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Abstract

Background: Computer-aided detection, used in the screening and diagnosing of cognitive impairment, provides an objective,
valid, and convenient assessment. Particularly, digital sensor technology is a promising detection method.

Objective: This study aimed to develop and validate a novel Trail Making Test (TMT) using a combination of paper and
electronic devices.

Methods: This study included community-dwelling older adult individuals (n=297), who were classified into (1) cognitively
healthy controls (HC; n=100 participants), (2) participants diagnosed with mild cognitive impairment (MCI; n=98 participants),
and (3) participants with Alzheimer disease (AD; n=99 participants). An electromagnetic tablet was used to record each participant’s
hand-drawn stroke. A sheet of A4 paper was placed on top of the tablet to maintain the traditional interaction style for participants
who were not familiar or comfortable with electronic devices (such as touchscreens). In this way, all participants were instructed
to perform the TMT-square and circle. Furthermore, we developed an efficient and interpretable cognitive impairment–screening
model to automatically analyze cognitive impairment levels that were dependent on demographic characteristics and time-,
pressure-, jerk-, and template-related features. Among these features, novel template-based features were based on a vector
quantization algorithm. First, the model identified a candidate trajectory as the standard answer (template) from the HC group.
The distance between the recorded trajectories and reference was computed as an important evaluation index. To verify the
effectiveness of our method, we compared the performance of a well-trained machine learning model using the extracted evaluation
index with conventional demographic characteristics and time-related features. The well-trained model was validated using
follow-up data (HC group: n=38; MCI group: n=32; and AD group: n=22).

Results: We compared 5 candidate machine learning methods and selected random forest as the ideal model with the best
performance (accuracy: 0.726 for HC vs MCI, 0.929 for HC vs AD, and 0.815 for AD vs MCI). Meanwhile, the well-trained
classifier achieved better performance than the conventional assessment method, with high stability and accuracy of the follow-up
data.

Conclusions: The study demonstrated that a model combining both paper and electronic TMTs increases the accuracy of
evaluating participants’ cognitive impairment compared to conventional paper-based feature assessment.
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Introduction

By 2030, the number of people with dementia is expected to
reach 78 million worldwide. However, Alzheimer's Disease
International estimates that 75% to 90% of people with cognitive
impairment may not be diagnosed, especially in some low- and
middle-income countries [1]. The insufficient number of trained
clinicians and lack of attention to dementia remain major barriers
to diagnosis. In addition, the partial lockdown and even
shutdown of most countries to contain the spread of COVID-19
during 2020 to 2021 have worsened the situation [2]. As the
world’s older population continues to grow, the individual and
societal burdens of dementia and age-associated diseases will
increase substantially in the coming years. Digital assessment
tools can increase the efficiency and reduce the demand for
trained clinicians [3]. Further, they offer more reliable and
reproducible results by standardizing data collection and
processing procedures [4]. Several short screening scales
specially designed to detect cognitive decline are useful for
increasing the diagnosis rate and fostering appropriate and
timely support for individuals with dementia [5]. Electronic
tests based on these short screening scales have been designed
as fast and useful screening tools for rapid testing or self-testing
of cognitive impairment, which can provide support for the
early identification of at-risk older individuals at home.

The Trail Making Test (TMT) is a neuropsychological test that
evaluates psychomotor speed by connecting numbers as quickly
and accurately as possible, as well as the ability of set shifting
(also called task shifting), which involves the ability to alter a
response in the face of change [6,7]. The TMT consists of 2
parts: TMT-A [8], which require participants to connect numbers
in ascending order, and TMT-B [9], which introduces an
additional task associated with alternating sequences. Traditional
assessment methods are based on paper and pencil and obtain
the test score via the static information of the drawing outcome
and subjective physician judgment. However, the TMT does
not solely reflect frontal execution in cognitive impairment
[9,10]. Recent findings suggest that impairments in executive
function and working memory may also be critical indicators
of mild cognitive impairment (MCI). Subtle deficits in these
cognitive functions might occur years before the clinical
diagnosis of Alzheimer disease (AD) [11].

In the past decades, the TMT has proven to be sensitive to
cognitive changes and has been adapted in many countries,
including the United States, China, France, and Brazil. However,
TMT error analysis does not appear to provide additional
diagnostic utility for subjective cognitive decline, MCI, or AD
[12]. Computerized technology has recently gained increasing
attention and has been used to support both quantitative
assessments of cognitive decline and continuous patient
monitoring [13]. A wide variety of computerized neurocognitive
tasks have been explored using iPads (Apple Inc), laptops, and
tablets with touch-sensitive screens or external touchpads [4,14].
Furthermore, extensive research has investigated novel
approaches using smartphones for cognitive assessment, given

the increased use of mobile technology by older adults and the
reduced financial burden it entails. However, opponents of
digital assessment argue that even a slight format change in
paper-based assessment may result in significant differences in
the measured performance of patients to perceive or respond to
computer-generated and paper stimuli [15]. In addition,
familiarity with computer interfaces (eg, keyboard, mouse, and
touchscreen) becomes an independent variable that is unrelated
to the experimental design.

However, with the development of artificial intelligence
technology, many shortcomings of traditional cognition
assessments can be overcome [13,15]. Several studies have
found that a comprehensive assessment of cognition can reflect
a patient’s real status [16]. Although many studies have focused
on developing models based on the Clock Drawing Test [17,18]
and Rey Complex Figure Test [19,20], there is a relative scarcity
of studies based on the TMT. However, the TMT is a promising
test to represent the trajectory of cognitive decline [21]. This
study aimed to explore the mixing of paper and electronic TMTs
for the assessment of cognitive impairment that attempts to
maximize similarities to traditional tests. We also developed an
appropriate machine learning method to capture task-relevant
features from recorded hand-drawn trajectories, evaluated the
validity and effectiveness of the proposed framework for the
detection of MCI and dementia, and compared its performance
with that of the conventional assessment method.

Methods

Participants
All participants were recruited and evaluated at the Tongji
Hospital, affiliated with Tongji University, Shanghai, China.
Data collection took place between January 2018 and October
2021. Following the comprehensive neuropsychological
assessment tests based on 2011 National Institute on
Aging-Alzheimer’s Association guidelines [22], brain magnetic
resonance imaging or computed tomography scan, and serum
blood tests, our team, comprising board-certified psychiatrists
and neurologists, categorized participants into 3 groups: healthy
controls (HC), participants diagnosed with MCI, and participants
diagnosed with AD. The exclusion criteria were as follows: (1)
any lifetime history of stroke, head injury, substance abuse, or
major or medical psychiatric disorders; (2) large intracranial
vessel stenosis >50%; and (3) being unable to cooperate with
neuropsychological tests. We conducted a 1-year follow-up to
assess their cognitive function, including executive function
(TMT), and re-evaluated their cognitive diagnosis and executive
function.

Ethics Approval
Ethics approval (#2021-081) was granted by the institutional
review board of the Ethics Committee of Shanghai Tongji
Hospital in China and complied with the principles of the
Declaration of Helsinki. All participants were informed about
the study and the confidentiality of their data and signed a
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consent form before participating in the study at baseline and
follow-up. All data used in this analysis were deidentified. There
was no compensation for participating in this study.

Protocol
The combination of paper and electronic TMTs retains the same
psychometric properties as the standard TMT but provides more
abundant information for quantitative assessment, such as wrist
velocity and pressure level. In this study, participants were given
a printout of the TMT on A4 paper and were instructed to draw
lines to connect the circles or squares in ascending order. The
A4 paper was placed on an electromagnetic tablet (PH-1820-A;
PendoTech). This combination approach not only records
abundant information but also provides a better interactive
experience for older adults who are not familiar or comfortable
with electronic presentations. The trajectory points collected
by the digital tablet consisted of 4 variables, including Cartesian
coordinates (x and y), pressure, and time stamps. The Cartesian
coordinates represented the position of the trajectory points on
a 2D plane, where x ranged from 0 to 21,000 and y ranged from
0 to 29,700 because of the limited tablet size (210 × 297 mm).
The pressure variable indicates the strength of the drawing, and
the time stamp is the sampling time of the point. When the pen
is lifted in the air, the pressure becomes zero, which is highly
beneficial for calculating the preparation time or thinking time.
A flowchart of the study is shown in Figure 1.

The TMT was initially developed by Zhao et al [23] in 2013
with the aim of eliminating reliance on the Latin alphabet. In
this study, the TMT (also called the Shape Trial Test) assessment
had a standardized format and was formulated and administered
by well-trained neuropsychologists. In Part A, the participants
were instructed to draw a line between circles or squares as
rapidly as possible, joining consecutive numbers. Part B
displayed all the numbers twice, except for the number 1
(encircled by a square), with each corresponding number
encompassed in both circles and squares. Hence, Part B was
more demanding than Part A for visual perceptual processing
ability because of greater visual interference and longer path
length [19]. Parts A and B had 2 blocks: in the first block, the
numbers ranged from 1 to 8, and in the second block, the
numbers ranged from 1 to 25. In the first block, the participants
were allowed to attempt the test without restraint. The short
warm-up blocks introduced participants to an understanding of
the TMT-square and circle. However, in the second block,
several rules were introduced to regulate the participants’
behavior. Similar to the paper-based TMT, if a connection error
occurred, the examiner pointed it out and allowed the participant
to correct it. When the participant was confused about the next
target to connect for more than half a minute, the examiner
prompted the participant. In addition, to record complete
trajectories, participants were cautioned whenever they lifted
the pen from the paper. Finally, the number of connection errors,
prompts, and pen-up warnings was recorded.

Figure 1. Study flowchart. The combination of paper and electronic Trail Making Tests (TMTs): A4 paper placed on an electromagnetic tablet.
Participants performed the TMT using a digital pen, and the electromagnetic tablet collected the trajectory and pressure. Subsequently, the automated
analyzing program extracted features highly related to brain dysfunctions to facilitate diagnosis.
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Data Analysis

Overview
Participants underwent the TMT assessment, which was
conducted by multiple interns blinded to the diagnosis. We used
an automated drawing analysis procedure to extract features
that were highly related to brain dysfunction. The analysis
involved 2 parts. The first part was the cross-sectional data,
which included HC (n=100), participants diagnosed with MCI
(n=98), and those diagnosed with AD (n=99). The second part
was the follow-up data, which included 38 HC, 32 participants
with MCI, and 22 participants with AD. These key features
included (1) time-related features, (2) writing pressure–related
features, (3) jerk features, and (4) template-based features.

Time-Related Features
Time-related features are commonly used in the TMT. Extensive
research has confirmed that several factors influence the time
required to complete a trial, such as visual search and scanning
ability, motor planning and execution, and error correction.
Hence, we recorded the completion time of each block as well
as the time of motor preparation and execution. Meanwhile,
TMT-A and TMT-B provide different measures of cognitive
flexibility, so the difference in the completion time between
TMT-A and TMT-B is significantly correlated with cognitive
impairment level. Here, the difference and ratio of completion
times between the TMT-A and TMT-B were calculated as the
analysis features.

Writing Pressure-Related Features
Writing pressure can reflect the hand-muscle strength and
handgrip strength of patients. Particularly, in patients with
paralysis, the pressure is low. In this study, we calculated the
mean, minimum, and maximum writing pressures for each block.

Jerk Feature
An important characteristic of human movement is the minimum
jerk, where jerk indicates the time derivative of acceleration.
Hence, we leveraged jerk as an empirical measure of smoothness
to evaluate patient-hand vibrations likely caused by ataxia.

Template-Based Features
This study assumed that every trajectory in the HC group
contained components similar to the standard answer. Hence,
we can select a trajectory that is highly similar to all the others
within the HC group as the optimal template (or reference).
Specifically, a template-selection rule was used to select the
structure with the highest sequence similarity. First, we
randomly chose 10 trajectories from the control group of the
training set to form a subset and then calculated the
intertrajectory dynamic time warping distance (DTWD) within
the subset [24,25].

The trajectory was selected as the reference if the sum of the
intertrajectory DTWD with the other trajectories was the
smallest. Finally, the reference trajectory was Gaussian
smoothed with a sigma value of 0.1.

Next, we performed clustering and vector quantization (VQ)
on the reference and all trajectories of both the training and
testing sets to extract the key points. The codebook size was set
to 40. Clusters of points were found, based solely on the spatial
distribution, regardless of the time factor. Therefore, a few
points distant from the clustering center in time may be assigned
to the cluster, which in turn causes a deviation in the clustering
center. Here, we restructured the point set within each cluster
by removing points earlier or later than the mean time of the
last or next cluster, respectively. Subsequently, we recalculated
the arithmetic mean of the point set as a new clustering center
(also called key points). Eventually, we extracted template-based
features based on these key points, which included the DTWD
and Euclidean distance with or without relative weighting
between the corresponding key points between the reference
and all trajectories. Relative weights were used to quantify the
number of points in the corresponding clusters relative to the
trajectory length. The following Python (version 3.7; Python
Software Foundation) libraries were used to extract
template-based features: FastDTW [24,25] (version 0.3.4, mainly
devoted to DTWD computing) and scikit-learn (version 0.24.2;
mainly scipy.cluster.vq.kmeans2 for VQ). The workflow of the
proposed feature extraction method is illustrated in Figure 2.
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Figure 2. Workflow for feature extraction. A 5-fold cross-validation was introduced, where each fold served once as the test set to validate the
performance of the model while the remaining 4 folds were used to train the model. In other words, the validation was run 5 times, each run with a
different fold as the test set. The reported metrics (area under the curve, accuracy, etc) are the mean values of these 5 runs. Meanwhile, the template-based
feature extractor required special treatments. First, we calculated intertrajectory DTWD within the HC group and selected the trajectory that had minimum
average DTWD as the template. Second, we performed clustering and vector quantization to extract key points of the template and all other trajectories.
Finally, each trajectory was compared with the template to obtain template-based features. AD: Alzheimer disease; DTWD: dynamic time warping
distance; HC: health controls; MCI: mild cognitive impairment.

Results

Demographic Characteristics
The entire cohort (N=300) was stratified and randomly sampled
into a subset for model development and validation, with 100
participants in each group. Three participants with incomplete
data were excluded. The demographic characteristics of the

participants enrolled in the study are shown in Table 1. We used
chi-square tests and one-way ANOVA to assess the
independence of categorical variables between each pair of
groups. A highly significant association was observed between
the HC and AD groups in terms of age (P<.001) and educational
level (P<.001) and between the HC and MCI groups for age
(P=.24). In addition, there were no significant between-group
differences for sex (P=.06).

Table 1. Demographic characteristics of participants in this study.

P valueADc group
(n=99)

MCIb group
(n=98)

HCa group
(n=100)

Characteristic

Between-group differenceMCI vs ADHC vs ADHC vs MCI

.06.43.27.1936 (36)56 (57)47 (47)Sex, female, n (%)

<.001.02<.001.2472.44 (8.67)72.47 (7.45)69.83 (6.92)Age (years), mean (SD)

<.001.09<.001<.0018.32 (5.17)10.00 (4.01)12.46 (3.53)Education (years), mean (SD)

aHC: healthy controls.
bMCI: mild cognitive impairment.
cAD: Alzheimer disease.

Evaluation Outcomes
To investigate the associations between each feature and
cognitive decline associated with cognitive impairment, a
one-way ANOVA was used to explore whether differences
existed between the groups. As shown in Table 2, time-related
and writing pressure–related features were significantly

associated with cognitive ability (P<.001), whereas a lower
significance for the jerk feature indicated a weak discriminating
ability (TMT-A-1, HC vs AD, P=.57). Meanwhile, for TMT-B-2
in particular, the higher significance indicated that the TMT-B-2
had a more powerful ability to identify cognitive impairment
in patients (P<.001).
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Table 2. Analysis of the association between each feature and cognitive impairment using one-way ANOVA.

P valueADc group
(n=99)

MCIb group
(n=98)

HCa group
(n=100)

Features

MCI vs ADHC vs ADHC vs MCI

Completion time

<.001<.001<.00132.32019.42813.135TMTd-A-1

.03<.001<.00189.67172.99653.650TMT-A-2

.12.002<.00139.92047.99127.348TMT-B-1

<.001<.001.00172.415164.322138.307TMT-B-2

<.001<.001.7110.469–91.330–88.250Time difference between TMT-A-2 and
TMT-B-2

<.001<.001.002–51.693–8.8310.400Time ratio between TMT-A-2 and

TMT-B-2e

Preparation time

<.001<.001.0110.4123.0541.687TMT-A-1

.02.003<.00111.4853.0931.152TMT-A-2

.24<.001<.00115.11012.2154.174TMT-B-1

.94<.001<.0016.1095.9672.046TMT-B-2

Execution time

<.001<.001<.00121.90816.37511.448TMT-A-1

.21<.001<.00178.18669.90352.498TMT-A-2

.001.55<.00124.81035.77623.174TMT-B-1

<.001<.001.00466.306158.356136.261TMT-B-2

Averaged w rite pressure

.001<.001<.0011107.2421363.9051661.022TMT-A-1

<.001<.001<.0011013.5931410.7511683.553TMT-A-2

<.001<.001<.001871.7331387.9991674.923TMT-B-1

<.001<.001<.001554.0571319.6171684.781TMT-B-2

Minimal w rite pressure

.001<.001.01240.571370.000477.470TMT-A-1

<.001<.001<.001133.041212.536349.840TMT-A-2

<.001<.001<.00190.367191.268308.550TMT-B-1

<.001<.001<.00158.847169.691295.510TMT-B-2

Maximal w rite pressure

.03<.001<.0011244.7651431.9071697.950TMT-A-1

<.001<.001<.0011064.5001434.2471698.570TMT-A-2

<.001<.001<.001973.4591433.5151698.660TMT-B-1

<.001<.001<.001592.8271339.2161697.770TMT-B-2

Jerk

.25.57.00141.25144.53939.767TMT-A-1

<.001<.001.1757.06774.59172.802TMT-A-2

<.001<.001<.00137.43357.31554.051TMT-B-1

.03.08.148.81417.04412.067TMT-B-2

Interactive behaviorsf

J Med Internet Res 2023 | vol. 25 | e42637 | p. 6https://www.jmir.org/2023/1/e42637
(page number not for citation purposes)

Zhang et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


P valueADc group
(n=99)

MCIb group
(n=98)

HCa group
(n=100)

Features

MCI vs ADHC vs ADHC vs MCI

.24.01.040.2650.1440.040Number of errors in TMT-A-2

.01.45<.0010.5511.0720.430Number of errors in TMT-B-2

.01<.001.0032.5611.2060.680Number of pen-up warnings in TMT-
A-2

.81.09.011.5411.6290.980Number of pen-up warnings in TMT-
B-2

<.001<.001.0021.4900.2780.060Number of prompts in TMT-A-2

.85.22<.0012.7452.9591.420Number of prompts in TMT-B-2

aHC: healthy controls.
bMCI: mild cognitive impairment.
cAD: Alzheimer disease.
dTMT: Trail Making Test.
eWhen the denominator equals zero, it was set to –1 to avoid a divide-by-zero error.
fWhen the participant made a mistake, lifted the pen from the paper, or could not find the next target, the examiner indicated the error, warned, or
prompted him or her separately. Interactive behaviors were then counted.

We also explored the development of a supervised machine
learning model to validate the efficiency of these features. A
5-fold cross-validation was performed to evaluate the
performance and applicability of the decision-making model.
First, we implemented and compared different candidate
algorithms to screen for a robust learning model, including
support vector classification, adaptive boosting, random forest,
gradient boosting decision tree, and light gradient boosting
machine. The hyperparameters of the classifiers were maintained
at default values. In the future, a well-trained model will
eventually become a tool for ascertaining patients’ impaired
cognition in the clinical environment. As shown in Table 3, the
random forest model had the highest accuracy and area under
the curve among the popular machine learning algorithms.
Hence, the random forest model was used as the final predictive
model for further analysis.

Then, we characterized the benefit of mixing paper and
electronic TMTs via a quantitative comparison of the
performance of conventional features and all the
abovementioned features. The former is commonly used in the
traditional paper-based TMT, which involves completion time,
demographic features (sex, age, and educational level), and the
number of interactive behaviors (the number of mistakes, pen-up
warnings, and prompts). It is worth noting that the number of
interactive behaviors was not incorporated into the proposed
feature space because the proposed paper-and-electronic TMT
was expected to eliminate dependency on caregivers. A

performance comparison is presented in Table 4. This result
demonstrates that the proposed feature extraction method is
highly beneficial for improving diagnostic ability.

To intuitively highlight the contribution of each feature to the
prediction of the cognitive impairment level, we used the
Shapley additive explanations (SHAP) method [26]
(implemented by the Python package SHAP, version 0.41.0) to
visualize the variable importance. Specifically, we computed
the mean absolute SHAP value for each variable as the
importance index. As depicted in Table 5, the proposed features
play an important role in cognitive impairment screening,
particularly time-related features, writing pressure–related
features, and VQ without relative weighting. Meanwhile, the
TMT-B provided a better measure of cognitive flexibility and
produced more discriminative features than the TMT-A, which
is consistent with previous studies.

In addition, to verify the stability and robustness of the proposed
method, participants were encouraged to complete the follow-up
within 1 year of the first test. We trained the random forest
classifier using the initial data collection and validated it during
the follow-up assessments (HC group: n=38, MCI group: n=32,
and AD group: n=22). Notably, features containing
identity-related information, such as sex, age, and educational
level, were excluded to avoid data leakage. As listed in Table
6, the well-trained classifier achieved high stability and accuracy
in distinguishing the AD group from the HC and MCI groups.
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Table 3. Comparison of prediction performance of multiple algorithms.

AUCaAccuracyMachine learning algorithm

AD vs MCIHC vs ADHC vs MCIAD vs MCIHC vs ADdHCb vs MCIc

0.7910.8930.7610.7900.8940.762Support vector classification

0.7650.9240.6290.7640.9240.629Adaptive boosting

0.8160.9290.7250.8150.9290.726Random forest

0.7960.8980.7260.7950.8990.726Gradient boosting decision tree

0.7860.9140.7050.7850.9140.705Light gradient boosting machine

aAUC: area under the curve.
bHC: healthy controls.
cMCI: mild cognitive impairment.
dAD: Alzheimer disease.

Table 4. Diagnostic performance of the random forest model based on the conventional features or all features.

MCI vs ADHC vs ADcHCa vs MCIbMetrics

Conventional featuresd

0.7850.9140.716Accuracy

0.7850.9130.715AUCe

0.7450.8660.680Sensitivity

0.8260.9600.750Specificity

Proposed featuresf

0.8150.9290.726Accuracy

0.8160.9290.725AUC

0.7640.9080.701Sensitivity

0.8670.9500.750Specificity

aHC: healthy controls.
bMCI: mild cognitive impairment.
cAD: Alzheimer disease.
dCompletion time, demographic features (sex, age, and educational level), and the number of interactive behaviors (the number of mistakes, pen-up
warnings, prompts).
eAUC: area under the curve.
fWithout the number of interactive behaviors.
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Table 5. Importance of features for diagnosing brain dysfunction based on the random forest classifier. Since Shapley additive explanations (SHAP)
satisfies the key properties of additivity, SHAP values of features within the same group can be aggregated to signify the importance of a whole group
of features.

Absolute SHAP value, mean

Grouping by TMTa parts

0.036Averaged write pressure (B)

0.033Execution time (B)

0.030Completion time (A)

0.029Completion time (B)

0.028VQb without weights (B)

0.027Preparation time (B)

0.024DTWDc (B)

0.020Execution time (A)

0.019DTWD (A)

0.019Jerk (B)

Aggregating all the features within the same group

0.059Completion time

0.053Execution time

0.048Averaged write pressure

0.043DTWD

0.042Preparation time

0.040VQ without weights

0.029Jerk

0.026Minimal write pressure

0.015VQ with relative weights

0.014Maximal write pressure

aTMT: Trail Making Test.
bVQ: vector quantization.
cDTWD: dynamic time warping distance.

Table 6. Performance of well-trained classifier on the data collected by follow-up within 1 year after the first test. The random forest classifier was
trained on the data set from the first test.

AD vs othersMCI vs ADHC vs ADcHCa vs MCIbMetrics

0.9290.8570.8910.656Accuracy

0.9020.8480.9140.659AUCd

0.8500.8001.0000.690Sensitivity

0.9530.8970.8290.629Specificity

aHC: healthy controls.
bMCI: mild cognitive impairment.
cAD: Alzheimer disease.
dAUC: area under the curve.
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Discussion

Principal Findings
By analyzing 389 participants, we developed and validated a
novel combination mode of paper and electronic TMTs, which
not only maintained the traditional interaction style for
participants who were not familiar or comfortable with
electronic presentations but also offered both reproducible and
abundant information for automated cognitive assessment.
Furthermore, we obtained excellent classification accuracies of
0.726 (HC vs MCI), 0.929 (HC vs AD), and 0.815 (MCI vs
AD) using the random forest model. In addition, we also
validated our model with the participant’s follow-up data, and
we obtained accuracies of 0.656 (HC vs MCI), 0.891 (HC vs
AD), 0.857 (MCI vs AD), and 0.929 (AD vs others). We also
suggested 4 types of features that were associated with cognitive
decline. The experimental results demonstrate the effectiveness
of the model in enhancing the accuracy of cognitive impairment
screening.

Regarding the correlations between the extracted features and
cognitive decline, we used ANOVA to investigate the
significance of these features. Both conventional demographic
characteristics and time-related features were significantly
correlated with cognitive impairment. In addition, the
digitization of the TMT allowed us to leverage the recorded
data from a different perspective, such as writing pressure and
jerk. Writing pressure–related features were significantly
correlated with cognitive impairment levels, whereas jerk was
slightly correlated. This is in line with a similar previous study
[27], which showed that handwriting pressure plays an important
role in cognition decline.

The TMT is a widely used neuropsychological test to assess the
cognitive function of patients. Sakai et al [28] found that the
degree of collapse in the velocity profile shape increased
significantly when cognitive function decreased. However, the
TMT has limitations: the underlying executive functions
articulated during the task are not well discriminated, making
it a test with low specificity [29]. Second, in the traditional
TMT, only total time is quantified, which does not allow for a
detailed analysis. Third, there was a fixed spatial configuration
for each condition. We combined the electronic and paper
versions of the TMT to overcome these main limitations and
evaluated them in a group of older adults with cognitive
impairment.

The significance test suggests that the captured features can
help improve the performance of automatic screening models,
which was also validated by comparing the performance of the
machine learning model trained with conventional features and
the suggested features. Moreover, the significant differences
between the groups indicated that TMT Part B was a more useful
tool for measuring the level of cognitive impairment, which is
consistent with previous research. A longitudinal study
suggested that conversion appears to be less driven by changes
in the neurobiological trajectory of the disease than by a sharp

decline in functional ability and, to a lesser extent, by declines
in executive function [30]. A greater decline in executive
function has been shown to be associated with greater ventricular
enlargement and volume loss in the frontal, parietal, and
temporal lobes [31].

With the development of artificial intelligence and computing
technology, the use of digital technology to automatically
analyze and assess cognitive function has attracted the attention
of researchers because of its objectivity and potential to alleviate
the shortage of well-trained physical therapists [5,13,32-34].
Different machine learning algorithms have been used in clinical
disease diagnosis, such as deep neural networks [35], logistic
regressions, k-nearest neighbors, support vector machines, and
naive Bayes classifiers [36]. This study also used 5 common
machine learning methods to develop the model. AD is mainly
characterized by a dynamic process of neurocognitive changes
from normal cognition to MCI and progression to dementia,
with the jerk of the TMT also being dynamic. Therefore, in our
study, we used a novel trajectory modeling approach based on
metric learning (generalized metric learning VQ) [21,37] to
extract trajectory features that closely resemble realistic clinical
data. This represents a pivotal aspect of our study. The
importance of the features also shows that template-based
features play an important role in cognitive impairment
screening, especially for VQ with relative weighting (one of
the top-3 most important features). By incorporating all the
features, we observed an Improvement in classification accuracy,
suggesting that the electronic TMT features provide more
scientifically informative data and hold greater potential for
clinical application. We present preliminary evidence suggesting
that the proposed combination mode of paper and electronic
TMTs is user-friendly, practical, and effective. Our future study
plan will focus on the development of realistic applications that
hold clinically significant implications for at-home health care.

Limitations
This study had certain limitations. First, it was a single-center
study, and most participants lived in Shanghai. Thus, future
research should include multicenter cooperative studies to
account for regional and racial differences. Second, our findings
were based on the TMT-square and circle, and other types of
TMTs remain unexplored. Finally, further research is needed
to obtain a clear understanding of how these suggested features
relate to the neural changes underlying cognitive impairment.

Conclusions
We propose a novel combination of paper and electronic TMTs,
which is expected to not only retain the traditional interaction
style for participants who are not familiar or comfortable with
electronic presentations but also offer abundant information for
automated cognitive assessment. Further, we have proposed 4
types of features associated with cognitive decline for screening.
The results demonstrate the effectiveness of this approach and
suggest its potential to contribute to the development of a
practical tool for assessing cognitive problems in a clinical
environment.
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