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Abstract

Background: The prevalence of Parkinson disease (PD) is becoming an increasing concern owing to the aging population in
the United Kingdom. Wearable devices have the potential to improve the clinical care of patients with PD while reducing health
care costs. Consequently, exploring the features of these wearable devices is important to identify the limitations and further areas
of investigation of how wearable devices are currently used in clinical care in the United Kingdom.

Objective: In this scoping review, we aimed to explore the features of wearable devices used for PD in hospitals in the United
Kingdom.

Methods: A scoping review of the current research was undertaken and reported according to the PRISMA-ScR (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) guidelines. The literature search
was undertaken on June 6, 2022, and publications were obtained from MEDLINE or PubMed, Embase, and the Cochrane Library.
Eligible publications were initially screened by their titles and abstracts. Publications that passed the initial screening underwent
a full review. The study characteristics were extracted from the final publications, and the evidence was synthesized using a
narrative approach. Any queries were reviewed by the first and second authors.

Results: Of the 4543 publications identified, 39 (0.86%) publications underwent a full review, and 20 (0.44%) publications
were included in the scoping review. Most studies (11/20, 55%) were conducted at the Newcastle upon Tyne Hospitals NHS
Foundation Trust, with sample sizes ranging from 10 to 418. Most study participants were male individuals with a mean age
ranging from 57.7 to 78.0 years. The AX3 was the most popular device brand used, and it was commercially manufactured by
Axivity. Common wearable device types included body-worn sensors, inertial measurement units, and smartwatches that used
accelerometers and gyroscopes to measure the clinical features of PD. Most wearable device primary measures involved the
measured gait, bradykinesia, and dyskinesia. The most common wearable device placements were the lumbar region, head, and
wrist. Furthermore, 65% (13/20) of the studies used artificial intelligence or machine learning to support PD data analysis.

Conclusions: This study demonstrated that wearable devices could help provide a more detailed analysis of PD symptoms
during the assessment phase and personalize treatment. Using machine learning, wearable devices could differentiate PD from
other neurodegenerative diseases. The identified evidence gaps include the lack of analysis of wearable device cybersecurity and
data management. The lack of cost-effectiveness analysis and large-scale participation in studies resulted in uncertainty regarding
the feasibility of the widespread use of wearable devices. The uncertainty around the identified research gaps was further
exacerbated by the lack of medical regulation of wearable devices for PD, particularly in the United Kingdom where regulations
were changing due to the political landscape.

(J Med Internet Res 2023;25:e42950) doi: 10.2196/42950
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Introduction

Background
In the future, the proportion of the population aged >65 years
in the United Kingdom is projected to continue to increase [1,2],
and this population is estimated to increase to approximately
18 million by 2037 [3]. Half of the people in this population
are projected to have one or more chronic diseases [1,4]. The
older population in the United Kingdom is likely to develop
chronic neurodegenerative diseases, with Parkinson disease
(PD) being the second most common neurodegenerative disease
[5]. On the basis of the United Kingdom’s estimated PD
prevalence reported in 2017, this number was estimated to rise
by 18% (from 283,585 to 337,165) from 2018 to 2025 [6]. The
disease burden of PD can have various clinical and
socioeconomic consequences. PD care costs can increase with
disease severity and progression [7,8]. Costs are commonly
attributed to medication, support services, and hospital
admissions [7]. Furthermore, complex care needs can negatively
impact patient and carer well-being [9,10] due to reduced
autonomy and increased financial strain [11]. The reduced
quality of life can subsequently result in increased nursing home
admissions [12]. Therefore, further research is required to
develop solutions to address the emerging concerns and
challenges associated with PD.

UK secondary care is mainly defined as the care taken directly
in hospitals or on hospital grounds but can also include care
undertaken in the community care by specialist nurses [13]. In
contrast to UK primary care, which is commonly the first point
of contact for patients, UK secondary care requires patient
referral where the patient can then be reviewed and managed
by clinical teams with more specialist knowledge [13].
Furthermore, UK secondary care is also distinct from tertiary
care that provides further specialist knowledge, staff, and
facilities [13]. Tertiary care provides even higher levels of
specialized services to treat complex and rare diseases that are
often associated with fields such as neurosurgery, cardiac
surgery, and neonatology. Simple assessments of PD in primary
care often take place in general practice by evaluating changes
in motor function, mood, and quality of life using the Hoehn
and Yar scale or the Unified Parkinson’s Disease Rating Scale
(UPDRS) [14]. However, the Hoehn and Yar or UPDRS scores
are subjective and can vary depending on the assessor [15].
More complex and objective assessments can be performed in
hospitals. This involves attending specific assessment
laboratories using specialist equipment such as pressure-sensor
walkways when conducting the timed up-and-go (TUG)
assessments [16].

Advances in medical technology have improved clinical
assessments, patient outcomes, operational efficiency, and
accessibility to clinical services [17-20]. Positive attitudes
toward technology adoption in health care have been further
accelerated by the COVID-19 pandemic [21-23]. The rise of
wearable devices has been successful in the continuous
collection and monitoring of patients’vital signs [24]. Wearable
devices are electronic devices powered by microprocessors that
can be worn as accessories, embedded in clothing, or implanted

in a user’s body with the ability to send and receive data [25].
Health care wearable devices are often used to monitor medical
symptoms, empower patients to manage their care (eg, via
medication reminders), and allow clinical teams to analyze
wearable device data to improve the optimization and
management of treatment [24]. Consequently, evolving
technological developments and the need to adopt technology
in health care during the COVID-19 pandemic have led to
increasing interest in how wearable devices can be used in health
care. Wearable devices have shown the potential to improve
clinical outcomes, as the personalized information provided by
wearable devices has resulted in more timely action, informed
decision-making, and multidisciplinary collaboration [26-28].

The widespread integration of wearable devices may also further
benefit clinicians, patients, and carers. Significant costs related
to PD care are often attributed to medication, hospital
admissions, and support services [7]. PD can also decrease the
quality of life of the patient, family, and carers due to the loss
of independence and negative impact on well-being [9].
However, by improving care in areas such as early diagnosis,
more comprehensive and timely diagnosis can enable patients
to access appropriate services and increase the efficacy of care
[29]. Wearable devices have shown promise for improving and
innovating PD care. As technology improves, there has been
further research into how technology could be leveraged to
increase the efficiency of care delivery. Improving the efficiency
of care mainly involves using wearable device to enable remote
monitoring and create web-based clinics to increase access to
care in remote geographic locations, increase the timeliness of
obtaining appointments, and simplify appointment schedules,
which may reduce the strain on patients, carers, and families
[15,30]. Currently, wearable devices used in PD care involve
the use of accelerometers and gyroscopes that are commonly
used to measure PD motor symptoms such as bradykinesia and
tremor [31]. Furthermore, research has shown that there is
increasing interest in the use of wearable devices to improve
PD care and management in patients living with PD [32]. The
rising interest in PD wearable devices has led to the development
of commercial devices such as Parkinson’s KinetiGraph (PKG)
[33]. The main appeal of the wrist-worn device is its ability to
continuously collect data on tremors over time [33]. In PD
hospital care, Rovini et al [34] identified that wearable devices
were commonly used for early diagnosis, as well as body motion
or freezing of gait analysis during gait and TUG assessments.
Wearable devices have been shown to have success by using
biomarkers such as gait to distinguish between individuals
diagnosed with early signs of PD and healthy control group
[35-37]. In hospital laboratory settings, wearable devices have
also been used to monitor the severity of PD symptoms, and
each PD symptom fluctuates throughout the day [38]. Wearable
devices such as PKGs have also shown promise in improving
medication compliance and management of patients with PD
by using medication reminders [39]. For nonmotor PD
symptoms, wearable devices may have the potential to measure
moods to assist with psychotherapy; however, there has been
relatively little research into how this can be achieved. Currently,
wearable devices rely on monitoring the characteristics of motor
PD symptoms such as gait and number of turns, with little
understanding of how the data can be used to analyze the
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patients’ nonmotor PD symptoms [37,40,41]. The prospects of
using artificial intelligence (AI) and machine learning (ML)
technology with wearable devices have also been explored in
the United Kingdom. Del Din et al [42] were able to successfully
use algorithms to analyze gait characteristics including gait
asymmetry, gait variability, stride length, and step time.
Consequently, wearable devices when combined with algorithms
may provide more detailed and objective data for PD
assessments, as well as provide more flexibility regarding the
placements of PD wearable devices rather than limit them to
the L5 vertebra, which is considered the gold standard location
[42]. According to previous research, wearable devices have
the potential to enable clinicians to obtain more sensitive and
objective data that can improve PD assessment, as well as offer
an alternative to using more expensive specialist equipment and
laboratories [43].

However, the main challenges with wearable device use in
health care are due to the unique requirements and regulations
outlined by individual countries, and thus, the findings would
be less generalizable and unable to be suitably translated to
other countries. In the United Kingdom, institutions such as the
National Institute of Clinical Excellence (NICE), the Care
Quality Commission, and the Medicine and Healthcare products
Regulatory Agency often guide the development of regulations
and implementation of health care technology by evaluating
factors such as clinical effectiveness, cost, and safety [44-46].
By contrast, health care systems in other countries may adhere
to different technical regulations; for example, Europe adheres
to technical regulations such as the European General Data
Protection Regulation, and the United States follows guidance
from the Food and Drug Administration (FDA) and the National
Institute of Standard Technology [47-49].

Due to the increasing prevalence of PD in the United Kingdom,
there has also been increasing research into how wearable
devices can be used to improve PD care in hospital settings. In
this scoping review, we attempted to consolidate current research
and explore how wearable devices are used in PD care in UK
hospitals.

Research Gap and Aim
Despite increasing positive sentiments toward technology in
health care [21,22], improving clinical outcomes or practice in
various clinical settings by using wearable devices remains
inconclusive [50]. PD trials are often constrained by low
recruitment and short-term trials [51]. The long-term
performance of wearable devices also remains uncertain because
their performance can vary based on patient demographics [50].
Romano and Stafford [52] highlighted the challenges of
implementing key performance indicators to measure and
demonstrate the proposed benefits of technology in improving
clinical care and decision-making. Furthermore, analytic data
can remain unreliable, as the observed accuracy of data and
errors range between 9.3% and 23.5% [53].

Currently, there is no clear documentation of the types of
wearable devices used in PD care and the clinical settings in
which wearable devices are used. Furthermore, IT security
studies have highlighted users’ lack of awareness and
self-responsibility regarding wearable device information

security [54,55]. However, current clinical studies have not fully
addressed wearable device security or data integrity concerns.
By aggregating current research via a scoping review,
researchers can review current applications and limitations to
understand the current wearable devices used in PD care. Due
to the scope of this scoping review, we aimed to focus on
exploring the features of wearable devices used in PD treatment
and care within UK secondary care settings.

Methods

Protocol and Registration
The population, patient, or participants, interventions,
comparators, and outcomes (PICO) framework [56] and the
PRISMA-ScR (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses extension for Scoping Reviews)
guidelines were followed to support the design and reporting
of the scoping review (Multimedia Appendix 1). The protocol
of the scoping review is shown in Multimedia Appendix 2.

Study Eligibility Criteria
The eligibility criteria were full conference papers,
peer-reviewed articles, study protocols, theses, and dissertations
that focused on using wearable devices for patients with PD in
UK hospital settings. Wearable devices were categorized as
electronic devices, sensors, or technologies that can be worn as
accessories, embedded in clothing, or implanted in users’ body,
with the ability to send and receive data. Smart tattoos and
traditional hearing aids were excluded because of their inability
to receive and transmit information [57]. UK hospital care was
defined as the care undertaken directly in hospitals and overseen
by hospital clinical teams [13]. This scoping review focused on
wearable device research in UK hospital settings because current
gold standard PD assessments often take place in designated
hospital research laboratories using specialist equipment, with
wearable devices as an alternative to expensive specialist PD
assessment laboratories [42,43]. Hospital settings included
inpatient wards, emergency departments, outpatient clinics, and
test laboratory environments situated on hospital grounds. This
review excluded secondary services and primary care that were
undertaken in the community setting, such as community
specialist nursing [13]. Primary care was excluded because
clinicians relied only on simple PD assessments such as the
UPDRS and lacked adequate facilities wherein patients were
commonly referred to specialist hospital PD assessment
laboratories to conduct more comprehensive PD assessments
[14-16]. Research conducted in tertiary care [13] relating to
specialized procedures that required referrals to designated
National Health Service (NHS) centers of excellence was also
excluded. This scoping review included studies published in
English within the past 5 years (2017 to 2022) and excluded
reviews, conference abstracts, reports, and editorials. These
sources were often inadequately recorded and contained
unsuitable information to enable sufficient data extraction of
the study characteristics of interest, or the studies were not
published in full. Previous research supported that conference
abstracts contained insufficient information in areas such as the
study details needed for comprehensive data extraction [58]. It
was decided to include only publications published within the
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past 5 years as technological innovations continue to improve.
Technological fields such as the semiconductor industry have
continued to show how quickly technological innovation can
occur [59]. Material science innovations have also led to
wearable devices becoming more accessible and usable by
reducing costs, improving sensor detection, and miniaturizing
wearable devices, thus making them less obtrusive [60]. The
COVID-19 pandemic has also highlighted to medical staff and

the general public how technology such as wearable devices
can improve health care. This has led to further investigation
into wearable device use within health care settings during the
pandemic [61,62], as well as how wearable devices can continue
to be used in areas such as PD treatment developments [63].
No restrictions were applied to the age, gender, and ethnicity
of the participants; study design; and measured outcomes. Table
1 presents the inclusion and exclusion criteria for the study.

Table 1. Population, interventions, comparators, and outcomes criteria [56].

Exclusion criteriaInclusion criteria

Population (Parkinson
disease)

•• Patients with other medical conditionsPatients with a confirmed Parkinson disease diagnosis

Intervention (wearable
devices)

•• Nonwearable devices such as portable devices
including mobile phones and tablets

Use of wearable devices in Parkinson disease care. Wearable de-
vice applications include the tracking and monitoring of informa-
tion to facilitate improving Parkinson disease clinical practice,
assessment, and diagnosis

• Wearable devices were categorized as electronic devices, sensors,
or technology that can be worn as accessories, embedded in
clothing, or implanted in users’ body with the ability to send and
receive data

Outcome •• No restrictions on the outcome appliedNo restrictions applied

Comparator •• No restrictions on comparators appliedNo comparator was required. However, when comparators such
as controls were identified, this was labeled appropriately. Controls
included healthy age-matched controls and baseline readings

Setting (hospitals in
the United Kingdom)

•• Parkinson care or research taken in community
settings such as general practice, community
care homes, or patients’ home

Parkinson disease research or care within hospitals or in specialized
laboratories located at or within hospital grounds throughout the
United Kingdom

• Care or research taking place outside of the
United Kingdom

Publication type •• Reviews, conference abstracts, reports, and edi-
torials

Full conference papers, peer-reviewed articles, study protocols,
theses, and dissertations

Publication language •• Non-English textsEnglish only

Publication year •• Texts published outside of 2017-20222017-2022

Information Sources
On June 6, 2022, the first author searched 3 main databases:
PubMed or MEDLINE, Embase (via Ovid), and the Cochrane
Library. The PubMed or MEDLINE database captured
peer-reviewed academic journals related to the health care field,
whereas Embase contained publications related to medical
devices, as well as biomedical and pharmacological research.
The Cochrane Library was also searched to capture medical
clinical trials and Cochrane reviews. Inclusion of the selected
databases increased the probability that the literature was
diverse, representative, and contained a wide variety of study
designs and research topics. Due to time and staffing limitations,
as well as the number of search results, forward and backward
reference list checking was not conducted. Databases were
restricted to established peer-reviewed databases to ensure a
minimum standard of quality and credibility of the publications
included [64,65]. We decided to follow the recommendations
of Cochrane to focus on established peer-reviewed databases
[66].

Search
The search query was developed by the first author and reviewed
by the second author, who has extensive experience in
systematic reviews. Search terms were developed from the
identified key research concepts: wearable devices, PD, and
UK secondary care settings. The title and abstract search terms
were used to identify relevant publications. Medical Subject
Headings for PD or PD symptoms (eg, gait or bradykinesia)
were used to capture relevant publications. Truncation was
considered to identify alternative word variations of the key
research concepts such as Parkinson’s disease and parkinsonism,
which may be included in different publications. The search
strategy used for the scoping review is available in Multimedia
Appendix 3.

Selection of Sources of Evidence
The eligible studies were identified and selected by the first
author. All retrieved studies were exported to Zotero
(Corporation for Digital Scholarship) where duplicates were
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identified using the duplicate item function and removed. The
publications were then screened by the title and abstract by the
first author. Publications that passed the initial screening were
then read in full by the first author. Any doubts regarding the
eligibility of the identified publications were resolved following
a discussion with the second author.

Data Extraction
The data extraction form was developed based on
recommendations provided by the second author. Data were
extracted from the included publications by the first author. The
extracted data included information about the study metadata
(eg, year of publication, study location, hospital, publication
type, sample size, gender ratio of participants, age, PD duration,
and PD severity, as well as if any control groups were used);
features of wearable devices used (eg, device brand,
manufacturer, commercial or noncommercial device, approval
of the wearable devices for clinical use by regulators, wearable
device aim, wearable device sensor, type of device, wearable
device location, the biosignal measured, connectivity, the host
device, sensing approach, and length of time the wearable device
was used in the study); the type of AI and ML technology used
(eg, least absolute shrinkage and selection operator, support
vector machine, and random forest); and the clinical aim of AI
and ML technology used. The extracted data were then checked
by the second author, and any discrepancies were resolved by
discussion. A list of the extracted features is available in
Multimedia Appendix 4.

Synthesis of Results
Narrative methods were used to summarize and synthesize the
collected data, which followed the constructivist approach to
analyze the studies and identify research gaps [67,68].
Constructivism is a framework to critically analyze research
findings, highlight current knowledge gaps, and establish study
limitations [67]. Furthermore, by using a constructivist approach
in narrative synthesis, existing research can be developed by
discussing the implications of the current findings and concerns
[68]. A combination of text, tables, and graphs was used to
describe the study characteristics of the final included
publications. Graphs were used to present key data such as the
date of publication, type of study design and outcome of each
publication; the application of the wearable device used in the
study; and the type of wearable device used.

Results

Search Results
A total of 4574 publications were identified, and with 31
(0.68%) duplicates removed, 4543 (99.32%) unique publications
were obtained (Figure 1). Of these, 4504 (99.14%) publications
were excluded during the initial screening of the titles and
abstracts for the reasons reported in Figure 1. Of the remaining
39 publications, 19 (49%) were excluded after the full-text
review, and a total of 20 (51%) eligible publications were
included in this review.

Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flowchart outlining the initial screening process.
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General Description of Included Studies
Table 2 presents the general characteristics of the included
publications. The included publications were published between
2016 and 2021. Most of the studies were published in 2019
(6/20, 30%) and 2020 (6/20, 30%). All included publications
(20/20, 100%) were journal articles. Studies were conducted in
Newcastle (11/20, 55%), London (3/20, 15%), Leeds (2/20,
10%), and Oxford (2/20, 10%); the remaining studies were
conducted in Plymouth, Sheffield, and Southampton. All the
studies were conducted in secondary hospital settings or research
facilities on hospital grounds, with most studies (11/20, 55%)
conducted at the Newcastle upon Tyne Hospitals NHS
Foundation Trust. Huo et al [69] and Payne et al [70] conducted
trials across multiple sites within the United Kingdom,
accounting for more than 20 locations. The number of
participants was >100 in 55% (11/20) of the studies, between
51 and 100 in 15% (3/20) of the studies, and <50 in 30% (6/20)
of the studies. The average sample size was 108 (SD ±91.1).

Among the studies that documented the ratio of male to female
participants (16/20, 80%), the percentage of males ranged from
21% to 100%, with an average of 58.1%. In the studies that
documented the mean age (16/20, 80%), most participants were
older individuals, with 75% (12/16) of studies recording a mean
age of >65 years. The PD duration of patients with PD after the
initial confirmed diagnosis ranged widely from approximately
4 months to 24 years. On the basis of the UPDRS categories,
65% (13/20) of the studies reported patients with moderate to
severe PD [71], whereas 40% (8/20) of the studies included
patients with moderate PD, and 35% (7/20) of the studies
included patients who were reported to have severe PD. No
correlation or observation could be made if wearable device use
increased with increasing PD severity. In both the studies
conducted by Mc Ardle et al [72,73], study participants were
ineligible or discontinued the trial partway through; therefore,
a lower total number of male and female study participants was
recorded. The mean age varied between 57.7 and 78.0 years,
with a total combined average age of 68.2 years.
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Table 2. General study characteristics of included publications.

ControlParkinson
disease
severity

Parkinson dis-
ease duration
(years), mean
(SD)

Age
(years),
mean (SD)

Male:female
ratio

Sample
size, n

Publication
type

HospitalStudy locationStudy, year

Healthy
age-

Not reported≤0.33 (SD not
reported)

70.4 (SD
8.4)

82:52134Journal arti-
cle

NewcastleBuckley et
al [74],
2019

• Newcastle up-
on Tyne Hos-

pitals NHSa matched
controlsFoundation

Trust

Healthy
age-

Mild to mod-
erate

Not reported67.8 (SD
9.0)

10:010Journal arti-
cle

NewcastleCoates et al
[75], 2020

• Newcastle up-
on Tyne Hos-
pitals NHS matched

controlsFoundation
Trust

Healthy
age-

Moderate11.4 (SD not re-
ported)

66.4 (SD
not report-
ed)

42:3880Journal arti-
cle

OxfordDe Vos et
al [76],
2020

• John Rad-
cliffe Hospi-
tal matched

controls

Not re-
ported

Not reported6 (SD not report-
ed)

70 (SD not
reported)

95:71166Journal arti-
cle

PlymouthDominey
et al [77],
2020

• Plymouth
Hospital

Healthy
age-

MildNot reported67.4 (SD
8.5)

31:4879Journal arti-
cle

NewcastleDunne-
Willows et
al [78],
2019

• Newcastle up-
on Tyne Hos-
pitals NHS
Foundation
Trust

matched
controls

Healthy
nonage-

Mild to se-
vere

11.1 (SD 5.5)57.7 (SD
10.4)

20:1333Journal arti-
cle

OxfordHuo et al
[69], 2020

• Charing
Cross Hospi-
tal matched

controls• John Rad-
cliffe Hospi-
tal

Healthy
age-

Not reportedNot reportedNot report-
ed

Not reported177Journal arti-
cle

LeedsLacy et al
[79], 2018

• Leeds Gener-
al Infirmary

matched
controls

Not re-
ported

Moderate9.0 (SD 3.7)68.0 (SD
8.1)

15:823Journal arti-
cle

LeedsLones et al
[80], 2017

• Leeds Gener-
al Infirmary

Healthy
age-

SevereNot reported78.0 (SD
6.0)

50:2480Journal arti-
cle

NewcastleMc Ardle
et al [72],
2019

• Newcastle up-
on Tyne Hos-
pitals NHS
Foundation

matched
controls

Trust

Healthy
age-

SevereNot reported76.5 (SD
6.8)

59:38125Journal arti-
cle

NewcastleMc Ardle
et al [73],
2021

• Newcastle up-
on Tyne Hos-
pitals NHS
Foundation

matched
controls

Trust

Healthy
age-

ModerateNot reported70.9 (SD
7.5)

66:43109Journal arti-
cle

NewcastlePantall et
al [81],
2018

• Newcastle up-
on Tyne Hos-
pitals NHS
Foundation

matched
controls

Trust
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ControlParkinson
disease
severity

Parkinson dis-
ease duration
(years), mean
(SD)

Age
(years),
mean (SD)

Male:female
ratio

Sample
size, n

Publication
type

HospitalStudy locationStudy, year

Base-
line
reading

Moderate to
severe

0.45 (SD 0.3)65.9 (SD
8.2)

23:1235Journal arti-
cle

• Newcastle up-
on Tyne Hos-
pitals NHS
Foundation
Trust

NewcastlePantall et
al [82],
2018

Placebo
control

Mild≤3.0 (SD not re-
ported)

Not report-
ed

Not reported30Journal arti-
cle

• Sheffield
Teaching
Hospitals
NHS Trust

• University
College Lon-
don Hospitals
NHS Founda-
tion Trust

Sheffield

London

Payne et al
[70], 2020

Healthy
age-
matched
controls

Severe23.8 (SD 4.2)62.9 (SD
8.4)

108:88196Journal arti-
cle

• Newcastle up-
on Tyne Hos-
pitals NHS
Foundation
Trust

NewcastleRehman et
al [83],
2019

Healthy
age-
matched
controls

Severe24.1 (SD 4.8)69.7 (SD
8.9)

87:55142Journal arti-
cle

• Newcastle up-
on Tyne Hos-
pitals NHS
Foundation
Trust

NewcastleRehman et
al [84],
2019

Healthy
age-
matched
controls

Severe3.1 (SD 0.2)70.1 (SD
8.2)

58:3593Journal arti-
cle

• Newcastle up-
on Tyne Hos-
pitals NHS
Foundation
Trust

NewcastleRehman et
al [85],
2020

Healthy
age-
matched
controls

Not reportedNot reported74.0 (SD
not report-
ed)

5:1924Journal arti-
cle

• Southampton
General Hos-
pital

SouthamptonStack et al
[86], 2018

Healthy
age-
matched
controls

Not reportedNot reportedNot report-
ed

Not reported100Journal arti-
cle

• Newcastle up-
on Tyne Hos-
pitals NHS
Foundation
Trust

NewcastleStuart et al
[87], 2016

Base-
line
reading

Moderate7.5 (SD 5.5)62.8 (SD
9.4)

72:36108Journal arti-
cle

• King’s Col-
lege London
Hospital

Londonvan Wame-
len et al
[88], 2019

Base-
line
reading

Mild to mod-
erate

4.2 (SD 11.67)62.7 (SD
8.5)

273:145418Journal arti-
cle

• King’s Col-
lege London
Hospital

Londonvan Wame-
len et al
[89], 2021

aNHS: National Health Service.

Healthy age-matched controls were used by 70% (14/20) of the
studies. Wearable devices identified differences in motor
symptom characteristics in patients with PD compared with
healthy age-matched controls and patients with other
neurodegenerative diseases such as progressive supranuclear
palsy (PSP). This allowed clinicians to provide more detailed
PD assessments for their patients compared with controls and

potentially develop more personalized care or improve the
timeliness of early diagnosis in the future. Wearable devices
were able to identify significant differences in gait between
patients with PD and healthy controls by characteristics such
as swing time, step length, and step asymmetry [76,78,85]. In
addition, wearable devices could also be used to identify other
biomarkers that could aid in PD assessment. Coates et al [75]

J Med Internet Res 2023 | vol. 25 | e42950 | p. 8https://www.jmir.org/2023/1/e42950
(page number not for citation purposes)

Tam et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


identified that patients with PD showed statistically significantly
higher levels of sample entropy and found that sample entropy
was significantly correlated with levodopa equivalent daily dose
but not with UPDRS scores. Buckley et al [74] determined that
only particular spatiotemporal features were able to significantly
discriminate between patients with PD and healthy controls;
for example, step irregularity was the best discriminator when
using pelvis acceleration, and pace characteristics were able to
further help classify gait in patients with PD compared with
healthy controls using upper body and pelvis acceleration. Using
wearable devices to investigate nonmotor symptoms was more
challenging. Pantall et al [81] were only able to identify a weak
negative correlation between sample entropy and cognitive
characteristics; however, the wearable device could not be used
to provide more information and would require further research
using neuroimaging to confirm any correlation. The main benefit
of using wearable devices was the ability to receive medication
reminders to improve medication management, and the patients
were happy to continue using the device due to its convenience
[77]. The consensus remained divided on whether wearable
devices could provide any benefit by decreasing the number of
appointment attendances. Some patients were satisfied that they
did not have to travel to clinics as often, but others were neutral
about this issue [77]. Current data only used patient satisfaction
surveys, and no statistical analyses were conducted to assess
whether wearable devices reduced the need for clinical visits.

Features of Wearable Devices
Table 3 presents the general features of the wearable devices
used in each study. Most studies (18/20, 90%) used a single
device brand, whereas the remaining studies (2/20, 10%) used
≥2 device brands. The AX3 accelerometer was the most popular
device brand used (9/20, 45%). Consequently, Axivity was the
most common wearable device manufacturer. The AX3 and
PKG wearable devices also contained light and temperature
sensors. The light sensor can be used to measure different
frequencies of light, and the temperature sensor can measure
the temperature of the environment [90]. Most studies (17/20,
85%) used commercially available devices manufactured by
various technology companies, and only 15% (3/20) of the
studies created prototype devices. Wearable devices were used
to monitor PD symptoms (18/20, 90%) or potential biomarkers

(2/20, 10%). Accelerometers (19/20, 95%) were the most
commonly used sensors in wearable devices, followed by
gyroscopes (7/20, 35%) to monitor PD symptoms and
biomarkers.

In 55% (11/20) of the studies, the manufacturer did not report
whether the devices were approved by any regulatory body.
Most notably, this was related to the use of the AX3 that is
manufactured by Axivity. In the other 9 (N=20, 45%) studies
in which the regulatory approval was reported, the wearable
device was approved by the FDA, Conformité Européenne (CE)
medical mark approval, or both (Table 3).

Table 4 highlights the technical features of wearable devices
and shows that most studies used smart bands (13/20, 65%),
followed by inertial measurement units (IMUs; 4/20, 20%) and
smartwatches (3/20, 15%). All the publications that used
smartwatches used the PKG, which contains an accelerometer
built into the smartwatch [88]. Only Huo et al [69] developed
a bespoke wearable device that included monitoring sensors;
inertial measurement devices (containing an accelerometer,
gyroscope, and magnetometer); and force sensors to capture
muscle stiffness and activity in patients with PD. In addition,
Huo et al [69] used mechanomyography sensors in the bespoke
device, which are distinct from the electromagnetic sensors used
by Lacy et al [79]. Electromagnetic sensors were used to detect
electrical activity in response to nerve stimulation of a muscle
fiber, whereas mechanomyography sensors were used to detect
muscular vibrations that occurred during muscle contraction
[91].

The most common wearable device placement was on the
lumbar region (11/20, 55%), followed by the head (5/20, 25%),
and wrist (5/20, 25%). Some studies (9/20, 45%) used wearable
devices to monitor and measure 1 primary biosignal, and 55%
(11/20) of the studies used wearable devices to monitor multiple
characteristics. All the studies (20/20, 100%) investigated PD
motor symptoms. Table 4 shows that the primary biosignal
measured by wearable devices was gait (10/20, 50%), followed
by bradykinesia (4/20, 20%) and dyskinesia (3/20, 15%).
Primary nonmotor symptom measures (1/20, 5%) were relatively
unexplored and were monitored alongside motor symptoms
(Table 4).

J Med Internet Res 2023 | vol. 25 | e42950 | p. 9https://www.jmir.org/2023/1/e42950
(page number not for citation purposes)

Tam et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 3. General features of wearable devices.

Length of time wearable
device was used

Aim of the wearable
device use

Regulatory approval
for clinical use

Wearable device
status

ManufacturerDevice brandStudy, year

Single sessionCommercialBuckley et al
[74], 2019

•••• Monitoring

PDd biomark-
FDAbAPDMaOpal

• CEc medical
ersmark

Single sessionCommercialCoates et al
[75], 2020

•••• Monitoring PD
biomarkers

Not reportedAxivityAX3

Single sessionCommercialDe Vos et al
[76], 2020

•••• Monitoring PD
symptoms

FDAAPDMOpal

Multiple sessions over
time

CommercialDominey et al
[77], 2020

•••• Monitoring PD
symptoms

FDAGlobal Ki-
netics

Parkinson’s
KinetiGraph • CE medical

mark • Medication re-
minder alerts

Single sessionCommercialDunne-Willows
et al [78], 2019

•••• Monitoring PD
symptoms

Not reportedAxivityAX3

Single sessionNoncommercialHuo et al [69],
2020

•••• Monitoring PD
symptoms

Not reportedBespokeBespoke

Single sessionNoncommercialLacy et al [79],
2018

•••• Monitoring PD
symptoms

CE medical
mark

ClearSkyPD-Monitor

Single sessionCommercialLones et al [80],
2017

•••• Monitoring PD
symptoms

CE medical
mark

ClearSkyLIDe-Monitor

Single sessionCommercialMc Ardle et al
[72], 2020

•••• Monitoring PD
symptoms

Not reportedAxivityAX3

Single sessionCommercialMc Ardle et al
[73], 2021

•••• Monitoring PD
symptoms

Not reportedAxivityAX3

Multiple sessions over
time

CommercialPantall et al
[81], 2018

•••• Monitoring PD
biomarkers

Not reportedAxivityAX3

Multiple sessions over
time

CommercialPantall et al
[82], 2018

•••• Monitoring PD
symptoms

Not reportedAxivityAX3

Multiple sessions over
time

CommercialPayne et al [70],
2020

•••• Monitoring PD
symptoms

FDAAPDMOpal
• ••Dynaport

Movemonitor
CE medical
mark

McRoberts

Single sessionCommercialRehman et al
[83], 2019

•••• Monitoring PD
symptoms

Not reportedAxivityAX3

Single sessionCommercialRehman et al
[84], 2020

•••• Monitoring PD
symptoms

Not reportedAxivityAX3

Single sessionCommercialRehman et al
[85], 2020

•••• Monitoring PD
symptoms

CE medical
mark

APDMOpal

Single sessionNoncommercialStack et al [86],
2018

•••• Monitoring PD
symptoms

Not reportedNot report-
ed

Not reported

Multiple sessions over
time

CommercialStuart et al [87],
2015

•••• Monitoring PD
symptoms

Not reportedAxivityAX3
• •Dikablis Ergoneers

Multiple sessions over
time

Commercialvan Wamelen et
al [88], 2019

•••• Monitoring PD
symptoms

FDAGlobal Ki-
netics

Parkinson’s
KinetiGraph • CE medical

mark
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Length of time wearable
device was used

Aim of the wearable
device use

Regulatory approval
for clinical use

Wearable device
status

ManufacturerDevice brandStudy, year

Multiple sessions over
time

• Monitoring PD
symptoms

• FDA
• CE medical

mark

Commercial• Global Ki-
netics

• Parkinson’s
KinetiGraph

van Wamelen et
al [89], 2021

aAPDM: Ambulatory Parkinson’s Disease Monitoring.
bFDA: Food and Drug Administration.
cCE: Conformité Européenne.
dPD: Parkinson disease.
eLID: levodopa-induced dyskinesia.

The studies attempted to identify quantifiable biomarkers that
could be measured with wearable devices to provide more
information about a patient’s PD state, as well as to determine
how biomarkers and symptoms contributed to the overall patient
condition (Table 4). Many biomarkers and symptoms were
related to the measurement of motor symptoms and physical
and clinical features. Common biomarkers and symptoms
included bradykinesia; dyskinesia; gait characteristics (eg, step
asymmetry, stride length, step velocity, and swing time); tremor;
and hand rigidity. Wearable devices with built-in accelerometers
measured fluctuations in movement and acceleration over time
[72,78,83-85]. Wearable devices such as the PKG also contained
built-in accelerometers to measure biomarkers such as
bradykinesia and dyskinesia, and the algorithms have been
validated against established frameworks such as the UPDRS
[69,92]. Multiple studies found that wearable devices could be
used to measure and analyze gait characteristics to successfully
discriminate patients with PD from healthy controls and other
neurodegenerative diseases [72,78,83-85]. Although current
studies have shown that gait characteristic data could be used
as potential biomarkers to support PD assessment, biomarkers
such as gait characteristic analysis have yet to be
comprehensively validated due to the lack of formal criteria,
and the studies instead relied on previous research results or
potentially subjective criteria [78,83,93]. In contrast, thresholds
determining when patients require clinical intervention relied
on clinicians interpreting PKG data and determined when
medication doses were becoming ineffective and when the dose
required adjustments [77]. There was less focus on using
wearable devices to measure and interpret nonmotor symptoms
such as mood and cognition. Wearable devices could only be
used to identify if nonmotor symptoms were correlated with
other clinical features but could not further the clinical context
or the significance of these readings [77]. Furthermore, the
current identified studies did not determine how cognitive
function influenced motor symptoms such as gait [86].

Table 4 shows that most studies used USB cables (9/20, 45%)
and Wi-Fi connections (9/20, 45%) to connect the wearable
device to the host device. Stuart et al [87] used an AX3 and a
Dikablis eye tracker, which can be connected via a USB cable
and Wi-Fi connection, accounting for more than 20 data points.
The overwhelming majority of the collected wearable device
information was stored on data servers (18/20, 90%). All the

studies (20/20, 100%) used an opportunistic sensing approach
as presented in Table 3. The wearable device was used for a
single session at the hospital in 65% (13/20) of the studies. In
35% (7/20) of the studies, the study duration ranged from 6
days to 54 months and included multiple separate sessions using
the wearable device at the hospital assessment center. This was
insufficient to determine if the wearable devices were medically
prescribed to the study participants, which is compounded by
the uncertainty around the official regulation, distribution, and
use of wearable devices for patients with PD in the United
Kingdom [94].

In this review, AI and ML algorithms were categorized into
classification models, regression models, neural network–based
models, and optimization algorithms (Table 4). Algorithms that
were documented as being used in the study but not specified
by the study authors were labeled as a black box. Categorization
and definitions were created according to the suggestion of the
corresponding author, AA-a. The types of AI and ML algorithms
used in the included studies are presented in Table 4. Of the
studies that used AI and ML (17/20, 85%), most (13/17, 76%)
used 1 algorithm or model. Lacy et al [79] and Rehman et al
[83] compared 2 algorithms or models during tests, whereas
Huo et al [69] used multiple classification models to develop a
bespoke classification system and improve upon existing
models. The black box and area under the curve (AUC)
algorithms (4/17, 24%) were the most reported AI and ML
technologies used, followed by the random forest model (2/17,
12%) and the partial least square discriminant analysis model
(2/17, 12%). The applications of AI and ML mainly revolved
around PD classification (9/17, 53%). PD classification primarily
involved algorithms that were able to distinguish patients with
PD from other patients with neurodegenerative diseases such
as Alzheimer disease (AD) or healthy controls, in addition to
using algorithms to identify and analyze clinical features to
improve PD classification. In 35% (6/17) of studies, algorithms
were used to determine if the measured biosignal correlated
with PD clinical features such as PD motor symptoms or
medication dose, and 29% (5/17) of the studies specifically
analyzed gait and used algorithms to provide greater detail and
information about gait characteristics such as step velocity and
turn characteristics. Only Huo et al [69] used algorithms to rank
PD symptoms and determine how each symptom contributed
to the overall PD severity score.
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Table 4. Technical characteristics of wearable devices.

Clinical aim of AI
and ML technology

AIa and MLb

technology used

Sensing
approach

Host
device

ConnectivityMeasured
biosignal

Placement of
wearable device

Wearable
device type

SensorStudy, year

Determine the corre-
lation of clinical fea-

Receiver operat-
ing characteristic

Oppor-
tunistic

Data
server

Wi-FiUpper
body accel-
eration and

Head, lumbar
region, and
pelvis

Inertial
measure-
ment unit

Accelerom-
eter, gyro-
scope, and
magnetome-
ter

Buckley et
al [74],
2019 ture and gait analy-

sis
and area under
the curvespatiotem-

poral char-
acteristics

Determine the corre-
lation of clinical fea-
tures

IAAFTcOppor-
tunistic

Data
server

USB cableSample en-
tropy and
gait

Lumbar regionSmart bandAccelerom-
eter, light
sensor, and
tempera-
ture sensor

Coates et al
[75], 2020

Parkinson disease
classification

LASSOd and ran-
dom forest

Oppor-
tunistic

Data
server

Wi-FiGait and
postural
sway

Lumbar region,
wrist, and feet

Inertial
measure-
ment unit

Accelerom-
eter, gyro-
scope, and
magnetome-
ter

De Vos et
al [76],
2020

—eNoOppor-
tunistic

Data
server

Wi-FiBradykine-
sia, dyski-
nesia, and

WristSmart-
watch

Accelerom-
eter

Dominey
et al [77],
2020

sleep distur-
bance

Gait analysisPhase algorithmOppor-
tunistic

Data
server

USB cableGaitLumbar regionSmart bandAccelerom-
eter, light
sensor, and

Dunne-
Willows et
al [78],
2019 tempera-

ture sensor

Ranking Parkinson
disease symptoms

1-NNf, AdaBoost
classifier, and

Oppor-
tunistic

Data
server

BluetoothRigidity,
tremor, and
bradykine-
sia

ArmSmart bandForce sen-
sor, ac-
celerome-
ter, gyro-
scope,

Huo et al
[69], 2020

MLPg neural net-
works classifier

magnetome-
ter, and
mechanomyo-
graphy sen-
sor

Parkinson disease
classification

Echo state net-
work

Oppor-
tunistic

Data
server

Sensor cableFinger tap-
ping

FingerSmart fin-
ger

Electromag-
netic sen-
sor

Lacy et al
[79], 2018

Parkinson disease
classification

IRCGPhOppor-
tunistic

Mo-
bile
phone

Wi-FiDyskinesiaHead, chest,
arms, and legs

Smart bandAccelerom-
eter, gyro-
scope

Lones et al
[80], 2017

Parkinson disease
classification

Black boxOppor-
tunistic

Data
server

USB cableGaitLumbar regionSmart bandAccelerom-
eter, light
sensor, and

Mc Ardle
et al [72],
2020

tempera-
ture sensor

Parkinson disease
classification

Area under the
curve

Oppor-
tunistic

Data
server

USB cableGait and
balance im-
pairment

Lumbar regionSmart bandAccelerom-
eter, light
sensor, and
tempera-
ture sensor

Mc Ardle
et al [73],
2021

Parkinson disease
classification

Area under the
curve

Oppor-
tunistic

Data
server

USB cableSample en-
tropy

Lumbar regionSmart bandAccelerom-
eter, light
sensor, and

Pantall et
al [81],
2018

tempera-
ture sensor
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Clinical aim of AI
and ML technology

AIa and MLb

technology used

Sensing
approach

Host
device

ConnectivityMeasured
biosignal

Placement of
wearable device

Wearable
device type

SensorStudy, year

Determine the corre-
lation of clinical fea-
tures

Black boxOppor-
tunistic

Data
server

USB cableBalance
impairment
and posture

UnreportedSmart bandAccelerom-
eter, light
sensor, and
tempera-
ture sensor

Pantall et
al [82],
2018

Determine the corre-
lation of clinical fea-
tures

Area under the
curve

Oppor-
tunistic

Data
server

Wi-FiMotor im-
pairment
and gait

Head, upper
back, lumbar re-
gion, and ankles

Inertial
measure-
ment unit
and Smart
band

Accelerom-
eter, gyro-
scope, and
magnetome-
ter

Payne et al
[70], 2020

Gait analysis and
Parkinson disease
classification

Support vector
machine and ran-
dom forest

Oppor-
tunistic

Data
server

USB cableGaitLumbar regionSmart bandAccelerom-
eter, light
sensor, and
tempera-
ture sensor

Rehman et
al [83],
2019

Gait analysis and
Parkinson disease
classification

PLS-DAiOppor-
tunistic

Data
server

USB cableGaitLumbar regionSmart bandAccelerom-
eter, light
sensor,
tempera-
ture sensor

Rehman et
al [84],
2020

Gait analysis Parkin-
son disease classifi-
cation

PLS-DAOppor-
tunistic

Data
server

Wi-FiGaitHead, neck,
lumbar region,
and ankles

Inertial
measure-
ment unit

Accelerom-
eter, gyro-
scope, and
magnetome-
ter

Rehman et
al [85],
2020

—NoOppor-
tunistic

Unre-
ported

UnreportedInstabilityWristSmart bandAccelerom-
eter and gy-
roscope

Stack et al
[86], 2018

—NoOppor-
tunistic

Data
server

USB cable
and Wi-Fi

Eye move-
ments and
gait

HeadSmart band
and Smart
glasses

Accelerom-
eter, light
sensor,
tempera-
ture sensor,
and eye
tracker

Stuart et al
[87], 2015

Determine the corre-
lation of clinical fea-
tures

Black boxOppor-
tunistic

Data
server

Wi-FiBradykine-
sia, dyski-
nesia, and
levodopa
equivalent
dose

WristSmart-
watch

Accelerom-
eter

van Wame-
len et al
[88], 2019

Determine the corre-
lation of clinical fea-
tures

Black boxOppor-
tunistic

Data
server

Wi-FiRigidity,
tremor, and
bradykine-
sia

WristSmart-
watch

Accelerom-
eter

van Wame-
len et al
[89], 2021

aAI: artificial intelligence.
bML: machine learning.
cIAAFT: iterated amplitude–adjusted Fourier transform.
dLASSO: least absolute shrinkage and selection operator.
eNot available.
fNN: nearest neighbor.
gMLP: multilayer perceptron.
hIRCGP: implicit context representation Cartesian genetic programming.
iPLS-DA: partial least square discriminant analysis.
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Discussion

Principal Findings
From the studies included in the scoping review, it was found
that the main interest of wearable devices was the ability to
provide more objective quantitative data compared with more
subjective assessments such as the UPDRS in PD assessment
[15,69]. The level and variety of data collected from wearable
devices also provided more detailed information during the
early diagnosis and long-term assessment of patients with PD.
Furthermore, wearable devices provided continuous information
that was believed to be more representative of the patient’s
experience and enable more personalized care based on the data
collected [70,77,83-85]. The overwhelming majority of the
studies (19/20, 95%) used wearable devices that contained
accelerometers and were placed at the lumbar region (11/19,
58%). This could be because many of the included studies used
wearable devices to examine PD motor symptoms such as gait,
bradykinesia, and dyskinesia [69,70,72,73,75-78,80,83-85,
87-89]. Accelerometers were found to be commonly used to
measure physical activity, as evidenced by the systematic review
conducted by Chan et al [95]. Of the studies that used
accelerometers, 42% (8/19) used the AX3 manufactured by
Axivity. The systematic review by Godhino et al [92]
highlighted that the AX3 could reliably and accurately measure
3D accelerations from the lumbar region and could be used to
support measurement in interventional assessments, as well as
disease classification and grading. It was also found that users
found the AX3 more practical to wear for longer periods
compared with other wearable devices, and the positive user
experience may have improved participant compliance [96].
These characteristics could explain why the Axivity AX3 was
commonly used in the included publications, and it provided
reliable and accurate measurements when conducting physical
assessments while being comfortable and practical for use in a
hospital setting. All the publications used an opportunistic
sensing approach. This could be explained by the fact that
opportunistic sensing can efficiently collect data about users’
activities and behaviors while minimizing user bias that may
impact readings [97]. An opportunistic sensing approach is
commonly used with body-worn sensors due to its ability to
quantify physical characteristics while simultaneously providing
different descriptive parameters such as data accuracy and sensor
location [97]. As the included studies often monitored PD
symptoms using body-worn sensors, an opportunistic sensing
approach using accelerometers may be the most viable option
to easily measure the variety of physical characteristics and user
behaviors during the assessment period [69,72,73,75,77,
78,81-85,88,89].

In the previous systematic review by Rovini et al [34], Perumal
and Sankar demonstrated that gait characteristics such as lower
limb movement could be used to distinguish between patients
with PD and healthy controls [98]. However, recent research
has focused on obtaining more detailed information on PD
spatiotemporal characteristics and determining the correlation
between these characteristics to identify which biomarkers are
the most beneficial for improving PD assessment. De Vos et al
[76] and Mc Ardle et al [72] found that gait analysis continued

to be beneficial. and characteristics including step length, step
velocity, and turn duration could be used to successfully
distinguish between patients with PD and those with other
neurodegenerative conditions such as PSP, AD, and dementia
with Lewy bodies (DLB), which can often present in a manner
similar to PD. De Vos [76] et al identified parameters that were
more significant in distinguishing patients with PD from those
with other neurodegenerative conditions. Previous studies did
not investigate which parameters were the most significant
contributors to classifying PD or which appropriate parameters
were the most appropriate to use. Although previous studies
had identified that postural sway could be used as a biomarker
for some PD subtypes such as prodromal PD [34], De Vos et
al [76] identified that postural sway was less useful for
discriminating between PSP and PD. Mc Ardle et al [72]
conducted a study to determine if balance impairment markers
such as jerk could be useful for differential PD assessments,
but they found that the use of wearable devices to analyze jerk
was limited. Although static eyes-open assessment using
accelerometers could be used to accurately distinguish between
patients with PD dementia (PDD), patients with AD, and healthy
age-matched controls, balance impairment assessment was
unable to identify significant differences among the patients
with PDD, AD, and DLB once adjustments were made [73].
These results contrast with previous research that was able to
find significant differences among the patients with PDD, AD,
and DLB [99]. However, observations by Pantall et al [82] also
showed that patients with PD experienced a decrease in postural
jerk over time; however, it remains uncertain whether jerk
increases or decreases over time and to what extent the results
are due to age-related decline or PD progression. Although this
study may have contradicted previous results, wearable devices
may also have some benefit in providing more objective data
regarding which differential assessments may be more
appropriate depending on which medical conditions are being
assessed. However, as the size and weight of wearable devices
have decreased, studies have included more analyses of upper
body movements using IMUs. Buckley et al [74] found that PD
assessment by wearable devices could still be improved by
including upper body analysis. The study identified that
including upper body data analysis enabled more detailed
information about gait characteristics such as swing time,
asymmetry, and step length, which led to significant
improvements when classifying PD gait compared with lower
limb analysis alone. The studies included in the scoping review
also attempted to make PD assessment more convenient by
using wearable devices to reduce the need for specialist
assessment facilities. Dunne-Willows et al [78] demonstrated
that wearable device data combined with phase plots could be
used as an alternative method to distinguish between patients
with PD and healthy controls. It was consistently shown that
patients with PD and healthy controls had phase plot
characteristics for single-line, thin-line double, and oblique
wing–phase plots. Different phase plots could also be used to
identify particular gait characteristics in question to build a more
complete and unique profile of the patient’s condition. It was
found that thin-line double-phase plots demonstrated significant
increases in step length and velocity when compared with
parallel wing–phase plots [78]. Therefore, the novel use of phase
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plots could be used as a supplementary assessment tool to easily
and conveniently produce an overview of gait in patients with
PD.

Studies in the United Kingdom have continued to highlight the
hardships of patients with PD and carers due to the increasing
complexity of daily routines such as medication management
and environmental risks in home settings, which can increase
the risk of dangerous falls. The additional strain of care can
have negative impacts on well-being, as patients and carers can
feel unsupported; moreover, there are difficulties in carers and
patients communicating their situation and symptoms to health
care professionals [100]. Wearable devices can be a possible
solution to collecting and providing detailed information on the
patient’s PD status and symptoms, which can lessen the strain
on patients and carers, as this can decrease the anxiety around
whether the information is being relayed clearly to health care
professionals. Current studies have shown that wearable devices
can provide information on how medication treatment affects
patient outcomes [70,76,82]. Newer studies included in the
scoping review have shown development in addressing whether
patients were receiving appropriate medication doses or
identifying if the patient’s PD was controlled by using PKGs
to identify novel biomarkers and correlations that may influence
the patient’s condition [88,101]; for example, wearing-off [102]
in levodopa therapy was identified by PKGs as a key clinical
concern, allowing clinicians to modify medication or therapy
to address wearing-off and facilitate discussion of new clinical
findings with patients. PKGs were shown to be an appropriate
support tool for minimizing incidents of undetected symptoms
in newly diagnosed patients with PD, undertreated patients, and
clinical bias, as well as for analyzing how symptoms progressed
throughout the day [77,89]. The medication reminders provided
by the PKGs were found to be valued by 80% of patients,
enhancing self-management, and it was found that wearable
devices provided additional data that patients found difficult to
relay to the clinical team [77]. Dominey et al [77] reported that
97% (57/59) of patients with PD were willing to continue to
use the PKG to support the management of their PD care and
the belief that wearable device information represented their
lived experiences. However, the data showed that clinicians
needed to consider how information was presented to and
understood by patients, as there were low levels of satisfaction
with how PD information was presented. In a survey of the
methods used to communicate information about the patients’
PD status, only 50% of surveyed patients were satisfied with
phone calls, 47% with letters, 44% with clinician reports, and
27% with PKG graphs [77]. The main reported concerns were
related to potential technical problems such as delays in
receiving the information or whether the PKG accurately
recorded information about their condition [77]. Technological
literacy can often be a barrier to the effective adoption of
wearable devices. Studies have found that older patients are less
likely to be technologically literate than younger patients, and
those from low-income backgrounds are less technologically
literate than those from higher-income backgrounds [103]. The
lower levels of satisfaction of the surveyed communication
levels observed by Dominey et al [77] may potentially be due
to lower levels of technological literacy among the older study
participants. Therefore, it may be beneficial if triggered contacts

are implemented to notify patients and clinicians of changes
that require follow-up action and support channels where
patients could have questions about the PKG answered. A study
by van Wamelen et al [88] was able to analyze the relationships
between different PD symptoms using regression analysis in
which bradykinesia scores were associated with a low levodopa
equivalent dose, and dyskinesia was related to a high levodopa
equivalent daily dose. PKGs also identified that higher
bradykinesia scores were correlated with gastrointestinal
problems; however, PD-related gastrointestinal problems can
be undiscussed, as patients are unaware that they are related to
PD [88]. Therefore, using PKGs, clinicians can proactively
discuss nonmotor symptom concerns with the patients if higher
bradykinesia scores are observed over time. van Wamelen et al
[89] demonstrated that newer wearables such as the PKG were
able to provide more detailed information when PD symptoms
fluctuated throughout the day where the time intervals could be
easily divided into 3-h periods. Furthermore, the study
investigated whether PD symptoms were affected by time
variations in patients with early-stage PD, which remained
relatively unexplored [89]. It was identified that motor
assessments such as bradykinesia scores varied depending on
the time of assessment, and UPDRS scores worsened throughout
the day [89]. The common concern around current PD
assessment scores is that the scores are too subjective and prone
to variability [15]. However, van Wamelen et al [89] have shown
that PD assessments can become more precise by using wearable
devices such as the PKG to provide a baseline reading to account
for changes in symptom severity based on the time of assessment
[89]. The study showed that wearable devices could provide
more personalized assessments and treatments because they
collect more detailed data, particularly for patients diagnosed
with early-stage PD [89]. Huo et al [69] further demonstrated
the use of this information. By using wearable device data
combined with ML algorithms, Huo et al [69] could quantify
PD motor symptoms and classify the impact of PD motor
symptoms to assess the patient’s severity of PD. Consequently,
newer studies have shown that wearable devices can identify
promising biomarkers that could be used to provide more
objective quantitative data, as well as provide more information
on how PD clinical features are correlated with each other.
Studies also attempted to reduce the risk of falls for patients
with PD. Falls are often a common cause of injury or death in
older adults and can further negatively impact patient
independence and quality of life due to further fear of falling
[104]. Patients with PD are also susceptible to increased falls
that incur unnecessary costs due to additional medical treatment
or hospital admissions [105]. Costs are attributed to the
medication received during inpatient care or purchased at local
pharmacies and medical equipment such as walkers or braces
[106]. However, in current research, wearable devices have
identified stride time, and postural sway analysis could help
support the early identification of patients with PD who are at
a higher risk of falling, enabling support measures to be
introduced earlier and prolonging independent living [75,82].
Furthermore, AI and ML developments combined with the use
of wearable devices could be used to predict the risk of falls in
patients with PD based on detecting subtle changes in instability
among patients who were at risk of falling and could help
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capture more detailed data than video assessments alone [86].
These developments have beneficial applications in both the
hospital and community settings. The data gathered by Stack
et al [86] from wearable devices in a hospital laboratory setting
were subsequently used to develop an algorithm to predict the
risk of falls in patients with PD, and more research has been
conducted on predictive algorithms related to patient falls in
community settings [107]. For hospital assessments, predictive
fall algorithms can provide more granular and personalized
information when conducting mobility assessments such as
TUG and chair transfer tests, which can support clinical
decision-making [86]. In addition, the successful implementation
of predictive fall algorithms may improve individualized care
and minimize risks to patients when alone in health care
environments such as nursing homes [107]. Therefore, current
studies demonstrating the use of commercial PD wearable
devices such as the PKG may not only have multiple
applications by providing more information and increasing
opportunities during hospital appointments but also provide
more support for patients in home settings when away from the
hospital.

AI and ML have been continuously incorporated and used to
analyze wearable device data. However, accurately classifying
PD characteristics can be challenging; therefore, Rehman et al
[83] attempted to investigate how different assessment methods
and equipment affected accuracy and ML models. Both
continuous and intermittent walking methods were tested using
the Axivity AX3 accelerometer and the GAITRite mat. The
GAITRite mat is established as one of the gold standard devices
for gait analysis [83]. Both the support vector machine and
random forest ML models found that continuous walking
performed better than intermittent walking with both the Axivity
AX3 and GAITRite; however, the continuous walking method
and the Axivity AX3 wearable accelerometer produced the
highest levels of accuracy [83]. The results observed by Rehman
et al [83] highlighted that the direct comparison of ML models
using different assessment methods was limited and that further
research should be conducted on standardized assessment
methods that were not considered in the studies included in the
previous systematic review by Rovini et al [34]. Therefore, the
type of assessment method and equipment used can lead to
varied results and levels of accuracy, and the combination of
assessment methods and equipment used should be more
extensively considered. Wearable devices in combination with
AI and ML may also have the ability to develop more objective
diagnosis and assessment criteria, although there has been little
discussion about the use of AI and ML in PD assessment in
previous research [34]. Current assessment methods such as the
Hoehn and Yar scale can also be too simplistic to describe PD
progression and provide a rank order of PD symptoms [108].
Assessment scores are also subjective [71]; therefore,
disagreements on the assessment methods and scores are
common [109-111]. However, more recent research by Stack
et al [86] highlighted that the more subjective video reviews
agreed with the wearable sensor data, suggesting that video
review and wearable device use may still have beneficial
applications in some PD assessments such as assessing the risk
of falls. With the support of AI and ML algorithms, wearable
devices could provide more objective assessment scores.

Although previous attempts have used artificial neural networks
to measure PD symptoms such as tremors [112], current research
has innovated upon previous developments. It was found that
computer voting classification algorithms based on the data
collected by wearable devices were able to rank the most
significant disease contributors for each PD symptom to
calculate a weighted score to analyze the level of PD severity
[69]. Huo et al [69] built upon previous research and were able
to determine which symptoms contributed the most to the final
UPDRS score while still being able to measure the fundamental
symptoms (tremor, bradykinesia, and rigidity) that are often
assessed. Echo state networks (ESNs) have also been used to
classify PD. ESNs are distinctly different from artificial neural
networks because of their ability to function nonlinearly, making
them more suited to time-series analysis such as analyzing PD
progression over time [113]. ESNs were found to be able to
successfully diagnose PD at an accuracy rate similar to other
algorithms that required more complex and substantial training
[79,114]. It was found that the main advantage of using ESNs
compared with other neural networks was the speed at which
ESNs could be trained despite the inclusion of many different
parameters, making ESNs suitable for interpreting complex
information and patterns [79].

It was found that the specificity and sensitivity of wearable
devices were good overall but still could be improved and were
influenced by where the wearable device was placed on the
body. Using the Opal wearable devices, Buckley et al [74]
showed that wearable devices were able to discriminate between
patients with PD and healthy age-matched controls for 62%
(10/16) of the measured spatiotemporal variables and 75%
(37/49) of the measured upper body variables, which were
validated via receiver operating characteristic curve analysis
with a P value of <.05. When gait variables were entered in a
forward stepwise fashion, all models showed a good ability to
discriminate between patients with PD and healthy age-matched
controls, with AUC values of ≥0.88. The inclusion of upper
body variables such as measurement of the smoothness of head
movement in the spatiotemporal model led to a significant
improvement; however, the AUC values only increased by 0.01
to 0.02 [74]. The novel inclusion of upper body analysis in gait
analysis highlighted that not all PD gait data could be captured
by spatiotemporal analysis, and the inclusion of upper body
acceleration analysis provided additional details. The
investigation also highlighted that upper body acceleration was
not significantly correlated with postural control, and findings
may further support that head movement and gait require
different targeted therapies [115]. Rehman et al [85] also found
that a combination of lower and upper body acceleration
measurements using IMUs could distinguish between patients
with PD and healthy controls. However, Rehman et al [85] used
a turning algorithm that had not been explored in previous
research [34]. Exploring a combination of IMU locations using
a single sensor and the partial least square discriminant analysis
classifier resulted in high levels of specificity, ranging from
84% to 92%. The highest levels of accuracy were found when
multiple sensors were used and placed on the neck, lumbar
region, head, and inner ankle, which led to 98% accuracy and
100% specificity, with the IMU data validated by video by 2
independent reviewers. The validation of wearable device data
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often relies on the established gold standard PD assessment
methods. Wearable device validation involved motion capture
systems or videos that were then reviewed by specialist
clinicians with experience in assessing patients with PD
[80,85,86]. Other methods have validated wearable devices with
known gold standard PD assessments such as the UPDRS scale
[69,70,82,87-89] or equipment such as the GAITRite mat sensor
[75,83,85]. Some studies used algorithms that had been validated
in other similar neurodegenerative conditions or in older adults
[72]. Technical validation of the data was completed mainly by
the use of statistical methods including 10-fold cross-validation,
ANOVA, and the Shapiro-Wilkes test [73,76,79]. Although
video validation by independent reviewers is a common method
in PD assessment, the reliability of video validation remains
inconclusive and needs further work to determine if it is an
appropriate form of validation [116]. Some studies reported that
video assessment was not a reliable form of validation, and the
variability of assessments was a cause for concern [117]. In
contrast, other studies believed that video assessment was a
suitable method for validating PD diagnoses [116,118].

One of the main challenges limiting the ability to support the
effectiveness of wearable devices and their widespread
implementation in PD care is the lack of medical-grade
regulations of wearable devices currently being used. Currently,
the official regulation of wearable devices continues to be a
challenge in the United Kingdom. Less than half of the studies
(9/20, 45%) used a wearable device that was approved by
official regulatory bodies. The lack of medical-grade
certification for many wearable devices used in the studies
included in the scoping review could subsequently increase the
uncertainty around the validity of the data and the results. Only
wearable devices manufactured by APDM (Ambulatory
Parkinson’s Disease Monitoring), Global Kinetics, ClearSky,
and McRoberts had medical certification, but the certification
was approved by regulatory bodies outside the United Kingdom
[70,74,76,77,79,80,85,88,89]. The wearable devices were only
clinically approved by the United States regulatory body, the
FDA, or the European Union regulatory body via the CE medical
mark. Although changes in United Kingdom health care
regulations remain unclear, eventually, wearable devices that
will be used in United Kingdom clinical care will require
approval by the Medicine and Healthcare products Regulatory
Agency and will not be covered under the CE medical mark
[119]. Therefore, implementing wearable devices in routine PD
care based on the evidence from current studies may prove to
be challenging. The challenges around wearable device approval
are evident in countries such as Australia that uses the
Therapeutic Goods Administration (TGA) to regulate approved
wearable devices aimed for clinical use. Only a few wearable
devices have been approved by the TGA to monitor vital signs
and physiological features in a clinical setting and were
manufactured by Masimo Corporation, The Waringa Group,
and GE Healthcare [120-122]. Particularly in the United
Kingdom, there is a severe lack of medical device and data
security regulations or guidance, which has been exacerbated
by the recent changes in the UK political landscape [94,123].
Currently, there is little regulation or guidance on whether
wearable devices should be approved for clinical use in the
United Kingdom. Only some wearable devices such as the PKG

have been approved by non-UK regulatory bodies and are
unofficially recommended by NICE in the UK [77,88,89,124].
Most recently, the UK committee NICE has provided conditional
recommendations for the use of 5 wearable devices in UK PD
care, including the PKG [94]. Furthermore, 1 NHS government
proposal has been planned to issue PKGs to >120,000 people
living with PD in the United Kingdom, which may provide more
robust evidence of interventional scalability [124]. However,
the results of this initiative have yet to be published, and there
is no official guidance on whether recommended wearable
devices such as the PKG can be prescribed [94,124].
Consequently, the lack of medical-grade approved wearable
devices and limited research on these NICE-recommended
devices within the United Kingdom has generated uncertainty
regarding the accuracy and reliability of data from recent studies
[94].

Comparisons With Prior Work
Previously, systematic reviews provided only a brief overview
of the current applications of wearable devices used in PD care
[34]. This scoping review builds upon previous systematic
reviews by providing an updated commentary with more details
on how wearable devices and wearable device data are being
used and the current challenges of implementing wearable
devices in mainstream PD care. Providing an updated review
is important due to the speed at which technological
development occurs [59]. The scoping review details the
common device brands and wearable device technologies that
are currently being used by health care professionals, as well
as how these wearable devices are commonly applied in PD
care. Furthermore, previous systematic reviews only focused
on providing an overview of wearable device use, with little
discussion about the potential challenges related to the use of
PD wearable devices. For example, previous studies
hypothesized how AI and ML might use wearable device data,
but there was insufficient detail on precisely how AI and ML
could be used to support PD assessment [34]. In addition, the
systematic review did not sufficiently document how wearable
device placement could impact the observed results [34].

The use of wearable devices in clinical care requires vigorous
regulation and guidance. Currently, the practicalities and
challenges of regulating and implementing wearable devices in
PD care remain relatively unexplored, with very few wearable
devices being approved by regulatory bodies for clinical use.
Most wearable devices approved for clinical use are related to
vital sign monitoring and are approved by regulatory bodies
such as the TGA in Australia and the US FDA [77,120-122].
However, this review explores how uncertainty in regulation
could restrict the ability to implement wearable devices in health
care, which has not been analyzed in previous studies [34].
Recent political changes in the United Kingdom, for example,
due to Brexit, have resulted in planned changes to UK health
care regulations, which are expected to deviate from the
previously shared European Union CE medical mark from 2023
onward [119]. Currently, it is more uncertain which wearable
devices can be approved for clinical use and implemented in
wider UK PD care. Therefore, this scoping review highlighted
a challenge unique to the United Kingdom. Consequently, the
scoping review is an important record of how ongoing regulatory
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changes may impact wearable device implementation related
to clinical practice in areas such as UK PD care.

The current lack of studies analyzing wearable device security
risks was also identified as a significant research gap
[47,72,75,80]. In a recent scoping review by Huhn et al [125],
many studies did not consider data accessibility, sharing and
security. This observation is similar to that of the studies
included in this scoping review, as only Dominey et al [77]
documented the challenges of obtaining suitable data storage
and management systems to store the increasingly large amounts
of data collected during the study. Furthermore, only Mc Ardle
et al [72] and Payne et al [70] considered the type of computer
application used to store the wearable device data securely. The
platforms used were e-Science Central, which allowed secure
storage and sharing of data using workflow editors and access
control lists [126] or held in a centralized database where access
was regulated by named user access and encrypted passwords
[70]. Currently, the different data policies that countries must
abide by can make accessing data difficult. However, in the
United Kingdom, how General Data Protection Regulation
continues to be implemented is uncertain and could potentially
make wearable device implementation in UK health care
challenging [123]. Moreover, security mechanisms for wearable
devices are left to the manufacturers with no clear legal
obligations, and IT security is often insufficiently assessed
[46,47,127,128]. These proposed frameworks have previously
been criticized as unsuitable for medical devices, and approved
devices continue to be susceptible to cyberattacks [47]. Medical
device regulatory bodies such as the FDA have limited
classification and criteria relating to wearable device safety and
security, as the devices are not rigorously assessed for IT
security, which has led to product recalls due to incorrect risk
classification [46,47].

This scoping review also identified that there was a lack of age
diversity in study participants with PD, as most participants
were aged >65 years. Older patients with late-onset PD (LOPD)
would often have more severe PD and more distinctive
symptoms [129]. Younger patients with young-onset PD
(YOPD) also face different challenges due to their stage in life
such as marital challenges and uncertainty around employment,
particularly as these patients are supposed to be in the prime of
their lives [129]. It is uncertain how wearable devices could be
optimized for patients with YOPD or how the current results
would differ for patients with YOPD. The age range of
participants in the included studies ranged from 58.0 to 78.0
years [69,72-79,81-86,88,89]. The lack of research on wearable
device use in younger patients with PD is likely because PD is
not as prevalent in people aged between 21 and 40 years [129].
Importantly, differential diagnoses of patients with YOPD can
differ because clinicians conducting the PD assessments are
likely to assume that the patient has a different disease that may
share similar symptoms with PD such as mitochondrial disease
or drug-induced parkinsonism [129]. Compared with older
patients with PD who often present with clinical features such
as gait instability, which the scoping review identified as a
common symptom analyzed using wearable devices [83-85],
younger patients with YOPD can more often present with
rigidity and cramping, and it was found that dystonia was

significantly featured in patients with YOPD [129,130]. It has
been proposed that the observed differences related to dystonia
symptoms are related to the amount of degradation of the
caudate and putamen within the brain, as it was observed that
patients with YOPD had higher amounts of caudate than
putamen, whereas patients with LOPD had similar levels of
caudate and putamen [131]. As for nonmotor symptoms, patients
with YOPD are more likely to experience signs of depression
that is likely due to the declining quality of life at a relatively
young age [130]. Due to the differences in clinical presentations
between patients with YOPD and LOPD, as well as the different
challenges these demographics face, more research is required
on how wearable device use differs in patients with YOPD and
can improve clinical outcomes for younger patients with PD.
The lack of diversity in the age range of study participants with
PD may be partly explained by different UK hospitals having
different research interests, which would influence the type of
studies that are published. Furthermore, variations in geographic
location may affect the ability to recruit and include certain
patient demographics. In 55% (11/20) of the included studies,
the research was conducted in Newcastle hospitals that form
part of the Newcastle upon Tyne Hospitals NHS Foundation
Trust [132]. The trust is funded by the National Institute of
Health Research, which has made investments in clinical
research and facilities such as the Clinical Ageing Research
Unit (CARU) that has enabled hospitals in Newcastle to be at
the forefront of PD research [132]. Current research at the
CARU heavily involves research on PD and is equipped with
specialized facilities such as the Human Movement Laboratory
to investigate gait and mobility [132]. Many leading experts are
also associated with the CARU and specialize in neurological
disorders such as PD and gait impairment in older patients [132].
Consequently, this may reveal the reason most PD secondary
care research in the United Kingdom was conducted at
Newcastle upon Tyne Hospitals NHS Foundation Trust: access
to leading PD experts and specialized facilities, resulting in
more PD studies involving patients aged >65 years.

To investigate a wider variety of demographics of patients with
PD, scale wearable device clinical trials to obtain more robust
evidence to obtain medical-grade approval, and determine the
additional costs related to wearable device implementation,
further cost-effectiveness analysis is needed. Currently, there
is a lack of analysis regarding the cost-effectiveness of wearable
devices in PD care. Only a few studies (3/20, 15%) included in
this scoping review provided a brief commentary on the
cost-saving potential of wearable devices in PD care [72,75,80].
Importantly, the studies did not provide any analysis of the
claims that using accelerometers in PD assessment such as gait
analysis would be a cost-effective alternative compared with
the established specialized gait laboratories and how an
estimated US $110 million saved per year in England could be
achieved by using wearable devices in PD care [72,75,80].
Widespread technological implementations also require
additional investment into data storage and management
software as discovered by Dominey et al [77], as well as the
overhead costs of computing if ML and AI are used in
combination with wearable devices [79,133]. Furthermore,
wearable devices require repair and upkeep, but inventory and
procurement costs can vary widely [133]. Munoz et al [134]
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analyzed the cost-effectiveness of nonwearable devices in the
early detection of PD in the United States, and the analysis may
provide some evidence that wearable devices could become
cost-effective. It was found that PD technology may be quite
cost-effective, as the lives of patients with early-stage diagnosed
PD could be improved by up to 0.33 quality-adjusted life years
(QALYs) estimated at US $31,305 per QALY, which was
slightly over the limit of US $25,000 per QALY for the
treatment to be considered very effective [134]. However, how
cost-effectiveness translates to wearable devices used in PD
care in the UK health care system remains unknown.

Limitations
Because of the unique changes to the UK political and regulatory
landscape, changes in UK regulations have occurred. Therefore,
the scoping review focused on PD studies in the United
Kingdom because of the current uncertainty and changes in UK
clinical and technological regulations [48,119,123]. However,
the limited scope may have increased the chance of publication
bias, as the scope was more focused [58].

The publication search was conducted only by the first author.
Although the inclusion of eligible studies and the search strategy
methodology were supervised by the project supervisor and
corresponding author, studies may have been missed or there
may have been some variation during the screening process. In
addition, the search strategy was limited to a few of the main
established peer-reviewed databases, and peer-reviewed
publications were reviewed only if they were written in English.
Therefore, the identified publications may not be completely
representative of the research available, as contributions made
by technologically advanced far eastern countries such as South
Korea, China, and Japan [131,135,136] were excluded. Gray
literature was not included as the quality of information could
vary greatly, so it was decided to search only established
peer-reviewed databases to ensure a minimum standard of
quality and credibility of the publications included [64,65].
Furthermore, searching gray literature is time-consuming and
extensive and may not yield further benefits due to the rapid
developments of technological advancements and sources that
are potentially inaccessible in the future [65]. Therefore, we
decided to follow the recommendations of Cochrane to focus
on established peer-reviewed databases [66]. Conference
abstracts, reviews, reports, and editorials were also excluded
from this scoping review because these sources were often
inadequately recorded, contained unsuitable information to
enable sufficient data extraction of the study characteristics of
interest, or were not published in full. By contrast, a study
protocol is a structured and formal document that provides
comprehensive information on the methodology and justification
of the value of the research related to the topic of interest in the
scoping review. The concerns around including specific
publication formats were reflected in previous research.
Hackenbrioch et al [58] explored whether certain sources such
as conference abstracts were appropriate for inclusion in
systematic reviews and found that conference abstracts contained
insufficient information in areas such as the study details needed
for data extraction, eligibility criteria, and contacts to acquire
further study information.

The study limitations were mainly due to the lack of wearable
device regulations in the United Kingdom. Therefore, the
accuracy of the results remains uncertain because the devices
have yet to be officially approved as medical-grade devices that
are suitable for use in clinical care in the United Kingdom [124].
Furthermore, the number of participants within each included
study was often relatively small, with most studies having ≤100
participants [69,70,72,75,76,78,80,82,85-87]. The low number
of participants may have been due to challenges in recruiting
participants with PD [51]. Furthermore, study participants with
PD tended to be older, and there is little information on how
wearable devices could benefit patients with YOPD and how
the different challenges faced by patients with YOPD can impact
the results [129,130]. Although there have been proposals to
introduce wearable devices to the wider demographics of
patients with PD to gather larger volumes of data, additional
studies are still required to understand if the currently observed
results translate to larger study cohorts. Concerns regarding
study overlap were also identified because Newcastle Hospital
conducts extensive PD research with dedicated PD clinics,
which may have resulted in selection bias or study participants
participating in multiple studies at Newcastle Hospital [132].
Study participant overlap and selection bias may have affected
characteristics such as disease severity, disease duration, and
outcomes observed within study participants with PD across
the Newcastle Hospital studies where results may not be
reflective of the general population with PD [137]. In addition,
the confirmation of whether the study participants had
overlapped in any of the studies taking place in Newcastle
Hospital could not be obtained from the authors.

Conclusions
This scoping review provides an overview of the common types
and brands of wearable devices currently used in PD studies in
the United Kingdom. The promising benefit of using wearable
devices is the ability to provide more detailed information when
analyzing PD symptoms and how each clinical characteristic
affects the presentation of PD symptoms. Furthermore, the
availability of quantitative data combined with AI and ML to
determine the most significant variables may improve or replace
current but subjective assessment tools such as the UPDRS.
These benefits have the potential to improve PD diagnosis due
to greater levels of information to support assessments, allowing
clinicians to improve the early diagnosis of PD or differentiate
it from other neurodegenerative diseases. Due to the ease of use
of wearable devices, this may reduce reliance on costly specialist
assessment centers that are only available at specific hospitals.
Furthermore, the wearable devices are able to continuously
monitor the patients’ symptoms and provide a more accurate
representation of the patient’s experience, especially as it was
found that the severity of PD symptoms can change throughout
the day. This has benefits not only in hospital settings but also
in the community because clinicians can be more easily alerted
to when treatment is ineffective and personalize treatment plans.

However, several areas need further research or need to be
addressed before wearable device use in UK PD care can be
confidently recommended. The main cause of uncertainty is the
lack of UK-approved medical-grade use wearable devices.
Recommended wearable devices such as the PKG have only
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been recommended on a conditional basis, and the guidance is
potentially subject to change. In addition, the lack of large-scale
studies and research on wearable device use in younger patients
with PD fuels further uncertainty about the accuracy and
reliability of the results. Technological innovation can also be
costly and can introduce new challenges. Currently, the included
studies contain a lack of analysis about the cost-effectiveness
of using wearable devices in UK PD care such as the need to
invest in data management systems and the cost of computing
data. Furthermore, there is a lack of analysis on the cybersecurity

risks of using wearable devices in PD care, as well as the
challenges surrounding the lack of proper guidance and testing
of wearable devices that are being implemented in health care.

If the outlined challenges can be overcome and further
researched, wearable devices have huge potential to improve
PD management, diagnosis, and assessment. However, several
areas of research need to be addressed before individuals can
be confident that the use of wearable devices is effective in UK
PD care and that the current recommendations to implement
wearable devices in clinical care are cost-effective.
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CARU: Clinical Ageing Research Unit
CE: Conformité Européenne
DLB: dementia with Lewy bodies
ESN: echo state network
FDA: Food and Drug Administration
IMU: inertial measurement unit
LOPD: late-onset Parkinson disease
ML: machine learning
NHS: National Health Service
NICE: National Institute of Clinical Excellence
PD: Parkinson disease
PDD: Parkinson disease dementia
PICO: population, patient, or participants, interventions, comparators, and outcomes
PKG: Parkinson’s KinetiGraph
PRISMA-ScR: Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping
Reviews
PSP: progressive supranuclear palsy
QALY: quality-adjusted life year
TGA: Therapeutic Goods Administration
TUG: timed up-and-go
UPDRS: Unified Parkinson’s Disease Rating Scale
YOPD: young-onset Parkinson disease
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