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Abstract

Background: Preoperative assessment is crucial to prevent the risk of complications of surgical operations and is usually focused
on functional capacity. The increasing availability of wearable devices (smartwatches, trackers, rings, etc) can provide less
intrusive assessment methods, reduce costs, and improve accuracy.

Objective: The aim of this study was to present and evaluate the possibility of using commercial smartwatch data, such as those
retrieved from the Fitbit Inspire 2 device, to assess functional capacity before elective surgery and correlate such data with the
current gold standard measure, the 6-Minute Walk Test (6MWT) distance.

Methods: During the hospital visit, patients were evaluated in terms of functional capacity using the 6MWT. Patients were
asked to wear the Fitbit Inspire 2 for 7 days (with flexibility of –2 to +2 days) after the hospital visit, before their surgical operation.
Resting heart rate and daily steps data were retrieved directly from the smartwatch. Feature engineering techniques allowed the
extraction of heart rate over steps (HROS) and a modified version of Non-Exercise Testing Cardiorespiratory Fitness. All measures
were correlated with 6MWT.

Results: In total, 31 patients were enrolled in the study (n=22, 71% men; n=9, 29% women; mean age 76.06, SD 4.75 years).
Data were collected between June 2021 and May 2022. The parameter that correlated best with the 6MWT was the Non-Exercise
Testing Cardiorespiratory Fitness index (r=0.68; P<.001). The average resting heart rate over the whole acquisition period for
each participant had r=−0.39 (P=.03), even if some patients did not wear the device at night. The correlation of the 6MWT distance
with the HROS evaluated at 1% quantile was significant, with Pearson coefficient of −0.39 (P=.04). Fitbit step count had a fair
correlation of 0.59 with 6MWT (P<.001).

Conclusions: Our study is a promising starting point for the adoption of wearable technology in the evaluation of functional
capacity of patients, which was strongly correlated with the gold standard. The study also identified limitations in the availability
of metrics, variability of devices, accuracy and quality of data, and accessibility as crucial areas of focus for future studies.

(J Med Internet Res 2023;25:e42815) doi: 10.2196/42815
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Introduction

Background
Every year, in the world, >300 million surgical procedures are
performed, both for inpatients and outpatients [1,2]. Surgical
operations are subject to the risk of complications owing to
various concurrent phenomena and are aggravated by the
patient’s preexistent health status. For elective surgeries, which
aim at solving a nonimmediate life-threatening condition and
are planned, numerous methods of patient evaluation in the
preoperative phase are adopted to estimate cardiorespiratory
function, hence the risk of complications to allocate the limited
resources of the hospital in terms of staff, equipment, and time
in the appropriate manner. Functional capacity is specifically
important for patients who are old and frail, who are at increased
risk for postoperative complications [3]. The information
provided by exercise testing is often used to inform patients’
and providers’ decisions and target appropriate perioperative
management [4].

In clinical practice, the focus of the preoperative assessment is
on functional capacity, and traditional tests and measures are
about physical activity and related metrics. They include
objective tests, such as the 6-Minute Walk Test (6MWT) [5]
and the cardiopulmonary exercise testing [6], and evaluation
scales that rely on the subjective judgment of the physician or
the self-evaluation of the patient. The 6MWT evaluates exercise
tolerance in patients, and it is usually performed by any patient
undergoing major surgery. It consists of making the patient
walk at a self-paced speed up and down a 30-m long corridor
for a fixed period of 6 minutes. The patient should walk alone,
and no incitement should be done—only standardized phrases
should be used to speak to the patient [5]. As a primary result
of the test, the total distance traveled in meters (6MWT distance;
6MWD) is indicated. A normal value for healthy adults is 400
to 700 m [7], whereas exercise tolerance is considered to be
reduced when <350 m is covered, even though there is no
unanimity about result interpretation, and a difference of 50 m
is considered to be substantial [8]. Secondary measures are heart
rate (HR), respiratory rate, and arterial blood oxygen saturation,
monitored each minute of the test and 2 minutes after the
recovery phase has started. Short distance, high HR, and low
oxygen saturation are fairly correlated with morbidity and
mortality, even though low 6MWD is nonspecific and
nondiagnostic because it does not provide information regarding
the mechanism of exercise limitation [7]. The advantages of the
test are simplicity, absence of need for sophisticated equipment,
broad applicability, tolerability, and comparability with daily
activity. A relevant limitation is the high variability, both
between and within individuals, of the result owing to several
factors. The motivation of the patient and other uncontrollable
psychological factors may undermine the reproducibility of the
test because it is self-paced [9].

Evaluation scales include the Metabolic Equivalent of Task
[10], Clinical Frailty Scale [11], and Duke Activity Status Index
[12]. The Metabolic Equivalent of Task is a simple 10-point
scale on which patients rate the maximum level of activity they
are able to perform, from sitting to vigorous activity [10]. The

Clinical Frailty Scale [13] and Duke Activity Status Index [12]
are two standardized clinical scales for preoperative risk
assessment. Preoperative anesthesiologic examinations include
the American Society of Anesthesiology Physical Status scale,
the most widely used risk scale in anesthesia. Another index
used to evaluate the fitness level of a patient is the Non-Exercise
Testing Cardiorespiratory Fitness (NET-F), developed by
Stamatakis et al [14] as a combination of measures, obtainable
with all information usually available from the electronic health
record and the estimate of the patient’s physical activity. This
value is a weighted sum of coefficients derived from sex, age,
BMI, resting HR (RHR), and physical activity level (PAL).
NET-F was proven to be a robust predictor of mortality,
achieving better performances than its individual components.
Objective tests are highly time consuming, whereas the listed
scales are partly or completely subjective.

In clinical settings, other parameters that allow the evaluation
of the patient belong to the domains of physical activity, heart
health, respiratory health, and sleep, among others. Physical
activity guidelines recommend a moderate level of exercise at
all ages and define threshold values for steps walked and energy
expenditure [15]. Cardiac pathologies are the leading cause of
death in developed countries, and measures of HR and HR
variability (HRV) are primary indicators of such pathologies
[16]. Sleep is an important natural state, and it influences most
systems of the body. Respiratory rate has been found to be more
accurate than pulse rate and blood pressure in predicting
unfavorable clinical events and distinguishing between patients
who are stable and those who are at risk [17].

Wearables—Benefits and Current Limitations
A breakthrough innovation in the field of objectively assessed
patient’s overall health, and in particular, preoperative functional
capacity, may come from wearable devices, which find many
applications in the fields of telemonitoring of patients [18],
consumer health and well-being, sports performance assessment
[19], environmental monitoring [20], and emergency settings
[21]. Data collection refers to a large set of diverse clinical
domains, and the approach of measurement of the devices for
a selected parameter can vary substantially. Wearables exist for
different parts of the body, allowing the estimation of different
quantities. Examples of wearables include watches (such as
smartwatches and activity trackers), eyeglasses, visors [22],
rings [23], patches [24], sensorized garments [25], elastic bands
applied on the torso [26], and earbuds.

Physiological measurements can consider a single parameter,
for example, HR, peripheral blood oxygen saturation, respiratory
rate [27], and skin temperature, or could be more complex
measures combining data from several sensors, such as in the
cases of sleep analysis, estimation of energy expenditure, and
analysis of physiological parameters with respect to the activity
[28]. Even pathophysiological conditions could be accurately
detected after appropriate processing of the data, for instance,
atrial fibrillation detection [29], high serum glucose level
detection, and fall detection [30].

Innovative indexes that can be obtained using wearables have
been defined in the literature. For instance, a Fitbit device was
used by Mishra et al [31] to detect the infection by SARS-CoV-2
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before the appearance of symptoms. To do so, the HR over steps
(HROS) index was computed to detect anomalies in the heart’s
behavior in relation to the level of activity.

In recent years, the entry of global companies such as Google,
Apple, Samsung, Sony, Philips, and others into the field of
wearable technology, particularly smartwatches, has accelerated
the development of low-cost, attractive, and reliable devices.
These types of smartwatches can measure many physiological
parameters and can connect with the smartphone and internet,
thus creating a so-called body area network [17] for a large
number of users.

Along with their promises and benefits, wearables present some
critical aspects that have been arising with the development and
diffusion of this recent technology [32].

The number of wearable devices entering the market has been
growing, but most of these are commercial devices, not research
or medical devices, and not all of them are capable of measuring
health parameters in a reliable manner.

Owing to design simplicity or manufacturing flaws, the devices
able to grant a medical-grade measure are only a subgroup of
the ones available. The quality of the data created by these
devices should be proven to be sufficiently high to be helpful
in the decision-making process and to draw medical conclusions.
This is especially true for data-intensive methods, benefits of
which strongly rely on the transparency, validity, and quality
of data practices.

In addition, the competition in consumer technology might lead
to the development of proprietary technological solutions and
classification algorithms to convert the raw signals from the
sensors into biomedical data. Although simple algorithms, for
instance, to detect steps using a 3-axis accelerometer, are
adopted consistently and similarly in most devices, more
complex features, such as physical activity recognition and sleep
stage classification, are often implemented substantially
differently. This can make it difficult to verify whether the same
measurement made by devices of two different brands refer to
the same physical phenomenon and can lead to a lack of
interoperability.

Aim of the Study
As presented previously, preoperative assessment methods
traditionally used in hospitals are burdensome and require many
resources in terms of equipment or personnel, and subjective
evaluation may compromise the accuracy of risk stratification.

The development and mass spreading of wearable activity
trackers that allow the recording of physiological parameters
in the domains of HR and energy expenditure may lead to a
new low-risk strategy to objectively screen the population and
test cardiorespiratory function before a surgical operation. This
might permit the substitution of clinical practice involving
qualified physicians in the preoperative assessment with an
automatic data collection method without implications and need
for supervision.

The aim of this study was to prove that useful health and clinical
knowledge can be derived from low-cost commercial wearable
device data. To do so, data from Fitbit Inspire 2 were collected

and processed to create features that can highlight a stratification
and correlate with the risk of complications, as traditional tests
allow.

Methods

Device Characteristics
The Fitbit Inspire 2 [33] is a fitness tracker that was first released
on September 25, 2020, as the new version of the low-cost
entry-level series, Inspire. Its price was <US $100 at the time
of the purchase and was chosen owing to several favorable
characteristics: it is small and lightweight, thus can be worn
without fatigue by older patients; its small display leads to
prolonged battery life (no need to train the patient to recharge
the device); and it is affordable and thus interesting for the
health care system in both high-resource settings and
low-resource settings.

Using the Fitbit app, available for Android and iPhone Operating
System, users can enter their information about age, sex, height,
and weight. The battery is a rechargeable lithium polymer, and
the manufacturer declares life of up to 10 days, with a charging
time of 2 hours from 0% to 100%.

Fitbit Inspire 2 is equipped with a 3-axis accelerometer for
movement detection and an optical HR monitor
(photoplethysmography [PPG] sensor) composed of green and
infrared light emitting diodes and photodiodes.

The memory of the device allows storage of 7 days of detailed
data (minute by minute) and daily totals for the past 30 days.

Users were not allowed to synchronize data with their personal
mobile phones; all data were synchronized by the investigators
when devices were retrieved. This solution was chosen because
the patients participating in the study were old and generally
had limited digital literacy. In addition, installing an app by a
commercial third party on the smartphone of patients would
have caused problems in terms of data protection.

As the users could not synchronize the devices with the mobile
phone, some functionalities such as GPS tracking were not
available during the tests. Furthermore, the lack of continuous
synchronization results in data loss in case the acquisition lasted
longer than 7 days; however, the flexibility of –2 to +2 days
was needed for organizational purposes.

After synchronizing the device with the mobile app, data were
uploaded to the cloud repository and were accessible to
download through application programming interfaces on the
web panel. The data that are used in this study are those related
to the HR and activity, and sleep data are not used in this
context. Few studies reported that sleep duration estimated by
Fitbit devices is a reliable indicator, whereas classification of
sleep stages has insufficient accuracy [31,34].

Experimental Protocol
Patients were selected according to the surgical intervention
they were scheduled for, taking into consideration major
noncardiac surgeries with general anesthesia (eg, spinal surgery,
mastectomy, and gallbladder resection). Enrollment of patients
started in June 2021 and ended in May 2022. Other inclusion
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criteria were age >70 years and no mobility deficit or orthopedic
problems to safely perform the walk test.

Routinely registered information about the patient was collected:
age, sex, weight, height, clinical information about
comorbidities, type and characteristics of the surgical
intervention, and laboratory analyses result if required.

Patient’s functional status was evaluated using the 6MWT
during a visit before the operation.

After the visit, if patients accepted to participate in the study,
they were given the wearable activity tracker Fitbit Inspire 2.
Patients were asked to wear the Fitbit Inspire 2 for 7 days (with
flexibility of –2 to +2 days) after the hospital visit, before their
surgical operation.

The physician or the medical student who enrolled the patient
had to update the user’s general information, that is, age, sex,
weight, and height, through the Fitbit app, to calibrate the
internal algorithms for proper data collection.

Data Preprocessing
Of the 31 enrolled patients, 2 (6%) patients did not wear the
device at night; therefore, HR and sleep data are not available.
Of the 31 patients, 2 (6%) patients interrupted the recording on
the fourth day and 1 (3%) delayed the beginning by 3 days. A
patient wore a smartwatch that by mistake was set to be on-clip;
thus, the PPG system was switched off—no data about HR and
sleep were recorded. For this patient, a reduced processing
pipeline was created, considering only data about step count
and substituting the Fitbit-evaluated RHR with the HR recorded
at the hospital visit before the 6MWT. A patient wore the device
with wrong characteristics set through the app; therefore, activity
data might be mistaken; nevertheless, these data were aggregated
with the others.

The actual duration of the experiment was on average 7.03 (SD
2.3) days, very similar to the expected periods, and only 6%
(2/31) of the patients wore the tracker for 3 days, and 3% (1/31)
wore it for 14 days.

Data Processing and Feature Engineering
Some parameters are directly computed by the Fitbit, such as
HR and steps, whereas other indexes can be derived or estimated
from the downloadable data. Data about the HR, physical
activity, and sleep were transformed and combined to allow
patient risk stratification in anticipation of the elective surgical
operation.

HR and Health Metrics
HR is continuously estimated through the PPG sensor, the raw
data of which are processed by an internal proprietary algorithm.
Output HR data are presented at 1-second intervals during
physical exercise tracking and at 5-second intervals at all other
times. HR measurement is affected by the location of the device
and movements. RHR is computed on a 24-hour basis. It is
known from the literature that this value reaches its minimum
at night [35]. Therefore, nighttime values of RHR are
comparable between patients, whereas daytime values might
not reach the minimum. In the case of patients who did not wear
the device at night and had no RHR data available, the values

were substituted with the HR measured by the clinician before
the 6MWT.

HR zones are presented as customizable ranges that are set
subdividing the HR reserve, that is, the difference between
maximal HR and RHR. During a workout, entering a different
HR zone is announced through a vibration. HRV quantifies the
extent to which the respiratory rate interval or HR changes from
one cardiac cycle to the next. This can provide us a lot of
information about how the autonomic nervous system regulates
the heart. HRV has been correlated with cardiac diseases [36],
fitness, and functional reserve [37] and is positively affected
by exercise [38]. During our study, no HRV values were made
available for download, even if the user manual of the device
mentions it among the advanced health metrics provided by the
device [33]. HRV could not be derived from the raw data also,
because no R-R peak distance information is given.

Activity
Number of walked steps and distance covered are computed
using the 3-axis accelerometer only, as processing algorithms
can estimate the cadence. A traditional threshold of 10,000 daily
steps is well accepted as indicative of an active lifestyle [39],
and it is the threshold used in the Results section of this paper.
Distance is computed as the number of steps multiplied by the
stride length (based on sex and height information entered by
the user).

The time spent in physical activity is grouped in 4 categories
based on intensity and reported as a sum: sedentary, light,
moderate, and very active. Active zone minutes are a point-based
metric that counts the time spent in different activities, classified
and listed in order as fat burn, cardio, and peak. An overall
cardio fitness score, an approximation of cardiovascular fitness
as maximal oxygen consumption, is also estimated by
considering the user’s age, sex, BMI, and RHR.

HROS Feature
HROS is a feature that can be computed simply as the
instantaneous ratio between HR and steps. HR is generally
reported every 5 seconds, whereas the value of steps is sampled
every minute by the device. This value is increased by 1 with
the aim to avoid the division by 0 during sedentary situations.
The value of steps is considered to be constant in a minute,
whereas the available HR data are used. This gives an estimate
of the effort and functional capacity of the patient, as high value
of HROS indicates that the heartbeat is fast while the intensity
of the physical activity is moderate, and low value indicates a
restrained heartbeat while facing challenging physical activity.

This feature was used in a previously mentioned study for early
detection of SARS-CoV-2 infection before the appearance of
symptoms [31]. The authors of the study developed a structured
algorithm for computing HROS and detecting anomalous values,
through a dispersion approach that considers the deviation from
a normal distribution by means of an elliptic envelope method.
The code to process data was retrieved by the GitHub repository
associated with the study by Mishra et al [31]. The anomalies
are detected using a contamination, that is, the portion of outliers
in the data set, of 0.1. In this manner, the algorithm identifies
some outliers in the computed feature, corresponding to
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approximately 10% of the total. This value was chosen based
on the method described in the original paper [31], that is, an
iterative approach with increasing contamination values until
a consistent number of outliers is detected.

In our study, HROS was evaluated at 1% quantile. The 1%
quantile was chosen to account for the possibility that the
minimum HROS was an outlier.

NET-F Feature
In the previously cited article by Stamatakis et al [14], a measure
named NET-F was developed as an estimate of maximal oxygen
consumption, which does not require performing an actual
physical test. It is an indicator computed as a weighted sum of
information routinely collected and available from the electronic
health record, that is, sex, age, BMI, measured RHR, and
self-reported PAL obtained by questioning the patient.

The formula to compute the metric is the following:

NET – F = sex × 2.87 – (age × 0.11) – (BMI × 0.17)
– (RHR × 0.05) + (PAL) + 21.41

Where sex takes value of 1 for men and 0 for women, age is
expressed in years, BMI is computed as weight (kg) over the
square of height (cm), RHR is expressed in beats per minute
and measured during a hospital visit, and PAL is based on the
weekly frequency of moderate to vigorous physical activity
(MVPA) sessions—1 session is defined as either 30 minutes of
moderate-intensity activity or 15 minutes of vigorous-intensity
activity. The PAL value has 5 different levels:

1. Level 1—no physical activity; coefficient=0
2. Level 2—<1.5 MVPA sessions per week; coefficient=0.35
3. Level 3—1.5 to <3 MVPA sessions per week;

coefficient=0.29
4. Level 4—3 to 6 MVPA sessions per week; coefficient=0.64
5. Level 5—>6 MVPA sessions per week; coefficient=1.21

The frequency of weekly physical activity was obtained through
a series of questions to the patient. The latter is the most heavily
weighted variable, and it was assessed using subjective
self-evaluation. The authors state that “an NET-F method
containing an objectively assessed physical activity component
would have been an even more powerful feature.”

In our study, we used data obtained from the Fitbit instead of
clinical data. RHR values are estimated daily and can be
downloaded directly from the Fitbit device. With a wearable,
it is possible to measure the physical activity performed by the
patient during the week under study—the Fitbit records daily
minutes of physical activity in the different active zones. By
counting the number of sessions of 30 minutes of moderately

active minutes and sessions of 15 minutes of very active minutes,
PAL of each patient can be evaluated.

Statistical Analysis
The analysis of the relationships between descriptive variables
and outcomes is presented in two manners. First, the Pearson
correlation between the primary outcome and the Fitbit feature
is computed.

Then, a threshold was searched for HROS evaluated at 1%
quantile and NET-F to discriminate between a good and a bad
6MWD (≥350 m and <350 m, respectively), with the aim of
maximizing the difference in the primary outcome between
them. To test the difference in the distribution of a variable in
the 2 populations, the Wilcoxon rank sum test was used. To
find an optimal threshold that can distinguish between the 2
groups, the receiver operating characteristic (ROC) curve was
exploited, by plotting the results of true positive rate (TPR) and
false positive rate (FPR) and choosing the value representing
the best trade-off between a high TPR and a low FPR.

Clinical Outcomes
This study aimed at finding a method to manage data obtained
from wearable device, Fitbit Inspire 2, and create useful
knowledge for patient risk stratification. To do so, the reference
gold standard measure for patient assessment was the 6MWD,
measured in meters and collected by the medical staff during
the same visit during which the Fitbit is given to the patient.
This was the primary clinical outcome of the study. In this study,
350 m was considered as the threshold of 6MWD.

Ethics Approval
The study was approved by the Humanitas Research Hospital
Ethical Committee (institutional review board number 350/21;
April 20, 2021) and was registered in clinicaltrials.gov
(NCT05083598). Written informed consent was collected from
all patients.

Results

Overview
This section presents the results of the study. Correlation with
the primary outcome, the 6MWT walked distance, is reported.
A comparative analysis is outlined, determining differences
among populations defined by several criteria. Finally,
inconsistencies in the data are discussed.

In total, 31 patients were enrolled in the study. Patients’
characteristics, clinical scales results, and physiological
parameters measured during the 6MWT are summarized in
Table 1.

J Med Internet Res 2023 | vol. 25 | e42815 | p. 5https://www.jmir.org/2023/1/e42815
(page number not for citation purposes)

Angelucci et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 1. Patients’ characteristics, clinical scales results, and physiological parameters measured during the 6MWTa.

Men (n=22, 71%), mean (SD)Women (n=9, 29%), mean (SD)Total (N=31), mean (SD)

76.45 (4.63)75.11 (5.21)76.06 (4.75)Age (years)

172.41 (7.81)156.78 (10.23)167.87 (11.07)Height (cm)

74.09 (10.93)61.33 (11.81)70.39 (12.47)Weight (kg)

24.87 (2.89)24.73 (1.90)24.83 (2.61)BMI (kg/m2)

349.23 (73.01)279.33 (138.76)328.94 (99.53)6MWT (m)

78.32 (15.81)84.79 (16.20)80.20 (15.93)Mean HRb (bpmc)

71.09 (13.22)77.78 (11.80)73.03 (13)Resting HR (bpm)

88.68 (19.99)95.56 (21.48)90.68 (20.31)Maximum HR (bpm)

95.40 (1.81)94.85 (1.69)95.24 (1.76)Mean SpO2
d (%)

97.32 (1.21)96.78 (1.09)97.16 (1.19)Resting SpO2 (%)

93.14 (2.36)91.22 (3.87)92.58 (2.94)Minimum SpO2 (%)

13.56 (1.33)13.79 (1.99)13.71 (1.78)RRe at start (bpm)

18 (3.46)16.74 (2.84)17.14 (3.05)RR at end (bpm)

a6MWT: 6-Minute Walk Test.
bHR: heart rate.
cbpm: beats per minute (when referring to heart rate) or breaths per minute (when referring to respiratory rate).
dSpO2: peripheral blood oxygen saturation.
eRR: respiratory rate.

Correlation Analysis
The parameter that correlated best with the 6MWT was the
NET-F index (r=0.68; P<.001), computed as described in the
Methods section and shown in Figure 1A.

Among the coefficients composing the NET-F feature, the
wearable-derived PAL showed a moderate but significant
correlation of 0.50 (P=.004), whereas the others had poor results.
This is a confirmation of what the authors reported in a
previously mentioned study [14]. Moreover, in the study by
Stamatakis et al [14], the composed metric is more powerful
than the self-reported PAL. However, in our study, the PAL is
derived from wearable data; thus, it is an objective measure of
the actually performed physical activity.

The RHR measured daily by the device proved to be a useful
feature (Figure 1B). The average over the whole acquisition
period for each patient had r=–0.39 (P=.03), even if some
patients did not wear the device at night, which is the period
during which the evaluation of this dimension is preferred.

The HROS feature expresses high fitness condition when its
value is low. When the number of walked steps is very high,
the HROS value can go below 1. The correlation of the 6MWD
with the HROS evaluated at 1% quantile HROS was significant,
with Pearson coefficient of −0.39 (P=.04; Figure 1C). In the

figure, it can be noted that the linear correlation line slope would
be steep, and the correlation would be high if the single outlier
at the extreme right is removed.

Fitbit step count had a fair correlation of 0.59 with the 6MWT
(P<.001) when considering the average number of daily steps
(Figure 1D).

Figure 2 shows the distribution of daily steps for each patient
following the order of the 6MWT results on the x-axis. The
horizontal threshold represents 10,000 daily steps, and the
vertical red line indicates the 350-m threshold for the walk test.
It is noticeable that patients below the 6MWT threshold have
a consistently low number of steps, below the daily 10,000 steps,
whereas patients on the right side of the graph have great
variance and surpass the threshold more often.

To evaluate the performance of patients, it is possible to consider
the mean daily steps or the maximum daily steps, that is, the
best value of steps achieved during the test period. The latter is
more representative of the ability to walk a certain distance. If
the mean number of steps per patient is considered, very few
patients are above the threshold. The conditional probability of
having 6MWT result <350 m if the mean number of steps is
<10,000 is 0.53. The conditional probability of having 6MWT
result <350 m if the maximum number of steps is <10,000 is
0.75.

J Med Internet Res 2023 | vol. 25 | e42815 | p. 6https://www.jmir.org/2023/1/e42815
(page number not for citation purposes)

Angelucci et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 1. (A) Correlation between the 6-Minute Walk Test (6MWT) distance and Non-Exercise Testing Cardiorespiratory Fitness (NET-F), (B)
correlation between the 6MWT distance and resting heart rate (RHR), (C) correlation between the 6MWT distance and heart rate over steps (HROS)
at 1% quantile, and (D) correlation between the 6MWT distance and daily steps. bpm: beats per minute.

Figure 2. Daily step count with patients, ordered by 6-Minute Walk Test (6MWT) result.

Comparative Analysis
Although several normative studies on optimal daily steps and
RHR values are already available in the literature, it is of interest
to determine thresholds of HROS and NET-F that might help
to discriminate between patients’ fitness levels. As stated in the
Methods section, the outcome for the area under the curve
(AUC) analysis is to determine whether the patient performed
a good or bad 6MWT (distance ≥350 m or <350 m,
respectively).

Regarding the NET-F feature, the ROC curve has AUC of 0.80,
and the optimal threshold, with TPR of 0.88 and FPR of 0.43,
is 7.78. This value can significantly discriminate the 6MWT
walked distance (P=.01). The ROC curve is shown in Figure

3B, and the 6MWT results for the 2 populations are shown in
Figure 3D. The associated confusion matrix is shown in Figure
3F.

This threshold falls between the two thresholds proposed by
Stamatakis et al [14]—9.8 and 6.8 for men and women,
respectively, thus confirming the reliability of this feature.

A similar pipeline was adopted for the HROS feature, excluding
3% (1/31) of the patients owing to lack of data. Here, the
approach involving 1% quantile had area under the ROC curve
of 0.76, whereas the approach using the minimum value, besides
including outliers in the evaluation, had poor AUC of 0.56. No
threshold for this method was able to separate groups based on
the 6MWD results. Instead, the version using 1% quantile
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highlighted a threshold of 1.24 beats per minute/step, which
included 65% (20/31) of the patients in the fit group and
classified 32% (10/31) of the patients as unfit (TPR=0.94;
FPR=0.31). The ROC curve (Figure 3A) and the distributions

of the primary outcome obtained using this method (Figure 3C)
are represented. Moreover, in this case, the distributions are
significantly different when tested with the Wilcoxon rank sum
test (P<.001). The confusion matrix is shown in Figure 3E.

Figure 3. (A) Receiver operating characteristic (ROC) curve for 1% quantile heart rate over steps (HROS) threshold, (B) ROC curve for Non-Exercise
Testing Cardiorespiratory Fitness (NET-F) threshold, (C) 6-Minute Walk Test (6MWT) distributions with chosen HROS threshold of 1.214, (D) 6MWT
distributions with chosen NET-F threshold of 7.78, (E) contingency table of the 6MWT distance threshold of 350 m versus HROS 1% quantile threshold
of 1.214, and (F) contingency table of the 6MWT distance threshold of 350 m versus NET-F threshold of 7.78. FPR: false positive rate; TPR: true
positive rate.

Inconsistency of the Data
The data gathered in this study presented some inconsistencies
among the populations and for certain measures. The reasons
are different, attributable to patients’ compliance with the
protocol, mistakes by the research staff, and Fitbit Inspire 2
itself. This led to the adaptation of some methods to analyze
some data and the abandonment of some measures owing to
implausibility.

Patients were instructed to wear the device for 7 days (with
flexibility of –2 to +2 days); however, 6% (2/31) of the patients
did not wear the device at night, probably because of discomfort
reasons. This caused a deviation in the data format and required
appropriate modifications to the code to process and analyze
the data. Therefore, a different version of the pipeline was used

for processing the data from this 6% (2/31) of the patients, for
managing the lack of HR and RHR data during the night.

A similar process was adopted for a patient who wore a device
with mistaken settings, causing the loss of HR recordings and
all related measures, such as activity minutes.

HR data presented considerable gaps in the recording, even for
continuous recordings. As stated by the manufacturer, the
normal sampling period should be between 5 and 15 seconds;
however, lack of data for >15 seconds was common. In Figure
4, the time difference between successive samples is shown for
a patient who wore the smartwatch continuously. The image at
the bottom is a zoomed-in version of the image on the top.
Therefore, it was not possible to estimate HRV as no
beat-by-beat information was available.
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Figure 4. (A) Time distance of successive heart rate samples in a patient who was compliant with the protocol and (B) focus on the distribution of low
distances.

Discussion

This section focuses on the achieved results of the study, then
presents the main technological and ethical issues encountered
in this specific study and in similar ones, and finally provides
a short conclusion.

Achieved Results
This study presents the limitations of observational research; it
cannot establish causal relationships because no control group
has been defined and information about the survival of the
patients after the operation has not been gathered. However, it
is useful to highlight the relationships between a widespread
and well-accepted method of patient assessment (6MWT results)
and measures obtained using a low-cost consumer-grade
wearable device.

A strong correlation was found between the 6MWT and several
measures obtained from the Fitbit. Simple measures, such as
the RHR and daily step count, and composed indices, such as
the NET-F and HROS, demonstrated close relationship with
the primary outcome. Overall, the number of measures from
this study that showed a relationship with gold standard methods
used in preoperative assessment allows us to consider the
wearable, Fitbit Inspire 2, as a promising starting point for the
adoption of wearable technology in the evaluation of functional
capacity of patients in clinical contexts.

Regarding the protocol of the experiment, the number of patients
eligible for the study, also considering stringent criteria of age,
total body anesthesia, and ability to perform the 6MWT, was
limited.

Owing to their mobility problems or risky health conditions (eg,
myocardial infarction), some patients could not be included in
the study. This implies that patients at high risk generally do
not perform the gold standard test at all in the clinical practice
currently. However, this could be overcome by simply delivering
a wearable device to such patients and asking them to wear it
while performing normal daily life activities.

Limitations and Future Developments
One of the main limitations of this study is the lack of HRV
data, as this parameter is an indicator of cardiac health and
fitness and provides prognostic information about clinical
populations [40]. As explained in detail in the Methods section,
HRV could not be computed owing to the lack of beat-to-beat
time series, and no HRV data were available for download. In
the Fitbit Inspire 2 user manual [33], it is written that this metric
is available; however, on the website [41], there is a disclaimer
that HRV is “only available in selected countries,” and this is
a possible reason why we could not retrieve any data. The lack
of HRV data appears to be easy to overcome, especially by
using Fitbit smartwatches instead of activity trackers. It is
possible to design custom apps for Fitbit smartwatches, but not
for trackers, by exploiting the software development kit
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available. Research-grade Fitbits and particularly smartwatches
also enable direct download of data from the device. These are
major points in favor of using smartwatches instead of trackers
for clinical studies. However, research-grade devices and
smartwatches are more expensive than commercial
trackers—this can be a problem, considering the potential for
using wearable technology to cut costs and expand the
availability of monitoring for the general population.

In addition, accuracy of the data obtained using the device,
Fitbit Inspire 2, has not been extensively discussed in scientific
literature. Most of the studies comparing the goodness of
measure from a Fitbit wearable with a clinical-grade measure
used different models, such as Charge, Surge, or Versa [42,43].
This variability raises concerns about interoperability also, as
different wearable devices usually collect, label, and assess data
in different ways, and it can be difficult to compare and verify
the same measurement made by different devices.

The results of studies about the reliability of Fitbit smartwatches
in clinical settings are inconsistent. Regarding HR measurement
from a Fitbit wrist-worn device, a study [44] found that the
accuracy of HR estimation from a PPG sensor (<10% mean
absolute error with a gold standard electrocardiogram) across
24 hours and during various activities was acceptable. Other
studies [45] instead reported a substantial variation in accuracy
according to the type of activity performed, and a relevant
percentage of HR measurements was substantially inaccurate.
Regarding physical activity, a study from 2015 [46] found a
strong correlation in step counts between measures of Fitbit and
gold standard methods. However, they found low accuracy at
slow walking pace, which is common in older adults, and
pointed out the need for further studies involving the older
population, which is the main population of this study. These
results highlight the need to focus on data accuracy and quality
as a central issue of wearable technology for health and the need
to develop collaborative and common standards to define a
framework for the assessment and promotion of data quality.

Accessibility was also one of the major issues in this study. The
study was conducted independently from Google and Fitbit,
and the chosen device is an activity tracker with no access to
the firmware from outside. It was not possible to obtain the raw
data from the accelerometer and the PPG, and only the structured
information as output from internal proprietary algorithms was
accessible. Although the download process from the Fitbit portal
did not cause any problem, neither the design nor the correctness
of the algorithms could be assessed. Accessibility is a crucial

issue when assessing the accuracy, quality, and validity of
wearables as a promising technology for health practitioners
and biomedical researchers. However, accessibility is also
crucial to assess the security and privacy of the health data
collected through wearable technology and thus to determine
the fairness and equity of wearable technology for patients.

All studies using wearable devices as activity trackers are limited
in patients with mobility issues, such as those with lower limb
fractures, those with peripheral vascular disease leading to
limited ability to walk (ie, intermittent claudication), or patients
who are bedridden. However, this limitation is shared by all
methods of cardiovascular fitness assessment, including
cardiopulmonary exercise testing and 6MWT. In these patients,
the only option available is drug-induced stress testing, such as
dobutamine stress echocardiogram, where cardiac reserve and
possible inducible myocardial ischemia are tested through a
powerful but reversible cardiac inotrope [47]. In this small
proportion of patients who are at high risk, other types of
wearable devices or prolonged monitoring over weeks should
be proposed in the future.

Conclusions
This study is the result of an observational study, and it was
useful to highlight the relationships between widespread
methods of preoperative assessment and data obtained using a
low-cost commercial wearable device. This is a promising
starting point for the adoption of wearable technology for the
evaluation of patients in clinical contexts.

Future developments of the study should include a large pool
of participants and assess the validity of other types of devices.
Interoperability should be pursued for manufacturing techniques
and processing algorithms, to allow the comparison of devices
from different brands. An overarching and evidence-based
consensus on the validity of these technologies is essential to
integrate it in health care systems. A reflection on the epistemic
role of wearables is due, with focus on the relative aspects of
data quality, which is strictly bound to the context of application.
Ethical implications should be analyzed, and regulations should
be attentive to preserve patients’ interests.

There is a diffuse consensus that if developers, researchers,
health care professionals, and regulatory institutions cooperate
with the aim of finding solutions that focus on the needs and
well-being of the patients, unique opportunities will be
exploited, and breakthrough results will be achieved in the future
with wearable technologies.

Conflicts of Interest
None declared.

References

1. Weiser TG, Regenbogen SE, Thompson KD, Haynes AB, Lipsitz SR, Berry WR, et al. An estimation of the global volume
of surgery: a modelling strategy based on available data. Lancet 2008 Jul 12;372(9633):139-144. [doi:
10.1016/S0140-6736(08)60878-8] [Medline: 18582931]

2. Rose J, Weiser TG, Hider P, Wilson L, Gruen RL, Bickler SW. Estimated need for surgery worldwide based on prevalence
of diseases: a modelling strategy for the WHO global health estimate. Lancet Glob Health 2015 Apr 27;3 Suppl 2(Suppl
2):S13-S20 [FREE Full text] [doi: 10.1016/S2214-109X(15)70087-2] [Medline: 25926315]

J Med Internet Res 2023 | vol. 25 | e42815 | p. 10https://www.jmir.org/2023/1/e42815
(page number not for citation purposes)

Angelucci et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.1016/S0140-6736(08)60878-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18582931&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S2214-109X(15)70087-2
http://dx.doi.org/10.1016/S2214-109X(15)70087-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25926315&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


3. West M, Jack S, Grocott MP. Perioperative cardiopulmonary exercise testing in the elderly. Best Pract Res Clin Anaesthesiol
2011 Sep;25(3):427-437. [doi: 10.1016/j.bpa.2011.07.004] [Medline: 21925407]

4. Richardson K, Levett DZ, Jack S, Grocott MP. Fit for surgery? Perspectives on preoperative exercise testing and training.
Br J Anaesth 2017 Dec 01;119(suppl_1):i34-i43 [FREE Full text] [doi: 10.1093/bja/aex393] [Medline: 29161402]

5. Enright PL. The six-minute walk test. Respir Care 2003 Aug;48(8):783-785 [FREE Full text] [Medline: 12890299]
6. Contini M, Angelucci A, Aliverti A, Gugliandolo P, Pezzuto B, Berna G, et al. Comparison between PtCO2 and PaCO2

and derived parameters in heart failure patients during exercise: a preliminary study. Sensors (Basel) 2021 Oct 07;21(19):6666
[FREE Full text] [doi: 10.3390/s21196666] [Medline: 34640985]

7. Chetta A, Zanini A, Pisi G, Aiello M, Tzani P, Neri M, et al. Reference values for the 6-min walk test in healthy subjects
20-50 years old. Respir Med 2006 Sep;100(9):1573-1578 [FREE Full text] [doi: 10.1016/j.rmed.2006.01.001] [Medline:
16466676]

8. Rasekaba T, Lee AL, Naughton MT, Williams TJ, Holland AE. The six-minute walk test: a useful metric for the
cardiopulmonary patient. Intern Med J 2009 Aug;39(8):495-501. [doi: 10.1111/j.1445-5994.2008.01880.x] [Medline:
19732197]

9. Opasich C, Pinna GD, Mazza A, Febo O, Riccardi PG, Capomolla S, et al. Reproducibility of the six-minute walking test
in patients with chronic congestive heart failure: practical implications. Am J Cardiol 1998 Jun 15;81(12):1497-1500. [doi:
10.1016/s0002-9149(98)00218-5] [Medline: 9645905]

10. Jetté M, Sidney K, Blümchen G. Metabolic equivalents (METS) in exercise testing, exercise prescription, and evaluation
of functional capacity. Clin Cardiol 1990 Aug;13(8):555-565 [FREE Full text] [doi: 10.1002/clc.4960130809] [Medline:
2204507]

11. Wallis SJ, Wall J, Biram RW, Romero-Ortuno R. Association of the clinical frailty scale with hospital outcomes. QJM
2015 Dec;108(12):943-949. [doi: 10.1093/qjmed/hcv066] [Medline: 25778109]

12. Hlatky MA, Boineau RE, Higginbotham MB, Lee KL, Mark DB, Califf RM, et al. A brief self-administered questionnaire
to determine functional capacity (the Duke Activity Status Index). Am J Cardiol 1989 Sep 15;64(10):651-654. [doi:
10.1016/0002-9149(89)90496-7] [Medline: 2782256]

13. Rockwood K, Song X, MacKnight C, Bergman H, Hogan DB, McDowell I, et al. A global clinical measure of fitness and
frailty in elderly people. CMAJ 2005 Aug 30;173(5):489-495 [FREE Full text] [doi: 10.1503/cmaj.050051] [Medline:
16129869]

14. Stamatakis E, Hamer M, O'Donovan G, Batty GD, Kivimaki M. A non-exercise testing method for estimating
cardiorespiratory fitness: associations with all-cause and cardiovascular mortality in a pooled analysis of eight
population-based cohorts. Eur Heart J 2013 Mar;34(10):750-758 [FREE Full text] [doi: 10.1093/eurheartj/ehs097] [Medline:
22555215]

15. Piercy KL, Troiano RP, Ballard RM, Carlson SA, Fulton JE, Galuska DA, et al. The physical activity guidelines for
Americans. JAMA 2018 Nov 20;320(19):2020-2028 [FREE Full text] [doi: 10.1001/jama.2018.14854] [Medline: 30418471]

16. Malik M, Bigger JT, Camm AJ, Kleiger RE, Malliani A, Moss AJ, Task force of the European Society of Cardiology and
the North American Society of Pacing and Electrophysiology. Heart rate variability. Standards of measurement, physiological
interpretation, and clinical use. Eur Heart J 1996 Mar 01;17(3):354-381 [FREE Full text] [doi:
10.1093/oxfordjournals.eurheartj.a014868] [Medline: 8737210]

17. Aliverti A. Wearable technology: role in respiratory health and disease. Breathe (Sheff) 2017 Jun;13(2):e27-e36 [FREE
Full text] [doi: 10.1183/20734735.008417] [Medline: 28966692]

18. Angelucci A, Aliverti A. Telemonitoring systems for respiratory patients: technological aspects. Pulmonology 2020
Jul;26(4):221-232 [FREE Full text] [doi: 10.1016/j.pulmoe.2019.11.006] [Medline: 31932232]

19. Aliverti A, Evangelisti M, Angelucci A. Wearable tech for long-distance runners. In: Canata GL, Jones H, Krutsch W,
Thoreux P, Vascellari A, editors. The Running Athlete: A Comprehensive Overview of Running in Different Sports. Berlin,
Germany: Springer; 2022:77-89.

20. Bernasconi S, Angelucci A, Aliverti A. A scoping review on wearable devices for environmental monitoring and their
application for health and wellness. Sensors (Basel) 2022 Aug 11;22(16):5994 [FREE Full text] [doi: 10.3390/s22165994]
[Medline: 36015755]

21. Curone D, Secco EL, Tognetti A, Loriga G, Dudnik G, Risatti M, et al. Smart garments for emergency operators: the
ProeTEX project. IEEE Trans Inf Technol Biomed 2010 May;14(3):694-701. [doi: 10.1109/TITB.2010.2045003] [Medline:
20371413]

22. Floris C, Solbiati S, Landreani F, Damato G, Lenzi B, Megale V, et al. Feasibility of heart rate and respiratory rate estimation
by inertial sensors embedded in a virtual reality headset. Sensors (Basel) 2020 Dec 14;20(24):7168 [FREE Full text] [doi:
10.3390/s20247168] [Medline: 33327531]

23. Kinnunen H, Rantanen A, Kenttä T, Koskimäki H. Feasible assessment of recovery and cardiovascular health: accuracy
of nocturnal HR and HRV assessed via ring PPG in comparison to medical grade ECG. Physiol Meas 2020 May
07;41(4):04NT01. [doi: 10.1088/1361-6579/ab840a] [Medline: 32217820]

J Med Internet Res 2023 | vol. 25 | e42815 | p. 11https://www.jmir.org/2023/1/e42815
(page number not for citation purposes)

Angelucci et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.1016/j.bpa.2011.07.004
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21925407&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S0007-0912(17)54113-6
http://dx.doi.org/10.1093/bja/aex393
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29161402&dopt=Abstract
http://rc.rcjournal.com/cgi/pmidlookup?view=short&pmid=12890299
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12890299&dopt=Abstract
https://air.unimi.it/handle/2434/895263
http://dx.doi.org/10.3390/s21196666
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34640985&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S0954-6111(06)00006-0
http://dx.doi.org/10.1016/j.rmed.2006.01.001
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16466676&dopt=Abstract
http://dx.doi.org/10.1111/j.1445-5994.2008.01880.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19732197&dopt=Abstract
http://dx.doi.org/10.1016/s0002-9149(98)00218-5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9645905&dopt=Abstract
https://onlinelibrary.wiley.com/resolve/openurl?genre=article&sid=nlm:pubmed&issn=0160-9289&date=1990&volume=13&issue=8&spage=555
http://dx.doi.org/10.1002/clc.4960130809
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=2204507&dopt=Abstract
http://dx.doi.org/10.1093/qjmed/hcv066
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25778109&dopt=Abstract
http://dx.doi.org/10.1016/0002-9149(89)90496-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=2782256&dopt=Abstract
http://www.cmaj.ca/cgi/pmidlookup?view=long&pmid=16129869
http://dx.doi.org/10.1503/cmaj.050051
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16129869&dopt=Abstract
https://europepmc.org/abstract/MED/22555215
http://dx.doi.org/10.1093/eurheartj/ehs097
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22555215&dopt=Abstract
https://europepmc.org/abstract/MED/30418471
http://dx.doi.org/10.1001/jama.2018.14854
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30418471&dopt=Abstract
https://www.escardio.org/static-file/Escardio/Guidelines/Scientific-Statements/guidelines-Heart-Rate-Variability-FT-1996.pdf
http://dx.doi.org/10.1093/oxfordjournals.eurheartj.a014868
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8737210&dopt=Abstract
https://europepmc.org/abstract/MED/28966692
https://europepmc.org/abstract/MED/28966692
http://dx.doi.org/10.1183/20734735.008417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28966692&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S2531-0437(19)30214-4
http://dx.doi.org/10.1016/j.pulmoe.2019.11.006
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31932232&dopt=Abstract
https://www.mdpi.com/resolver?pii=s22165994
http://dx.doi.org/10.3390/s22165994
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36015755&dopt=Abstract
http://dx.doi.org/10.1109/TITB.2010.2045003
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20371413&dopt=Abstract
https://www.mdpi.com/resolver?pii=s20247168
http://dx.doi.org/10.3390/s20247168
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33327531&dopt=Abstract
http://dx.doi.org/10.1088/1361-6579/ab840a
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32217820&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


24. Chu M, Nguyen T, Pandey V, Zhou Y, Pham HN, Bar-Yoseph R, et al. Respiration rate and volume measurements using
wearable strain sensors. NPJ Digit Med 2019 Feb 13;2:8 [FREE Full text] [doi: 10.1038/s41746-019-0083-3] [Medline:
31304358]

25. Angelucci A, Cavicchioli M, Cintorrino IA, Lauricella G, Rossi C, Strati S, et al. Smart textiles and sensorized garments
for physiological monitoring: a review of available solutions and techniques. Sensors (Basel) 2021 Jan 26;21(3):814 [FREE
Full text] [doi: 10.3390/s21030814] [Medline: 33530403]

26. Angelucci A, Kuller D, Aliverti A. A home telemedicine system for continuous respiratory monitoring. IEEE J Biomed
Health Inform 2021 Apr;25(4):1247-1256. [doi: 10.1109/JBHI.2020.3012621] [Medline: 32750977]

27. Antonelli A, Guilizzoni D, Angelucci A, Melloni G, Mazza F, Stanzi A, et al. Comparison between the Airgo™ device
and a metabolic cart during rest and exercise. Sensors (Basel) 2020 Jul 15;20(14):3943 [FREE Full text] [doi:
10.3390/s20143943] [Medline: 32679882]

28. Angelucci A, Camuncoli F, Galli M, Aliverti A. A wearable system for respiratory signal filtering based on activity: a
preliminary validation. In: Proceedings of the 2022 IEEE International Workshop on Sport, Technology and Research.
2022 Presented at: STAR '22; July 6-8, 2022; Cavalese, Italy p. 19-23. [doi: 10.1109/star53492.2022.9860001]

29. Perez MV, Mahaffey KW, Hedlin H, Rumsfeld JS, Garcia A, Ferris T, Apple Heart Study Investigators. Large-scale
assessment of a smartwatch to identify atrial fibrillation. N Engl J Med 2019 Nov 14;381(20):1909-1917 [FREE Full text]
[doi: 10.1056/NEJMoa1901183] [Medline: 31722151]

30. Wang Z, Yang Z, Dong T. A review of wearable technologies for elderly care that can accurately track indoor position,
recognize physical activities and monitor vital signs in real time. Sensors (Basel) 2017 Feb 10;17(2):341 [FREE Full text]
[doi: 10.3390/s17020341] [Medline: 28208620]

31. Mishra T, Wang M, Metwally AA, Bogu GK, Brooks AW, Bahmani A, et al. Pre-symptomatic detection of COVID-19
from smartwatch data. Nat Biomed Eng 2020 Dec;4(12):1208-1220 [FREE Full text] [doi: 10.1038/s41551-020-00640-6]
[Medline: 33208926]

32. Sim I. Mobile devices and health. N Engl J Med 2019 Sep 05;381(10):956-968. [doi: 10.1056/NEJMra1806949] [Medline:
31483966]

33. Fitbit Inspire 2: user manual Version 1.10. Fitbit. 2021. URL: https://help.fitbit.com/manuals/manual_inspire_2_en_US.
pdf [accessed 2023-01-18]

34. Haghayegh S, Khoshnevis S, Smolensky MH, Diller KR, Castriotta RJ. Accuracy of wristband Fitbit models in assessing
sleep: systematic review and meta-analysis. J Med Internet Res 2019 Nov 28;21(11):e16273 [FREE Full text] [doi:
10.2196/16273] [Medline: 31778122]

35. Nanchen D. Resting heart rate: what is normal? Heart 2018 Jul;104(13):1048-1049. [doi: 10.1136/heartjnl-2017-312731]
[Medline: 29382691]

36. Monmeneu JV, Chorro FJ, Bodí V, Sanchis J, Llácer A, García-Civera R, et al. Relationships between heart rate variability,
functional capacity, and left ventricular function following myocardial infarction: an evaluation after one week and six
months. Clin Cardiol 2001 Apr;24(4):313-320 [FREE Full text] [doi: 10.1002/clc.4960240411] [Medline: 11303700]

37. Lewis MJ, Kingsley M, Short AL, Simpson K. Rate of reduction of heart rate variability during exercise as an index of
physical work capacity. Scand J Med Sci Sports 2007 Dec;17(6):696-702. [doi: 10.1111/j.1600-0838.2006.00616.x]
[Medline: 17346290]

38. Stâhle A, Nordlander R, Bergfeldt L. Aerobic group training improves exercise capacity and heart rate variability in elderly
patients with a recent coronary event. A randomized controlled study. Eur Heart J 1999 Nov;20(22):1638-1646. [doi:
10.1053/euhj.1999.1715] [Medline: 10543927]

39. Le Masurier GC, Sidman CL, Corbin CB. Accumulating 10,000 steps: does this meet current physical activity guidelines?
Res Q Exerc Sport 2003 Dec;74(4):389-394. [doi: 10.1080/02701367.2003.10609109] [Medline: 14768840]

40. Grant CC, Murray C, Janse van Rensburg DC, Fletcher L. A comparison between heart rate and heart rate variability as
indicators of cardiac health and fitness. Front Physiol 2013 Nov 20;4:337 [FREE Full text] [doi: 10.3389/fphys.2013.00337]
[Medline: 24312058]

41. Fitbit Inspire 2. Fitbit. URL: https://www.fitbit.com/global/us/products/trackers/inspire2 [accessed 2023-01-18]
42. Evenson KR, Goto MM, Furberg RD. Systematic review of the validity and reliability of consumer-wearable activity

trackers. Int J Behav Nutr Phys Act 2015 Dec 18;12:159 [FREE Full text] [doi: 10.1186/s12966-015-0314-1] [Medline:
26684758]

43. Shcherbina A, Mattsson CM, Waggott D, Salisbury H, Christle JW, Hastie T, et al. Accuracy in wrist-worn, sensor-based
measurements of heart rate and energy expenditure in a diverse cohort. J Pers Med 2017 May 24;7(2):3 [FREE Full text]
[doi: 10.3390/jpm7020003] [Medline: 28538708]

44. Nelson BW, Allen NB. Accuracy of consumer wearable heart rate measurement during an ecologically valid 24-hour period:
intraindividual validation study. JMIR Mhealth Uhealth 2019 Mar 11;7(3):e10828 [FREE Full text] [doi: 10.2196/10828]
[Medline: 30855232]

45. Etiwy M, Akhrass Z, Gillinov L, Alashi A, Wang R, Blackburn G, et al. Accuracy of wearable heart rate monitors in cardiac
rehabilitation. Cardiovasc Diagn Ther 2019 Jun;9(3):262-271 [FREE Full text] [doi: 10.21037/cdt.2019.04.08] [Medline:
31275816]

J Med Internet Res 2023 | vol. 25 | e42815 | p. 12https://www.jmir.org/2023/1/e42815
(page number not for citation purposes)

Angelucci et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://doi.org/10.1038/s41746-019-0083-3
http://dx.doi.org/10.1038/s41746-019-0083-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31304358&dopt=Abstract
https://www.mdpi.com/resolver?pii=s21030814
https://www.mdpi.com/resolver?pii=s21030814
http://dx.doi.org/10.3390/s21030814
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33530403&dopt=Abstract
http://dx.doi.org/10.1109/JBHI.2020.3012621
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32750977&dopt=Abstract
https://www.mdpi.com/resolver?pii=s20143943
http://dx.doi.org/10.3390/s20143943
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32679882&dopt=Abstract
http://dx.doi.org/10.1109/star53492.2022.9860001
https://europepmc.org/abstract/MED/31722151
http://dx.doi.org/10.1056/NEJMoa1901183
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31722151&dopt=Abstract
https://www.mdpi.com/resolver?pii=s17020341
http://dx.doi.org/10.3390/s17020341
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28208620&dopt=Abstract
https://europepmc.org/abstract/MED/33208926
http://dx.doi.org/10.1038/s41551-020-00640-6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33208926&dopt=Abstract
http://dx.doi.org/10.1056/NEJMra1806949
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31483966&dopt=Abstract
https://help.fitbit.com/manuals/manual_inspire_2_en_US.pdf
https://help.fitbit.com/manuals/manual_inspire_2_en_US.pdf
https://www.jmir.org/2019/11/e16273/
http://dx.doi.org/10.2196/16273
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31778122&dopt=Abstract
http://dx.doi.org/10.1136/heartjnl-2017-312731
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29382691&dopt=Abstract
https://europepmc.org/abstract/MED/11303700
http://dx.doi.org/10.1002/clc.4960240411
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11303700&dopt=Abstract
http://dx.doi.org/10.1111/j.1600-0838.2006.00616.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17346290&dopt=Abstract
http://dx.doi.org/10.1053/euhj.1999.1715
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10543927&dopt=Abstract
http://dx.doi.org/10.1080/02701367.2003.10609109
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=14768840&dopt=Abstract
https://europepmc.org/abstract/MED/24312058
http://dx.doi.org/10.3389/fphys.2013.00337
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24312058&dopt=Abstract
https://www.fitbit.com/global/us/products/trackers/inspire2
https://ijbnpa.biomedcentral.com/articles/10.1186/s12966-015-0314-1
http://dx.doi.org/10.1186/s12966-015-0314-1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26684758&dopt=Abstract
https://www.mdpi.com/resolver?pii=jpm7020003
http://dx.doi.org/10.3390/jpm7020003
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28538708&dopt=Abstract
https://mhealth.jmir.org/2019/3/e10828/
http://dx.doi.org/10.2196/10828
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30855232&dopt=Abstract
https://europepmc.org/abstract/MED/31275816
http://dx.doi.org/10.21037/cdt.2019.04.08
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31275816&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


46. Diaz KM, Krupka DJ, Chang MJ, Peacock J, Ma Y, Goldsmith J, et al. Fitbit®: an accurate and reliable device for wireless
physical activity tracking. Int J Cardiol 2015 Apr 15;185:138-140 [FREE Full text] [doi: 10.1016/j.ijcard.2015.03.038]
[Medline: 25795203]

47. Geleijnse ML, Fioretti PM, Roelandt JR. Methodology, feasibility, safety and diagnostic accuracy of dobutamine stress
echocardiography. J Am Coll Cardiol 1997 Sep;30(3):595-606 [FREE Full text] [doi: 10.1016/s0735-1097(97)00206-4]
[Medline: 9283514]

Abbreviations
6MWD: 6-Minute Walk Test distance
6MWT: 6-Minute Walk Test
AUC: area under the curve
FPR: false positive rate
HR: heart rate
HROS: heart rate over steps
HRV: heart rate variability
MVPA: moderate to vigorous physical activity
NET-F: Non-Exercise Testing Cardiorespiratory Fitness
PAL: physical activity level
PPG: photoplethysmography
RHR: resting heart rate
ROC: receiver operating characteristic
TPR: true positive rate
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