaneously considered: Silhouette [37], CH-index [38],
DB-index [39], WB-index [40], and Infoguide [33] to determine
the candidate set of clustering retrievals. Finally, the chosen
clustering retrieval was obtained considering its goodness of fit
when used in a prediction model in which the outcome was the
organ donor registration count. Refer to the clustering
methodology for more detail [33].

Curating Digital Content About Organ Donation
The digital contents were short videos curated from YouTube
by a clinical psychologist with experience in health education.
The curation consisted of 4 steps: search, selection based on
inclusion and exclusion criteria, classification, and tailoring.
The main search strategy used the keywords organ donation,
organ donors, One Legacy, and Donate Life in combination
with the words United States, California, Asian, Latin American,
and African American. The inclusion criteria for content to be
included were: (1) English as the primary language or in the
subtitles; (2) at least 1 out of the 3 perspectives (ie, story life,
commercial, and educational); and (3) focus on living or
deceased recipients or their families. The exclusion criteria
were: languages other than English; and those that promote the
idea of organ donation in a monetary exchange. A final set of
50 videos was used for content analysis.

The analysis of organ donation internet videos and their contents
was based on parameters of interest. The content was analyzed
and classified into 6 domains: focus (on the donor, the recipient,
or the family); the type of donor (living or deceased), recipient
(relative, stranger, or exchange), and family (of the donor, of
the recipient, or both); age and ethnicity of each subject; and
type of content (story life, commercial, educational, or a mix
of them). For each video included in the systematic review, we
also extracted the year, source, search link, length, and number
of views. A single digital content was selected for each
demographic environment according to the cluster’s

characteristics, with the addition of a reference content selected
for having a high number of views on YouTube.

Digital Content Delivery Using Facebook
In a CRT research design, ZCTAs from each uncovered
demographic environment were randomly assigned to 2
intervention arms. The first arm, nonoptimal SNI, received the
SNI with equal exposure to digital contents, and the second
arm, optimal SNI, received the SNI with tailored exposure to
digital contents (Figure 1). The content was delivered using
SNI software we developed that interfaces with the Meta
Business Ads Manager application programming interface [31]
to automatically create and manage the necessary marketing
campaigns on Facebook. The optimal and nonoptimal arms
were created as individual campaigns, and for each campaign,
the target audience of each cluster was defined by the ZCTAs
randomly assigned for each arm. This structure enables the
retrieval of daily exposure and engagement levels for each
digital content delivered to each cluster in each arm. The
management of digital content exposure is achieved by setting
and adjusting the daily budget. Therefore, in the first arm, budget
was equally distributed between contents, while in the optimal
arm, budget was automatically adjusted by the ACT mechanism
implemented in the application. Each arm had a total of 580
ZCTAs randomly assigned by cluster. The optimal and
nonoptimal arms were compared by the engagement results
retrieved from the Meta Business Ads Manager application
programming interface.

The framework targeted the optimal and nonoptimal intervention
arms with digital content through Facebook. The SNI had a
duration of 89 days, divided into 2 phases: preoptimization and
postoptimization. In the preoptimization phase, 45 days, all
clusters from the 2 arms, optimal and nonoptimal, were targeted
with all educational contents with the same exposure (ie,
providing the same budget for each one) and the engagement
levels of each educational content at each cluster were gathered
(Figure 1). In the postoptimization phase, 44 days, the optimal
intervention arm was targeted with tailored educational content
to optimize engagement based on the information gathered in
the previous phase. The nonoptimal arm kept the same budget
configuration used in the preoptimization phase in order to
compare whether the optimization increased the total level of
engagement (Figure 1).

ACT Using Proportional-Integral-Derivative
The ACT mechanism was used to enable optimal SNI (Figure
1). This mechanism learns how to minimize a SNI error that
accounts for efficiency in budget allocation (Figure 1). The
efficiency error, between-content differences in engagement
(ie, link clicks) proportional to the exposure within clusters,
was used during postoptimization to adjust the daily budgets of
each digital content delivered to each demographic environment.

The ACT mechanism was modeled as a PID controller, which
is widely applied in control systems engineering. This
mechanism was implemented in the SNI software to enable the
daily budget adjustments of each content in the Meta Business
Ads Manager platform. On a daily basis, during the
postoptimization phase, the software gathers the level of
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exposure and respective engagement for each content at each
cluster and uses them as input to the PID controller, which
evaluates the efficiency error and updates the budget of each
content for each cluster accordingly (Figure 2).

As shown above, the PID controller is a simple and effective
control mechanism. Although strongly related to the industrial
scenario, several apps use the PID on control tasks, for example,
from arterial blood pressure regulation to electrical power
generation [26]. The letters of the acronym PID represent the
3 control settings of a PID controller, that is, Proportional (P),
Integral (I), and Derivative (D). The PID actively controls the
system through a feedback-based mechanism. This mechanism
holds the process variables at a given set point by generating
an error signal equal to the difference between the set point and
the current values of the variables. The 3 PID control settings
relate to the time-dependent error signal in different ways, that
is, the Proportional relates to the error magnitude, the Integral

to the cumulative error, and the Derivative to the error variation
rate. The results of those control settings are fed into a weighted
sum, which adjusts the signal sent to a control device or
application. The values of process variables are then fed back
into the control system, and the process can actively stabilize
the output signal to reach and hold process variables at the set
point value [26]. We illustrate this process in Figure 2.

The PID has 3 parameters, which are related to the 3 control
settings discussed in the last paragraph. Those parameters, also
known as gains, are: Kp (proportional gain), Ki (integral gain),
and Kd (derivative gain). They represent the weight of each
control setting on the active control. In this work, based on
preliminary analysis, we used the parametric configuration of:
Kp=1.0, Ki=0.5, and Kd=0.1. Given the novel approach
developed, we are considering a simple PID tuning
parametrization [41].

Figure 2. The adaptive content tuning (ACT) mechanism defined as a Proportional-Integral-Derivative (PID) controller. The component daily adjusts
the contents budget based on the difference between the proportion of engagement and exposure from the contents for each cluster (eg, cluster 4). The
PID controller error function e(t) was designed to ensure that the contents with more engagement would receive proportionally more budget. PID:
proportional-integral-derivative.

Statistical Analysis
The average daily difference between the number of clicks
between phases (C) was estimated using 1000 bootstrap samples
with a replacement for each group. Ordinary least squares (OLS)
regression was used to model the C/I as a function of both the
intervention arm (β1, nonoptimal=0 and optimal=1) and the
optimization phase (β2, preoptimization=0 and
postoptimization=1), as well as their interaction (β3=β1×β2). A
stratified regression analysis was separately conducted for each
cluster using the OLS model.

Ethics Approval
This study was approved by the institutional review board of
the University of California, Davis, US (1596733-2). The study
was registered on ClinicalTrials.gov (NTC04850287).

Results

Curated Digital Content About Organ Donation
From the 1700 ZCTAs in California, 4 demographic
environments (clusters) were uncovered (Figure 1) by the
clustering analysis framework applied. The framework applied
the clustering metrics to evaluate all possible clustering results
of the algorithms and chose the clustering retrieval of the
Gaussian Mixture Model algorithm with 4 clusters as the optimal
clustering retrieval. In summary, cluster 1, with 602 ZCTAs, is
predominantly rural, White, and Hispanic, and has a high rate
of public coverage under Medicare. Cluster 2, with 239 ZCTAs,
is rural, white, advanced-age, low-employment, and
low-females. Conversely, cluster 3, with 481 ZCTAs, is
predominantly urban, Asian, and White, and has a high rate of
employment, income, educational level, and internet
subscription. Cluster 4, with 418 ZCTAs, is urban, Hispanic,
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and African American, with a higher average family size, and
high employment but not high income (Table 1).

Based on the cluster’s characteristics, 4 digital educational
contents were selected from YouTube, 1 for each cluster, to
ensure as much social and cultural sensitivity and
community-centeredness as possible, given that these were
preexisting materials and not purposely developed for these
clusters. In addition to the 4 contents selected, a fifth one was
chosen, given the high number of visualizations, to serve as a
reference. Therefore, the 5 educational contents (EdC) were 2-
to 6-minute videos about organ donation along with an
inspirational text (eg, The heart of Bob and Marla’s son keeps

beating through Elisabeth) and a link to the Donate Life
California organ donor registration page [42] (Figure 3).
Creating a bond between the audience and the content through
identification with the story was the parameter used to select
which video could fit the most into each cluster. Cluster 4 had
a majority of African American and Hispanic population, with
public coverage, low income, and high employment, among
others. The video featured an African American woman
explaining the importance of increasing the pool of donors of
color due to the higher chances of matching. This study did not
modify the contents and requested authorization from the
institutions responsible for the contents to use them in the
intervention.

Table 1. Demographic environments characteristics mean difference comparative.

Sum diffCluster 4Cluster 3Cluster 2Cluster 1Characteristic

Mean diff to cluster 1Mean diff to cluster 1Mean diff to cluster 1Mean (SD)

0.45710.2325a–0.1094a–0.1152a0.2902 (0.2674)Hispanic, n (%)

0.38280.187a–0.1058a–0.09a0.217 (0.2429)Speak Hispanic, n (%)

0.3563–0.00810.29040.0578a0.2259 (0.1388)Bachelor’s degree or higher, n (%)

0.31150.1095a0.165a0.037a0.017 (0.02)Asian, n (%)

0.29680.0852a0.123a–0.0886a0.4977 (0.1024)Employed, n (%)

0.26540.0456a0.1498a–0.07a0.7581 (0.1202)Internet subscription, n (%)

0.2564–0.0414a0.2118a0.00320.5784 (0.1584)Private Health Insurance, n (%)

0.23100.08790.1198a0.0233a0.0129 (0.0143)Foreign born Asia, n (%)

0.22400.0519a–0.1296a–0.0425a0.2172 (0.1261)Public coverage Medicaid, n (%)

0.21800.0846a0.1045a0.0289a0.0114 (0.0147)Speak Asian languages, n (%)

0.21310.00720.1954a0.01050.2251 (0.0874)Median household income

0.18920.09a–0.0477a–0.0515a0.1009 (0.121)Foreign born Latin America, n (%)

0.14360.0121–0.0858a0.0457a0.1679 (0.1002)Poverty, n (%)

0.1317–0.0487a–0.0516a–0.0314a0.0571 (0.0971)Land area

0.12780.0735a0.0189a0.0354a0.0122 (0.0198)African American, n (%)

0.1261–0.0106–0.1153a–0.00020.255 (0.0795)High school degree, n (%)

0.09350.0171a0.0186a–0.0578a0.4888 (0.0482)Female, n (%)

0.07530.0128a–0.0136a–0.0489a0.1442 (0.0628)Dependency ratio (young)

0.07200.0648a–0.0008–0.00640.1662 (0.0616)Average family size

0.07020.0241a–0.0374a0.00870.0849 (0.05)No health insurance coverage, n (%)

0.0573–0.0324a–0.0232a–0.00170.0744 (0.0469)Public coverage Medicare, n (%)

0.0444–0.005–0.00290.0365a0.0099 (0.0059)Dependency ratio (old)

0.0395–0.00040.0292a0.0099a0.0174 (0.0184)Foreign born other, n (%)

0.0322–0.0122a–0.013a0.0070.0243 (0.0477)Other race, n (%)

aP<.05 based on pairwise comparisons with the Tukey honestly significant difference test.
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Figure 3. Selected educational content (EdC) for each demographic environment, plus baseline content, in the Facebook Ad format. Each educational
content consists of a video selected from a pool of Youtube videos given the respective cluster characteristics, a short call to action text related to the
content, and a link to the Donate Life California registration page. EdC: educational content.

PID Controller Optimizes Social Network
Interventions
In the postoptimization phase, the PID control component daily
adjusted the budget for the intervention units in the optimal arm
(Figure 4). In cluster 1, the contents delivered at the start of the
postoptimization phase were EdC-Baseline and EdC-1, but at
the end of the intervention, only EdC-Baseline was being
delivered. In cluster 2, since the beginning of the
postoptimization phase, only EdC-Baseline was delivered. In
cluster 3, during all the postoptimization phases, the contents
delivered were EdC-1 and EdC-Baseline, with budgets of around
58% and 39% of the total daily budget, respectively. In cluster
4, the contents delivered at the start of the postoptimization
phase were EdC-3, EdC-1, and EdC-Baseline, with 50%, 37%,
and 18% of the total daily budget, respectively. However, during
the second phase, the PID component increasingly allocated
more budget for EdC-1 and proportionally decreased the budget
for the other 2 contents. At the end of the intervention, EdC-1
had 79% of the total daily budget, while EdC-3 and
EdC-Baseline had daily budgets of 16% and 0% of the total
daily budget, respectively.

Taking cluster 4 as an example, it is possible to understand the
behavior of the PID component given the levels of exposure
(impressions) and engagement (link clicks). At the end of the
preoptimization phase, in cluster 4, each digital content had a
proportion of the total number of impressions (Figure 5, top-left)
and the total number of link clicks (Figure 5, top-right). The
PID component measured the error between those 2 proportions
and determined the necessary proportional adjustment for each
content (Figure 5, bottom-left). Finally, the daily budget of each
content was determined based on the proportional adjustments
(Figure 5, bottom-right). That sequence of steps was performed
by the PID component once a day until the end of the
postoptimization phase.

Comparing the average daily difference between the number of
clicks between phases (C) for each intervention arm, it is
possible to visualize how the optimization worked in each
cluster. While C remains around 0 for each content of each
cluster in the nonoptimal arm, a different pattern is observed in
the optimal arm (Figure 6). Given the optimal budget allocation
in the optimal arm, in clusters 1 and 2, the EdC-Baseline content
had a positive C, in cluster 3, EdC-1 and EdC-Baseline had a
positive C, and in cluster 4, the content of EdC-1 had a positive
C.
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Figure 4. Educational contents of daily budget updates, based on the PID controller, for each demographic environment in the optimal arm during the
postoptimization phase. Clusters 1 and 2 had the majority of the budget redirected to deliver the educational content, EdC-Baseline. Cluster 3 had the
budget adjusted to deliver the contents of EdC-1 and EdC-Baseline. Cluster 4 had the majority of the budget adjusted to deliver the contents of EdC-1
and EdC-3. EdC: educational content.

Figure 5. PID component analysis for cluster 4 in the optimal arm over the postoptimization phase. Engagement proportion levels for each educational
content (Top, Left). Exposure proportion levels for each educational content (Top, Right). The PID adjustments for each content based on the differences
between exposure and engagement levels (Bottom, Left). The contents of the daily budget after the PID proportional adjustments (Bottom, Right). PID:
proportional-integral-derivative.
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Figure 6. Daily content engagement’s mean difference between the pre- and postoptimization phases, for each cluster, for the nonoptimal (left) and
optimal (right) arms. The engagement differences in the optimal arm (right) present which contents were delivered for each cluster in the postoptimization
phase given the PID controller efficiency optimization in contrast with the nonoptimal arm (left), where the budget remained the same for each content.

Continuous Tuning Promotes Efficient Social Network
Interventions
Comparing both intervention arms, it is possible to visualize
the increase in engagement on the optimal arm after the
postoptimization started. In absolute numbers, the intervention
reached more than 9 million individual users on Facebook with
a total of 3691 link clicks: 1713 for the nonoptimal arm and
1979 for the optimal arm (Table 2). All clusters, except for
cluster 4, in the optimal arm had more link clicks than the

clusters in the nonoptimal arm. The educational contents of
EdC-1 and EdC-Baseline were responsible for the higher
engagement level in the optimal arm.

The OLS regression model coefficients (Figure 7) showed that
being in the nonoptimal or optimal arm (β1) or being in the pre-
or postoptimization phase (β2) alone is not significant. But being
in the postoptimization phase in combination with being in the
optimal arm (β3=β1×β2) results in an increased link click rate
(β=.2187; P<.001).
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Table 2. Social network intervention engagement levels.

Link clicksIntervention arm

TotalCluster 4Cluster 3Cluster 2Cluster 1

1713484369407453Nonoptimal

380125827499EdC-1a

29588775773EdC-2

25770495979EdC-3

26380775353EdC-4

51812184164149EdC-Baseline

1978454386492646Optimal

4401931493860EdC-1

17661442744EdC-2

19699312343EdC-3

12741322331EdC-4

103960130381468EdC-Baseline

aEdC: educational content.

Figure 7. Ordinary least squares (OLS) regression model coefficients to determine link clicks per 1000 impressions (C/I) by intervention arm, optimization
phase, and the interaction between both terms. The only significant coefficient is the interaction term, indicating a positive effect on C/I given the
combination of the optimal arm with the postoptimization phase.

PID Controller Enables Tailored Educational Content
per Demographic Environment
The use of a PID controller enabled tailored educational content
with distinct engagement effects (C/I) per cluster (Figure 8).
The results of the stratified regression analysis (Table 3), as

measured by the interaction between the intervention arm and
optimization phase (β3=β1×β2), show the optimization was
effective in all demographic environments but with different
effects among cluster 1 (β=.3683; P<.001), cluster 2 (β=.2812;
P<.001), cluster 3 (β=.1387; P<.001), and cluster 4 (β=.0936;
P=.05).
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Figure 8. Arm x phase (β3=β1 x β2) coefficient retrieved from the overall ordinary least squares (OLS) regression model (Figure 7) and per cluster
OLS regression model. The only nonsignificant coefficient is the one retrieved from the cluster 4 model, indicating no positive effect with the combination
between the optimal arm and the postoptimization phase.
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Table 3. Ordinary least squares regression model results, overall and per cluster, for clicks per impression (C/I) given the intervention arm, optimization
phase, and interaction between both terms.

P valueSECoefficientEstimator clicks per impression (C/I)

Overall

<.0010.0140.3257Constant

.820.0200.0046Intervention arm (β1)

.660.020–0.0091Optimization phase (β2)

<.0010.0290.2187Arm × phase (β1×β2)

N/AN/A0.490R 2

N/AN/A0.481Adjusted R2

Cluster 1

<.0010.0310.3266Constant

.560.0440.0258Intervention arm (β1)

.370.0440.0401Optimization phase (β2)

<.0010.0630.3683Arm × phase (β1×β2)

N/AN/A0.425R 2

N/AN/A0.416Adjusted R2

Cluster 2

<.0010.0370.5011Constant

.860.052–0.0095Intervention arm (β1)

.970.052–0.0017Optimization phase (β2)

<.0010.0740.2812Arm × phase (β1×β2)

N/AN/A0.191R 2

N/AN/A0.177Adjusted R2

Cluster 3

<.0010.0220.2719Constant

.690.031–0.0125Intervention arm (β1)

.110.031–0.0497Optimization phase (β2)

.0020.0440.1387Arm × phase (β1×β2)

N/AN/A0.090R 2

N/AN/A0.075Adjusted R2

Cluster 4

<.0010.0240.2876Constant

.870.0340.0053Intervention arm (β1)

.650.034–0.0156Optimization phase (β2)

.050.0480.0936Arm × phase (β1×β2)

N/AN/A0.055R 2

N/AN/A0.039Adjusted R2

aN/A: not applicable.
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Discussion

Principal Results
In this work, we proposed an SNI mechanism that uses
high-resolution assessments and controllability in adaptive
interventions to increase the engagement in organ donation
campaigns by tailoring educational content to different
population groups. The Meta Business Ads Manager platform
was used to deliver the SNI with 3 parameters: the ZCTA
randomized for each controlled trial (optimal and nonoptimal),
the daily budget for each intervention unit, and the platform
optimization goal to increase impressions. The SNI targeted
demographic environments in 2 phases: pre- and
postoptimization. In the preoptimization phase, the SNI
delivered all intervention units with an equal proportion of the
daily budget. In the postoptimization phase, the efficiency
control mechanism (PID controller) was applied to continually
tune the optimization arm of the intervention.

The optimization mechanism developed in this study enabled
efficient budget allocation in the optimal intervention arm,
resulting in a greater level of engagement per exposure. This
has important public health implications as it allows highly
specific targeting of educational health content to diverse
populations to allow an equitable spread of information to
populations in need.

PID Controller Enables Tailored Educational Content
per Demographic Environment and Increases Content
Efficiency
PID controllers are loop-based control mechanisms used to
maintain process variables close to desired set points. The PID
controller acts as a physician analyzing the glucose level of a
patient with diabetes; if the glucose level goes up, the insulin
dosage should increase proportionally, and the opposite would
happen if the glucose level decreases. Those mechanisms
continuously calculate the differences between the current values
of process variables and their respective set points to correct
the system parameters concerning proportional, integral, and
derivative terms. This methodology allows for the first time to
plan, quantify, and optimize in real time public health education
campaigns, making them more equitable, efficient, and
cost-effective.

Concerning social network interventions, the PID controller
can increase people’s engagement in public health campaigns
by tailoring educational content to different population groups.
Thus, we need to define an appropriate performance measure
to achieve the intervention goals, for example, the number of
clicks per impression. In our study, we used organ donation
registrations as the educational campaign, but the same can be
applied to any other health awareness and education needs.

Cluster Characterization and Content Optimization
per Demographic Environment
This study aimed to use systems control theory for ACT in a
SNI to promote awareness regarding organ donation. In
particular, an ACT mechanism enabled the efficient automation
of budget adjustments given each content’s level of engagement.

The population stratification prior to the ACT-enabled content
tailoring for each demographic environment separately. In
clusters 1 and 2, both rural demographic environments with a
predominantly white population, content highlighting a personal
story (EdC-Baseline) achieved a greater engagement level. In
cluster 3, a demographic environment with high socioeconomic
status, both contents highlighting personal stories regarding the
relationship between parents and children (EdC-1 and
EdC-Baseline) accomplished more engagement than the other
contents. In cluster 4, a group with a greater proportion of
Hispanic and African American populations, content with dense
concepts about organ donation (EdC-3) had higher engagement
at the beginning of the postoptimization phase; however, at the
end of the intervention, content displaying a personal story
attained more engagement. Cluster 4 was the only one that did
not present a significant engagement increase in the optimal
arm compared with the nonoptimal arm (β=.0936; P=.05),
demonstrating the need for more personalized and
community-centered content development in addition to the
ACT mechanism herein proposed.

We observed that using the PID controller on SNI promoted
people’s awareness regarding organ donation since the total
number of clicks increased by 15.47% from the nonoptimal arm
to the optimal one. According to the regression, an additional
0.2187 (95% CI 0.162–0.276) click rate (C/I) was obtained in
the optimal arm during the optimization phase.

The precision public medicine assumption is that the effect of
intervention varies across distinct subpopulations. Therefore,
we need to unveil such subpopulations and tailor the intervention
accordingly. We have demonstrated (Figure 8) that the
intervention effect depends on the social determinants of health
regarding the underlying subpopulations. We not only uncovered
such demographic environments (ie, clusters of zip codes with
similar social determinants of health), but also proposed a
mechanism to adaptively adjust the intervention (ie, the
educational contents) based on how each underlying population
responds. Once demographic environments are uncovered, our
approach can be naturally extended to populations other than
California, including those speaking languages other than
English.

Limitations
Even though the study addressed the California state disparities
by stratifying the zip codes into distinct and meaningful
demographic environments, the digital divide among minorities
may still be biasing the results. This study did not assess the
intervention’s effect on the number of organ donor registrations
in California, which still needs to be tested in an adequately
powered study.

Another limitation concerns the PID parametric configuration,
that is, the values of proportional, derivative, and integral
constants. Finding suitable values for those constants is
necessary because they interfere with the convergence rate and
fine-tuning of the SNI mechanism. We defined those parameters
after a preliminary analysis, which provided an acceptable
performance for the mechanism proposed in this manuscript.
However, each problem has an optimal set of constants that
maximize the PDI’s performance in the respective context.
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Thus, we could improve the achieved solution by defining those
constants through an optimization process driven by the SNI
problem. Additionally, the error measure that drives SNI
regarded only the difference between engagement and exposure.
We could improve the SNI performance by using other relevant
variables, such as complete video views, comments, and shares.

Conclusions
We proposed an SNI framework with an ACT mechanism that
learns and delivers, in real-time, for distinct subpopulations,
the most tailored educational content and establishes new
avenues to improve the future design of precision public health
interventions using digital social media that are equitable,
efficient, and cost-effective. In particular, the controller enabled
an efficient automation of budget adjustment given the contents’
engagement level, prioritizing the most successful contents in
each cluster. For clusters 1 and 2, the EdC-Baseline had more
budget allocated by the controller, while for clusters 3 and 4,
the EdC-1 was the prioritized content. That behavior shows
how population stratification into demographic environments
is a key step in the development of SNIs.

The use of social media as a tool to promote health educational
interventions moves toward more organized quantitative and
personalized care as a pathway to improving the health care
system using novel digital tools. The available social media’s
ad management tool enables a level of control that allows the
implementation of continuous randomized control trials, given

the possibility of targeting people living with educational content
in a set of specific zip codes and not in others, and every
intervention serving as the reference for the next. On top of that
feature, social media enables the real-time evaluation of the
intervention in process; the number of people that view the
content or clicked on the content’s link is available as soon as
the event occurs. That high-resolution assessment makes it
possible to use the PID controller to optimize the ongoing
intervention instead of waiting until the end of the intervention
to evaluate the results. The proposed SNI framework showed
how precision public health can design novel health
interventions with the use of social media, automation, and
machine learning in a form that is more efficient and equitable.

Future Works
In future works, we intend to investigate other strategies to
perform content optimization per demographic environment,
including the parameter tuning for the PID controller and the
use of other optimization techniques such as Genetic and
Swarm-based algorithms. Although the PID controller
optimization based on the difference between engagement and
exposure increased people’s awareness, that initial approach
could be improved by adding other relevant engagement
measures, such as video views, comments, and shares.
Moreover, the optimizer could also take into consideration other
socioeconomic indicators such as race or ethnicity, educational
level, and health insurance to guarantee equitable exposure
between the distinct demographic environments.
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