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Abstract

Background: The proliferation of mobile health (mHealth) applications is partly driven by the advancements in sensing and
communication technologies, as well as the integration of artificial intelligence techniques. Data collected from mHealth
applications, for example, on sensor devices carried by patients, can be mined and analyzed using artificial intelligence–based
solutions to facilitate remote and (near) real-time decision-making in health care settings. However, such data often sit in data
silos, and patients are often concerned about the privacy implications of sharing their raw data. Federated learning (FL) is a
potential solution, as it allows multiple data owners to collaboratively train a machine learning model without requiring access
to each other’s raw data.

Objective: The goal of this scoping review is to gain an understanding of FL and its potential in dealing with sensitive and
heterogeneous data in mHealth applications. Through this review, various stakeholders, such as health care providers, practitioners,
and policy makers, can gain insight into the limitations and challenges associated with using FL in mHealth and make informed
decisions when considering implementing FL-based solutions.

Methods: We conducted a scoping review following the guidelines of PRISMA-ScR (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses Extension for Scoping Reviews). We searched 7 commonly used databases. The included studies
were analyzed and summarized to identify the possible real-world applications and associated challenges of using FL in mHealth
settings.

Results: A total of 1095 articles were retrieved during the database search, and 26 articles that met the inclusion criteria were
included in the review. The analysis of these articles revealed 2 main application areas for FL in mHealth, that is, remote monitoring
and diagnostic and treatment support. More specifically, FL was found to be commonly used for monitoring self-care ability,
health status, and disease progression, as well as in diagnosis and treatment support of diseases. The review also identified several
challenges (eg, expensive communication, statistical heterogeneity, and system heterogeneity) and potential solutions (eg,
compression schemes, model personalization, and active sampling).

Conclusions: This scoping review has highlighted the potential of FL as a privacy-preserving approach in mHealth applications
and identified the technical limitations associated with its use. The challenges and opportunities outlined in this review can inform
the research agenda for future studies in this field, to overcome these limitations and further advance the use of FL in mHealth.

(J Med Internet Res 2023;25:e43006) doi: 10.2196/43006
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Introduction

Background
Mobile health (mHealth) generally refers to the use of mobile
and wearable devices (eg, smartphones and smartwatches) in a
health care setting [1]. In mHealth, health care–related data are
typically collected from digital devices, such as biomedical
sensors attached to the user’s body or portable devices with
relevant applications installed [1]. More recently, there has been
significant interest in using mHealth technologies for the
collection of patient-reported outcome measures as such
measures can enhance communication between patients and
health care providers [2]. Additionally, machine learning (ML)
techniques have been used to enhance diagnostic precision and
facilitate remote, fine-grained, and high-quality health care in
the mHealth field [3-5]. However, the traditional approach of
training ML models requires centralized datasets, where a central
server has access to the data of all patients. This can create
privacy concerns for patients who may not want to share their
personal information, and the regulatory requirements within
the health care industry may also limit the sharing of sensitive
information [6]. As a result, this leads to the existence of data
silos, which will limit the use of traditional ML-based solutions.
Furthermore, the limitations on data availability caused by
privacy concerns and data silos can impede the implementation
of large-scale health care systems, introducing biases in
ML-based approaches. Consequently, these challenges can
exacerbate the existing health disparities [7].

Federated learning (FL) is a potential solution for mitigating
the above-discussed challenges associated with sharing of raw
patient data in mHealth applications. FL is a ML approach where
the trained model parameters, rather than the raw data, are
shared during the learning process [8]. FL-based methods
typically involve a central server that holds a global model, and
during each round of FL, a random subset of users is chosen to
participate in the training of the global model. The selected
users train the models locally using their data and then send
their trained models back to the server. The server then
aggregates the models and updates the global model, and the
process repeats for subsequent FL rounds. However, it is worth
noting that most existing FL frameworks in the health care
domain are not designed to support data from mobile and
wearable devices, which are increasingly important sources of
data, given their widespread usage [9].

Objective
Although FL is a viable tool to support privacy-preserving health
care decision-making, its implementation in clinical practice is
not straightforward and has several limitations. Therefore, this
scoping review aims to explore the current progress of FL-based
mHealth applications (eg, how can FL be used to deal with
sensitive, unbalanced, and heterogeneous data across users’
mobile devices?). Furthermore, this review discusses the
associated limitations and challenges, providing health care
professionals and policy makers with essential information for
informed decision-making regarding the adoption of FL-based
solutions in healthcare.

In summary, this review seeks to achieve the following
objectives: (1) present an overview of FL applications in
mHealth settings, (2) assist practitioners and policy makers in
understanding the challenges of implementing FL in mHealth
settings, and (3) explore and identify potential approaches for
developing efficient, effective, and robust FL systems for
mHealth applications.

Methods

Overview
This scoping review was prepared and reported according to
the guidelines of the PRISMA-ScR (Preferred Reporting Items
for Systematic Reviews and Meta-Analyses Extension for
Scoping Reviews) framework [10].

Data Sources and Search Strategy
Our literature search was conducted using several databases,
such as PubMed, JMIR, Web of Science, IEEE Xplore, ACM
Digital Library, ScienceDirect, and Springer, for articles
published between January 2015 and January 2022. The initial
search was carried out using keyword combinations such as
“federated learning” AND “mobile” AND “health*” to identify
papers published between January 2016 and January 2022 in
all 7 databases. The abstract was used to extract the necessary
information and avoid selection bias. A second search was also
carried out using keyword combinations, such as “collaborative
learning” AND mobile AND health* to identify articles
published between January 2015 and January 2018 in PubMed,
JMIR, Web of Science, IEEE Xplore, and ACM Digital Library.
This second search was conducted because FL was first coined
by Google in 2016, and collaborative learning was the
predecessor and used interchangeably with FL. The details of
the search results for each search engine are presented in
Multimedia Appendix 1.

Inclusion and Exclusion Criteria
This study focuses on the use of FL in mHealth rather than the
broader eHealth settings. Specifically, it examines how FL can
be used with data captured by mobile devices to solve real-world
health care problems. As such, articles that developed new FL
techniques but were not specifically designed for mHealth
applications were excluded. Additionally, only articles published
in refereed journals and conference proceedings were
considered, whereas other types of publications, such as
conference abstracts only, books, editorials, and commentaries
were excluded.

Study Selection
The study selection process involved the retrieval of 1095
publications through a database search, followed by the removal
of 529 studies using the content-type filter in each database and
32 duplicate studies. Out of the remaining 534 studies, 487 were
excluded after title and abstract screening, resulting in only 47
relevant articles. A final screening process was conducted, and
26 of the 47 articles were found to meet the inclusion criteria
and included in the review. Two authors independently screened
the titles and abstracts of the identified studies to determine
their eligibility for this scoping review based on the above
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inclusion and exclusion criteria. Minor disagreements between
the reviewers were resolved, and the reviewers reached an

agreement. The process of study selection is illustrated in Figure
1.

Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) 2020 flow diagram of the study selection process.

Results

Search Results
Of the 1095 articles located, only 26 were chosen for further
analysis. These 26 publications were categorized into the
following 2 themes: remote monitoring and diagnostic and
treatment support based on their potential applications in
mHealth. The 2009 United Nations Foundation and Vodafone
Foundation report [11] presented 7 application categories within
the mHealth field, and our included studies are related to 2 of
these areas that are remote monitoring and diagnostic and
treatment support. Hence, the included papers were separated
into these 2 categories.

Applications and Type of Data Used
In mHealth settings, 1 application area of FL is remote
monitoring, which includes monitoring self-care abilities, health
status, and progression of chronic diseases. Twelve of 26 studies
specifically focus on recognizing human activities using mobile
sensors with FL, with a focus on distinguishing different
activities of daily living (ADLs), such as walking, sitting, and
standing. Recognizing ADLs is particularly useful for
monitoring senior citizens’ self-care abilities and health status
[5]. Two studies investigated the potential of using mobile
sensor signals to monitor Parkinson disease by analyzing
specific activities, such as arm droop, balance, and gait [12,13].
It was also noted that patients with Parkinson disease frequently

experience freezing of gait, which can be easily detected in their
daily activities [14]. Another disease that can be monitored in
daily life is epilepsy. For example, Gong et al [15] used a data
set comprising electrocorticography recordings of patients with
epilepsy to facilitate the monitoring of such patients in their
daily activities. Three studies [16-18] demonstrated the use of
FL in monitoring stress using data collected from mobile devices
during certain activities. Two types of data commonly used in
these studies are electrocardiograms (ECGs) and electrodermal
activity. Additionally, 3 other studies [19-21] proposed FL-based
systems for cardiac health monitoring. For instance, Raza et al
[21] designed an FL framework for ECG monitoring, which
has the ability to effectively classify various arrhythmias.
Furthermore, the authors incorporated an explainable artificial
intelligence–based module on top of the classifier to ensure the
interpretability of the classification results, thereby enabling
clinical practitioners to better understand the prediction results.
There are various other applications as well. Gong et al [22],
experimentally evaluated their proposed collaborative learning
scheme on diabetes data set and demonstrated its practicality
for mHealth monitoring scenarios. Siddiqui et al [23] integrated
FL with the Internet of Medical Things architecture to detect
the risk of obesity in individuals. BMI data were analyzed to
assess the obesity risk, and expert recommendations were
generated based on the results.

Another common application area is diagnostic and treatment
support. For example, the diagnosis of mental health disorders
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currently relies heavily on the subjective judgment of the doctor
through communication with patients and the responses from
the patient health questionnaires [9]. In this regard, Xu et al [9]
proposed a federated depression detection method. The
evaluations were conducted in a hospital setting, with
participants each receiving a smartphone to collect data on
keyboard usage during specific sessions. Additionally, data
from participants’weekly tests, such as the Hamilton Depression
Rating Scale [24] and the Young Man Mania Scale [25], were
also collected. There have also been efforts to use FL for
detecting skin diseases [26,27], and other medical conditions,
such as cancer [28]. For example, Wu et al [27] developed an
on-device federated contrastive learning framework for
dermatological disease diagnosis with limited labels. Guo et al
[28] proposed an FL-based system and experimented on a breast
cancer data set by simulating mobile scenarios and
demonstrating the potential of future mHealth applications for
cancer detection. Moreover, Sun et al [29] proposed an FL
framework for perioperative complications prognostic
prediction, which demonstrates the potential of FL in providing
treatment support. The proposed framework was tested using
experiments on a real-world mHealth data set and the results
suggested the utility of the proposed framework. A summary
of the applications can be found in Table 1.

Most of the studies (14 of 26) used human activity recognition
data sets, often collected using smartphones and smartwatches.
The Inertial Measurement Unit, which comprises
accelerometers, gyroscopes, and magnetometers, is another
commonly used sensor type in activity recognition. The most
common data types for ADLs recognition are acceleration,
angular velocity, and magnetometer. In studies on Parkinson
disease, acceleration data is used to detect freezing of gait as it
is a symptom unique to individuals with the condition [13].
Moreover, a data set is used by Chen et al [12] to record
acceleration and angular velocity during various activities, such
as arm droop, balance, gait, postural tremor, and resting tremor.
Other medical conditions, such as epilepsy, can also be detected
through activity monitoring, with electrocorticography being
used to classify patients with epilepsy [15]. Other data types,
such as ECG, electrodermal activity, blood volume pulse, and
body temperature, can be used to monitor stress [16-18], cardiac
health [19-21], and related conditions. Skin disease or breast
cancer detection often relies on the analysis of disease-related
images [26-28]. Detailed information about the data sets and
data types used in the included studies can be found in
Multimedia Appendix 2.

Table 1. Applications of federated learning in mobile health.

StudiesAreas and applications

Remote monitoringa

[4,12,13,30-38]Activities of daily living

[12,13]Parkinson disease

[15]Epilepsy

[22]Diabetes

[19-21]Cardiac health

[23]Obesity

[16-18]Stress

Diagnostic and treatment supportb

[9]Depression 

[26,27]Dermatological disease

[28]Cancer

[29]Perioperative complications

aRemote monitoring allows individuals to self-monitor their health status and manage the progression of chronic diseases from a remote location, such
as their own home.
bDiagnostic and treatment support refers to the provision of assistance for the diagnosis and treatment of patients from a remote location.

Challenges for FL-Based Applications in mHealth
Settings

Overview
The use of FL in mHealth settings is not without challenges,
and examples include statistical heterogeneity, system
heterogeneity, expensive communication, privacy leakage, and
real-time data stream. These challenges were chosen for analysis

because statistical heterogeneity, system heterogeneity, and
expensive communication are FL-specific challenges, whereas
real-time data stream is a crucial aspect of real-world mHealth
applications. Table 2 provides a summary of the challenges
identified in the selected studies. It should be noted that data
scarcity and scalability are also challenges identified in the
selected papers, but they are not specific to FL or mHealth, and
therefore, will not be discussed further in this paper.
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Table 2. Challenges for federated learning (FL)–based applications in mobile health.

ReferencesDescriptionChallenges

[4,12,16,18,21,30,31,34-38]Users’ data can be highly nonidentically distributed, characterized by diverse,
imbalanced, and heterogeneous patterns, which can pose challenges for training
models.

Statistical heterogeneity

[4,9,12,13,15,20,21,26-28,30,32,34-38]An increase in the number of devices participating in an FL system would result
in an increase in the number of global communication rounds, as well as the size
of the transmitted messages in each round (ie, communication is typically
slower than local computation in FL).

Expensive communication

[16,34,35]The storage, computational, and communication capabilities of each device may
differ due to variability in hardware and network connectivity, leading to system
incompatibility.

System heterogeneity

[12,15,16,21,22,28,29,33,37,38]Communicating model updates throughout the training process can nonetheless
reveal sensitive information, so the privacy of FL needs to be enhanced.

Privacy leakage

[9,21,23,35,36,38]Sensing measurements are generated continuously, and the FL process should
be working continuously with new emerging data.

Real-time data stream

[21,22,33,34]Labeled data are usually limited because it is costly and time-consuming to obtain
labeling feedback regarding sensing data.

Data scarcity

[17,20,33,38]As the amount of data available for training and the complexity of models in-
crease, the resources required to train and run these models also increase.

Scalability

Statistical Heterogeneity
In typical FL systems, a significant number of user devices,
such as smartphones, tablets, and smartwatches are used. These
devices frequently generate and collect data in a nonidentically
distributed (non-IID) manner, which can negatively impact the
accuracy of the FL-based approach. Moreover, users’ data
patterns are diverse, imbalanced, and heterogeneous, particularly
when data recorded during user activities are considered.

Expensive Communication
In large-scale FL systems, the use of numerous user devices
necessitates multiple rounds of global communication between
users and the server. This can significantly impact the
performance of the FL system, especially in
resource-constrained environments such as mobile networks or
Internet of Things devices [39]. This reinforces the importance
of developing communication-efficient methods within FL
systems, which aim to exchange minimal information as part
of the training process, in order to reduce the communication
cost of the system.

System Heterogeneity
In FL networks, the storage, computational, and communication
capabilities of each device can vary widely due to diversity in
hardware and network connectivity (eg, device types, operating
systems, and storage capacity) [39]. These system-related
constraints can result in system incompatibility due to data
formats and there is a risk that only a small fraction of devices
will be active in a federated network at any one time, or active
devices may drop out at a given iteration [40]. As a result,
system heterogeneity can have a considerable impact on the
performance of FL-based approaches in practice.

Privacy Leakage
Although FL is intended to mitigate privacy concerns associated
with conventional ML-based applications by only sharing model
updates, such as gradient information instead of raw data, the
communication of model updates throughout the training process
may still reveal sensitive information, either to a third party or
the central server [41]. Attempts have been made to design tools
to enhance the privacy of FL using secure multiparty
computation (SMC) [42] and differential privacy (DP) [41,43].
However, these methods can be costly and may negatively
impact model performance or system efficiency [40]. Therefore,
balancing the tradeoffs between privacy and performance is a
significant challenge in the practical implementation of FL-based
systems.

Real-Time Data Stream
Real-time data, such as sensing measurements, commonly occur
in mHealth settings. Consequently, when using FL in mHealth
settings, the FL model must be able to respond instantaneously
to adjustments and updates in sensor data. In other words, the
FL process must be able to operate continuously with incoming
data streams in real-time to ensure that the model can adapt to
and make predictions based on the most recent data.

Solutions to Address Challenges

Overview
In the following paragraphs, we will provide an in-depth analysis
of how the identified challenges can be overcome based on the
findings from the articles included in our review (see Table 3).
A summary of the included studies can be found in Multimedia
Appendix 3.
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Table 3. Solutions for addressing the challenges of federated learning–based applications in mHealth.

ReferencesChallenges and solutions

Statistical heterogeneity

[4]Meta-learning

[12,18,21,30,36]Model personalization

[34,35,37]User clustering

[16,31,38]Adaptive update scheme

Expensive communication

[4,9,12,13,20,26,27,30,36]FedAvg

[15,37,38]Flexible local updates

[21,28,32,34,35]Compression schemes

System heterogeneity

[16]Active sampling

[34,35]Fault tolerance

Privacy leakage

[28,38]Differential privacy

[12,15,22,37]Homomorphic encryption

[16,21,29]Strict information sharing scheme

[33]2-stage privacy-preserving scheme

Real-time data stream

[36]Incremental learning

[38]Web-based learning

[9,21,23]Repeat working with continuously emerging data

[35]Periodical update

Statistical Heterogeneity
Twelve of the included studies addressed the challenge of
statistical heterogeneity. For example, Ek et al [30] empirically
evaluated 3 FL algorithms (ie, FedAvg [8], FedPer [44], and
FedMA [45]) to determine their effectiveness. Findings from
their evaluations suggested that the averaging of more
personalized models leads to performance degradation when
the learned global model is used for evaluation on the test set.
Several studies have attempted to address this challenge by
designing personalized FL methods for adapting global models
for individual clients.

One possible approach is meta-learning, specifically the
federated representation learning framework proposed by Li et
al [4]. This framework used a signal embedding network, that
is meta-trained in an FL manner and the learned signal
representations were further fed into a personalized classification
network for better activity prediction for each user. One of the
most common approaches is model personalization, in which
base layers and personalization layers are trained separately.
For instance, in Chen et al’s [12] and Raza et al’s [21] studies,
transfer learning was applied to learn personalized models for
each user, as the higher layers aim at learning more user-specific
features whereas the lower layers focus on learning common
and transferable features. Furthermore, Liu et al [18] added a
simple user embedding to the neural network, which was kept

only on that user’s device. Wu et al [36] proposed a generative
convolutional autoencoder network and fine-tuned the model
parameters of higher layers of generative convolutional
autoencoder to obtain more accurate personalized models.
Another way to address statistical heterogeneity is user
clustering, which enables the FL system to capture the
underlying relationships between users as studied by Ouyang
et al [34] and Tu et al [35]. By clustering users, those in the
same group can collaboratively learn personalized models.
Similarly, Xiao et al [37] designed a feature extractor capable
of identifying and extracting the local features and global
relationships from heterogeneous data to address statistical
heterogeneity.

In addition to the abovementioned methods, several studies
attempted to address statistical heterogeneity by designing
update schemes to guarantee convergence for non-IID data.
Traditional FL methods may diverge when the data are not
identically distributed across devices, particularly when the
chosen devices perform too many local updates [40].
Accordingly, Yu et al [38] derived a personalized strategy for
semisupervised learning users who require personalized service.
Specifically, the personalized models will be initialized using
the general model downloaded from the server and users will
additionally convey gradients to the server once during each
training iteration to obtain personalized models. Gudur and
Perepu [31] introduced a 2-version FL framework for addressing

J Med Internet Res 2023 | vol. 25 | e43006 | p. 6https://www.jmir.org/2023/1/e43006
(page number not for citation purposes)

Wang et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


heterogeneity issues in non-IID scenarios by leveraging
overlapping information gained across activities—one using
model distillation update and the other using weighted update.
Additionally, Zhang et al [16] developed a new local update
scheme and an adaptive global update scheme, which jointly
enable each device to decide the optimized local and global
update strategies to deal with the non-IID problem.

Communication Efficiency
Of the 26 studies, 17 studies addressed the challenge of
expensive communication. Among them, 9 studies
[4,9,12,13,20,26,27,30,36] used the FedAvg algorithm [8] to
reduce communication overhead, as FedAvg [8] is frequently
adopted as a method to reduce the number of required
communication rounds. In addition, Xiao et al [37] proposed a
system that only calculates and circulates the average weights
after receiving the model weights from a certain number of
connected users in order to improve communication efficiency.
Yu et al [38] developed an unsupervised gradients aggregation
strategy together with FedAvg to decrease the communication
overhead. Moreover, Gong et al [15] proposed a scheme based
on the alternating direction method of multipliers [46] to
decompose the logistic regression model into smaller
subproblems that can be locally computed and reduce
communication cost.

The previously mentioned studies focus on developing
optimization methods that enable flexible local updates, thereby
reducing the overall number of communication rounds.
However, the model compression scheme can also ensure
communication efficiency by significantly decreasing the
amount of information communicated in each round. Notably,
there are various methods for achieving this. For instance, Liu
et al [32] developed a collaborative privacy-preserving learning
system that mainly considered 2 different parameter exchange
protocols—round-robin and asynchronous—both of which aim
to ensure low communication cost. Ouyang et al [34] designed
a learned cluster structure for their system, which allows the
use of clusterwise straggler dropout and correlation-based node
selection to reduce communication overhead. Moreover, Tu et
al [35] proposed FedDL, which can reduce the number of
parameters communicated between users and the server through
a dynamic layerwise sharing scheme. This is because only the
lower layers of local models need to be uploaded to the server
for global training. In separate work, Raza et al [21] designed
a framework for ECG monitoring and proposed a new method
called layer selection, which can significantly reduce the overall
communication cost. In addition to the aforementioned methods,
Guo et al [28] offloaded health monitoring and model training
tasks to private servers of hospitals with strong computing
resources to reduce communication cost and protect the privacy
of users.

System Heterogeneity
Three of the studies focused on system heterogeneity. For
instance, Ouyang et al [34] leveraged the inherent relationships
between users to dynamically drop nodes during the FL process,
where the server will drop users who converge slower than
others within the same cluster or are less related to others in the
same cluster. Tu et al [35] used the similarity among users’

model weights to learn the layerwise sharing structure, which
can be regarded as an asynchronous scheme that mitigates the
impact of straggling users in heterogeneous environments.
Furthermore, as proposed by Zhang et al [16], the bottom-up
design of the new local update scheme and the adaptive global
update scheme allows the FL system to meet device-specific
optimization goals (eg, energy savings) while strictly protecting
user privacy.

Privacy Leakage
In the studies analyzed, 10 of them tackled the issue of privacy
leakage that may arise when implementing FL in real-world
scenarios. There are 3 main ways to protect data privacy in the
FL framework [40], which are as follows: SMC [42], DP
[41,43], and homomorphic encryption [47]. Four of these studies
[12,15,22,37] used homomorphic encryption to avoid
information leakage. Two studies adopted DP. Specifically, Yu
et al [38] leveraged DP in combination with the
Byzantine-robust aggregation rule [48] to defend against
malicious clients and prevent data recovery attacks, whereas
Guo et al [28] proposed 2-stage strong privacy protection based
on DP to resist both external and internal security risks. Other
novel methods were also proposed. A 2-stage privacy-preserving
scheme was developed [33] to deliver great recovery resistance
to maximum a priori estimation attacks. Zhang et al [16]
designed an abnormal health detection system that strictly
prohibited any violations to meet the privacy requirements and
the only information allowed to be sent to the server is the
weight updates generated by locally trained models on each
device. Raza et al [21] proposed a solution to enhance privacy
by only sharing weights that contain more common and
low-level (ie, less private) features. Sun et al [29] proposed a
solution where the training process will not reveal any
information due to the masked weighted sum, which was
uploaded by users and would not cause information leakage.

Real-time Data Stream
Six of the studies considered the use of real-time data in
mHealth. For example, 3 of these studies [9,21,23] developed
methods that can continuously adapt to new emerging data by
repeating the entire process with the accumulation of new data.
Several studies developed specific methods or used unique data
sources to address this issue. More specifically, the system
proposed by Tu et al [35] can periodically update the layerwise
sharing structure and models to deal with users’ dynamic data
distribution. Yu et al [38] let unlabeled users be trained with
the online learning method so that the proposed system can use
only a small number of labeled users with limited samples to
train a model with competitive performance along with the
massive real-time stream sensing data produced by unlabeled
users. The framework proposed in reference [36] was able to
perform incremental learning [49], where both the cloud model
and user models can be continuously updated when new user
data is encountered. Furthermore, the learned cloud model that
captures the generic information from users can be easily
deployed as a previous model for new users.
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Discussion

Principal Findings
To advance the understanding of the use of FL in mHealth, a
scoping review of 26 published studies was conducted. The
results of this review indicated that FL, a relatively new
privacy-preserving method shows great promise for use in
mHealth. The reason for this is that medical data often resides
in isolated data silos, and privacy concerns can restrict access
to this data. Without access to sufficient data, conventional ML
is limited in its utility. FL offers a solution by supporting
collaborative model training on data from different sources
while preserving privacy. Additionally, the results of this
scoping review identify the potential application domains for
FL in mHealth and the challenges that must be addressed to
fully realize its potential. Furthermore, the review highlights
potential approaches to addressing these challenges and
improving the effectiveness of FL in mHealth applications.

The first aim of this review is to summarize the applications of
FL systems in mHealth. The findings indicate that FL can be
used for remote monitoring and diagnostic and treatment support
within the mHealth field. More specifically, it can be applied
to address a wide range of real-world problems, such as
Parkinson disease monitoring, cardiac health monitoring, and
mental health disorders diagnosis. When using FL in mHealth,
various types of sensor data can be collected, including
acceleration, angular velocity, magnetometer, ECG, and
temperature data, to address different problems.

In other words, FL is a paradigm shift from centralized data
lakes, and the use of FL in mHealth has a significant impact on
various stakeholders, including patients, clinicians, and health
care providers. By implementing large-scale FL-based
applications in mHealth, patients can benefit from improved
clinical decision-making without having to compromise their
privacy. With such systems, patients can receive better care
even from their own homes, particularly for those with rare or
geographically uncommon diseases. More importantly, the
adoption of FL in mHealth can improve patient privacy and
lower the hurdle to becoming a data donor. For clinicians and
practitioners, using FL-based systems in mHealth can augment
their expertise with knowledge from larger populations [50].
This can help to mitigate the issue of bias in clinical practice
that occurs when clinicians are exposed to a subgroup of the
population based on their location and demographic
environment, which can lead to inaccurate assumptions about
the probability of certain diseases or their interconnection [50].
By using FL-based systems, clinicians can ensure a consistency
of diagnosis that is not currently attainable, improving the
quality of care for patients. For hospitals, policy makers and
health care providers, the stabilization of federated-based
systems for mHealth can offer better services for diverse
population groups without worrying about patient privacy
concerns. In FL-based systems, patients can maintain full control
and possession of their data with limited risk of misuse by third
parties, which makes it a more secure and trustworthy option
for patients.

Additionally, this scoping review aims to provide practitioners,
policy makers, and health care providers with a comprehensive
understanding of the challenges associated with using FL in
mHealth. The review specifically focuses on issues, such as
expensive communication overhead, statistical heterogeneity,
system heterogeneity, privacy leakage, and real-time data
stream. This review provides an in-depth examination of these
challenges and highlights the potential effects they could have
on FL systems implemented in real-world settings. Through the
review, practitioners and policy makers can gain insight into
the unique characteristics of implementing FL in mHealth and
use those insights to make informed decisions when designing,
implementing, and evaluating FL systems in mHealth.

This review’s final goal is to identify potential solutions that
can be applied to address various challenges associated with
the use of FL in mHealth applications. One of the main
challenges identified in the literature is high communication
cost, which can be addressed through methods, such as FedAvg
and model compression schemes. Another major challenge is
statistical heterogeneity, which can lead to significant
performance degradation in FL systems that use traditional
aggregation methods, such as FedAvg as this approach is
sensitive to heterogeneous and imbalanced data distributions
among users, resulting in decreased model performance. This
highlights the need for more robust and personalized FL
approaches that can adapt to the unique characteristics of each
user’s data distribution. Data security is also a significant
concern in FL for mHealth, and many studies have proposed
the use of additional privacy protection mechanisms, such as
DP and SMC. However, these mechanisms often result in
reduced model performance or system efficiency [51],
highlighting the need for further research to balance the
trade-offs between privacy and system performance.
Additionally, this review identifies system heterogeneity as
another challenge in FL for mHealth, but to date, only a limited
number of studies addressed this issue. In summary, further
research is necessary to tackle these prevalent challenges and
improve the performance of FL systems.

Limitations
This review has several limitations. First, this review focused
on 5 key challenges related to applying FL, whereas other
challenges like data scarcity and scalability were not discussed
due to page limit. Second, while the search period covered
several years, the majority of the included studies were from
2020 to 2021. This could be due to the fact that FL was first
introduced by Google in 2016, which has led to an increase in
research on this topic in recent years. Fortunately, this allows
for a more current understanding of FL’s development and
impact on mHealth, and it is expected that more studies will be
published in the coming years. Furthermore, for the paper
collection process, the search terms should have certain
limitations and were not able to include all relevant studies.
However, the studies that were gathered through our data
sources and search strategy should provide a comprehensive
overview of the field.
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Conclusions
This scoping review provides valuable insights for different
stakeholders on the potential benefits and challenges of using
FL in mHealth. FL is a novel and efficient privacy-preserving
learning method that can be applied in a wide range of fields,
particularly in mHealth, where it has been proposed for various
applications such as Parkinson disease monitoring, cardiac
health monitoring, and mental health disorder diagnosis.
However, many barriers prevent practitioners from effectively

implementing FL in mHealth. The most common obstacles
include communication costs, statistical and system
heterogeneity, and privacy leakage. Policy makers and health
care providers need to consider these challenges when designing
and implementing FL systems. This will help them to provide
better services and support for health professionals, patients,
patients’ families, the public, and other relevant parties. Further
research is needed to address these common challenges and
improve the performance of FL systems.
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