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Abstract

Background: The promise of digital health is principally dependent on the ability to electronically capture data that can be
analyzed to improve decision-making. However, the ability to effectively harness data has proven elusive, largely because of the
quality of the data captured. Despite the importance of data quality (DQ), an agreed-upon DQ taxonomy evades literature. When
consolidated frameworks are developed, the dimensions are often fragmented, without consideration of the interrelationships
among the dimensions or their resultant impact.

Objective: The aim of this study was to develop a consolidated digital health DQ dimension and outcome (DQ-DO) framework
to provide insights into 3 research questions: What are the dimensions of digital health DQ? How are the dimensions of digital
health DQ related? and What are the impacts of digital health DQ?

Methods: Following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, a
developmental systematic literature review was conducted of peer-reviewed literature focusing on digital health DQ in predominately
hospital settings. A total of 227 relevant articles were retrieved and inductively analyzed to identify digital health DQ dimensions
and outcomes. The inductive analysis was performed through open coding, constant comparison, and card sorting with subject
matter experts to identify digital health DQ dimensions and digital health DQ outcomes. Subsequently, a computer-assisted
analysis was performed and verified by DQ experts to identify the interrelationships among the DQ dimensions and relationships
between DQ dimensions and outcomes. The analysis resulted in the development of the DQ-DO framework.

Results: The digital health DQ-DO framework consists of 6 dimensions of DQ, namely accessibility, accuracy, completeness,
consistency, contextual validity, and currency; interrelationships among the dimensions of digital health DQ, with consistency
being the most influential dimension impacting all other digital health DQ dimensions; 5 digital health DQ outcomes, namely
clinical, clinician, research-related, business process, and organizational outcomes; and relationships between the digital health
DQ dimensions and DQ outcomes, with the consistency and accessibility dimensions impacting all DQ outcomes.

Conclusions: The DQ-DO framework developed in this study demonstrates the complexity of digital health DQ and the necessity
for reducing digital health DQ issues. The framework further provides health care executives with holistic insights into DQ issues
and resultant outcomes, which can help them prioritize which DQ-related problems to tackle first.

(J Med Internet Res 2023;25:e42615) doi: 10.2196/42615
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Introduction

Background
The health care landscape is changing globally owing to
substantial investments in health information systems that seek
to improve health care outcomes [1]. Despite the rapid adoption
of health information systems [2] and the perception of digital
health as a panacea [3] for improving health care quality, the
outcomes have been mixed [4,5]. As Reisman [6] noted, despite
substantial investment and effort and widespread application
of digital health, many of the promised benefits have yet to be
realized.

The promise of digital health is principally dependent on the
ability to electronically capture data that can be analyzed to
improve decision-making at the local, national [6], and global
levels [7]. However, the ability to harness data effectively and
meaningfully has proven difficult and elusive, largely because
of the quality of the data captured. Darko-Yawson and Ellingsen
[8] highlighted that digital health has resulted in more bad data
rather than improving the quality of data. It is widely accepted
that the data from digital health are plagued by accuracy and
completeness concerns [9-12]. Poor data quality (DQ) can be
detrimental to continuity of care [13], patient safety [14],
clinician productivity [15], and research [16].

To assess DQ, scholars have developed numerous DQ
taxonomies, which evaluate the extent to which the data
contained within digital health systems adhere to multiple
dimensions (ie, measurable components of DQ). Weiskopf and
Weng [17] identified 5 dimensions of DQ spanning
completeness, correctness, concordance, plausibility, and
currency. Subsequently, Weiskopf et al [18] refined the typology
to consist of only 3 dimensions: completeness, correctness, and
currency. Similarly, Puttkammer et al [13] focused on
completeness, accuracy, and timeliness, whereas Kahn et al [19]
examined conformance, completeness, and plausibility. Others
identified “fitness of use” [20] and the validity of data to a
specific context [21] as key DQ dimensions. Overall, there are
wide-ranging definitions of DQ, with an agreed-upon taxonomy
evading the literature. In this paper, upon synthesizing the
literature, we define DQ as the extent to which digital health
data are accessible, accurate, complete, consistent, contextually
valid, and current. When consolidated frameworks are
developed, the dimensions are often treated in a fragmented
manner, with few attempts to understand the relationships
between the dimensions and the resultant outcomes. This is
substantiated by Bettencourt-Silva et al [22], who indicated that
DQ is not systematically or consistently assessed.

Research Aims and Questions
Failure of health organizations to leverage high-quality data
will compromise the sustainability of an already strained health
care system [23]. Therefore, we undertook a systematic literature
review to answer the following research questions: (1) What
are the dimensions of digital health DQ? (2) How are the
dimensions of digital health DQ related? and (3) What are the
impacts of digital health DQ? The aim of this research was to
develop, from synthesizing the literature, a consolidated digital
health DQ dimension and outcome (DQ-DO) framework, which

demonstrates the DQ dimensions and their interrelationships as
well as their impact on core health care outcomes. The
consolidated DQ-DO framework will be beneficial to both
research and practice. For researchers, our review consolidates
the digital health DQ literature and provides core areas for future
research to rigorously evaluate and improve digital health DQ.
For practice, this study provides health care executives and
strategic decision makers with insights into both the criticality
of digital health DQ by exemplifying the impacts and the
complexity of digital health DQ by demonstrating the
interrelationships between the dimensions. Multimedia
Appendix 1 [24] provides a list of common acronyms used in
this study.

This paper is structured as follows: first, we provide details of
the systematic literature review method; second, in line with
the research questions, we present our 3 key findings—(1) DQ
dimensions, (2) DQ interrelationships, and (3) DQ outcomes;
and third, we compare the findings of our study with those of
previous studies and discuss the implications of this work.

Methods

We followed the PRISMA (Preferred Reporting Items for
Systematic Reviews and Meta-Analyses) guidelines and the
guidelines proposed by Webster and Watson [25] for systematic
literature reviews. Specifically, consistent with Templier and
Paré [26], this systematic literature review was developmental
in nature with the goal of developing a consolidated digital
health DQ framework.

Literature Search and Selection
To ensure the completeness of the review [25] and consistent
with interdisciplinary reviews, the literature search spanned
multiple fields and databases (ie, PubMed, Public Health,
Cochrane, SpringerLink, EBSCOhost [MEDLINE and
PsycInfo], ABI/INFORM, AISel, Emerald Insight, IEEE Xplore
digital library, Scopus, and ACM Digital Library). The search
was conducted in October 2021 and was not constrained by the
year of publication because the concept of DQ has a
long-standing academic history. The search terms were reflective
of our research topic and research questions. To ensure
comprehensiveness, the search terms were broadened by
searching their synonyms. For example, we used search terms
such as “electronic health record,” “digital health record,”
“e-health,” “electronic medical record,” “EHR,” “EMR,” “data
quality,” “data reduction,” “data cleaning,” “data
pre-processing,” “information quality,” “data cleansing,” “data
preparation,” “intelligence quality,” “data wrangling,” and “data
transformation.” Keywords and search queries were reviewed
by the reference librarian and subject matter experts in digital
health (Multimedia Appendix 2).

The papers returned from the search were narrowed down in a
4-step process (Figure 1). In the identification step, 5177 articles
were identified through multiple database searches, and from
these, 3856 (74.48%) duplicates were removed, resulting in
1321 (25.42%) articles. These 1321 articles were randomly
divided into 6 batches, which were assigned to separate
researchers, who applied the inclusion and exclusion criteria
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(Textbox 1). As a result of abstract screening, 67.83%
(896/1321) of articles were excluded, resulting in 425 (32.17%)
articles. Following an approach to the abstract screening, the
425 articles were again randomly divided into 6 batches and
assigned to 1 of the 6 researchers to read and assess the
relevance of the article in line with the selection criteria. The
assessment of each of the 425 articles was then verified by the
research team, resulting in a final set of 227 (53.4%) relevant

articles. During this screening phase (ie, abstract and full text),
daily meetings were held with the research team in which any
uncertainties were raised and discussed until consensus was
reached by the team as to whether the article should be included
or excluded from the review In line with Templier and Paré
[26], as this systematic literature review was developmental in
nature rather than an aggregative meta-analysis, quality
appraisals were not performed on individual articles.

Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) inclusion process. EHR: electronic health record.
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Textbox 1. Inclusion and exclusion criteria.

Inclusion criteria

• Specifically focuses on data quality in digital health

• Empirical papers or review articles where conceptual frameworks were either developed or assessed

• Considers digital health within hospital settings

• Published in peer-reviewed outlets within any time frame

• Published in English

Exclusion criteria

• Development of algorithms for advanced analytics techniques (eg, machine learning and artificial intelligence) without application within hospital
settings

• Descriptive papers without a conceptual framework or an empirical analysis

• Focused only on primary care (eg, general practice)

• Pre–go-live considerations (eg, software development)

• Theses and non–peer-reviewed publications (eg, white papers and editorials)

Literature Analysis
The relevant articles were imported to NVivo (version 12; QSR
International), where the analysis was iteratively performed. To
ensure reliability and consistency in coding, a coding rule book
[27] was developed and progressively updated to guide the
coding process. The analysis involved 6 steps (Figure 2).

In the first step of the analysis, the research team performed
open coding [27], where relevant statements from each article
were extracted using verbatim codes and grouped based on
similarities [28]. The first round of coding resulted in 1298 open
codes. Second, the open codes were segmented into 2 high-level
themes: the first group contained 1044 (80.43%) open codes
pertaining directly to DQ dimensions (eg, data accuracy), and
the second group contained 254 (19.57%) open codes pertaining
to DQ outcomes (eg, financial outcomes).

In the third step, through constant comparison [29], the 1044
raw DQ codes were combined into 29 DQ subthemes based on
commonalities (eg, contextual DQ, fitness for use, granularity,
relevancy, accessibility, and availability). In the fourth step,
again by performing iterative and multiple rounds of constant
comparison, the 254 open codes related to DQ outcomes were
used to construct 22 initial DQ outcome subthemes (eg, patient
safety, clinician-patient relationship, and continuity of care).
The DQ outcome subthemes were further compared with each
other, resulting in 5 DQ outcome dimensions (eg, clinical,
business process, research-related, clinician, and organizational
outcomes). For the DQ subthemes, a constant comparison was
performed using the card-sorting method [30], where an expert
panel of 8 DQ researchers split into 4 groups assessed the
subthemes for commonalities and differences. The expert groups

presented their categorization to each other until a consensus
was reached. This resulted in a consolidated set of 6 DQ
dimensions (accuracy, consistency, completeness, contextual
validity, accessibility, and currency). Multimedia Appendix 3
[9,12,13,15,16,18,19,21,31-65] provides an example of how
the open codes were reflected in the subthemes and themes.

After identifying the DQ dimensions and outcomes, the next
stage of coding progressed to identifying the interrelationships
(step 5) among the DQ dimensions and the relationships (step
6) between the DQ dimensions and DQ outcomes. To this end,
the matrix coding query function using relevant Boolean
operators (AND and NEAR) in NVivo was performed. The
outcomes of the matrix queries were reviewed and verified by
an expert researcher in the health domain.

Throughout the analysis, steps for providing credibility to our
findings were performed. First, before commencing the analysis,
the research team members who extracted the verbatim codes
initially independently reviewed 3 common articles and then
convened to review any variations in coding. In addition, they
reconvened multiple times a week to discuss their coding and
update the codebook to ensure that a consistent approach was
followed. Coder corroboration was performed throughout the
analysis, with 2 experienced researchers independently verifying
all verbatim codes until a consensus was reached [27].
Subsequent coder corroboration was performed by 2 experienced
researchers to ensure that the open codes were accurately
mapped to the themes and dimensions. This served to provide
internal reliability. Steps for improving external reliability were
also performed [66]. Specifically, the card-sorting method
provided an expert appraisal. In addition, the findings were
presented to and confirmed by 3 digital health care professionals.
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Figure 2. Analysis process. DQ: data quality.

Results

Overview
The vast majority of relevant articles were published in journal
outlets (169/227, 74.4%), followed by conference proceedings
(42/227, 18.5%) and book sections (16/227, 7%). The 169
journal articles were published in 107 journals, with 12% (n=13)
of the journals publishing >1 study (these journals are BMC
Medical Informatics and Decision Making, eGEMS,
International Journal of Medical Informatics, Applied Clinical
Informatics, Journal of Medical Internet Research, Journal of
the American Medical Information Association, PLOS One,
BMC Emergency Medicine, Computer Methods and Programs
in Biomedicine, International Journal of Population Data
Science, JCO Clinical Cancer Informatics, Perspectives in
Health Information Management, Studies in Health Technology

and Informatics, Australian Health Review, MBC Health
Services Research, BMJ Open, Decision Support Systems,
Health Informatics Journal, International Journal of Information
Management, JAMIA Open, JMIR Medical Informatics, Journal
of Biomedical Informatics, Journal of Medical Systems, Malawi
Medical Journal, Medical Care, Online Journal of Public Health
Informatics, and Telemedicine and e-Health). A complete
breakdown of the number of articles published in each outlet is
provided in Multimedia Appendix 4.

Overall, as illustrated in Figure 3, the interest in digital health
DQ has been increasing over time, with sporadic interest before
2006.

In the subsequent sections, we provide an overview of the DQ
definitions, DQ dimensions, their interrelationships, and DQ
outcomes to develop a consolidated digital health DQ
framework.

Figure 3. Publications by year.

DQ Definitions
Multiple definitions of DQ were discussed in the literature
(Multimedia Appendix 5 [17,18,20-22,31,54,67-77]). There
was no consensus on a single definition of DQ; however, an
analysis of the definitions revealed two perspectives, which we
labeled as the (1) context-agnostic perspective and (2)
context-aware perspective. The context-agnostic perspective
defines DQ based on a set of dimensions, regardless of the
context within which the data are used. For instance, as Abiy
et al [67] noted “documentation and contents of data within an

electronic medical record (EMR) must be accurate, complete,
concise, consistent and universally understood by users of the
data, and must support the legal business record of the
organization by maintaining the required parameters such as
consistency, completeness and accuracy.” By contrast, the
context-aware perspective evaluates the dimensions of DQ with
recognition of the context within which the data are used. For
instance, as the International Organization for Standardization
and Liu et al [78] noted, DQ is “the degree to which data satisfy
the requirements defined by the product-owner organization”
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and can be reflected through its dimensions such as
completeness and accuracy.

DQ Dimensions

Overview
In total, 30 subthemes were identified and grouped into 6 DQ
dimensions: accuracy, consistency, completeness, contextual

validity, accessibility, and currency (Table 1; Multimedia
Appendix 6 [8-12,14-16,18-22,31-62,67,69,71,72,76,79-168]).
Consistency (164/227, 72.2%), completeness (137/227, 60.4%),
and accuracy (123/227, 54.2%) were the main DQ dimensions.
Comparatively, less attention was paid to accessibility (28/227,
12.3%), currency (18/227, 7.9%), and contextual validity
(26/227. 11.5%).

Table 1. Description of the data quality (DQ) dimensions.

SubthemesDescriptionDimension

Validity, correctness, integrity, conformance, plausibility, veracity,
and accurate diagnostic data

“The degree to which data reveal the truth about the event being
described” [31]

Accuracy

Inconsistent data capturing, standardization, concordance,
uniqueness, data variability, temporal variability, system differ-
ences, semantic consistency, structuredness, and representational
consistency

“Absence of differences between data items representing the same
objects based on specific information requirements. Consistent
data contain the same data values when compared between different
databases” [31]

Consistency

Missing data, level of completeness, representativeness, fragmen-
tation, and breadth of documentation

“The absence of data at a single moment over time or when mea-
sured at multiple moments over time” [79]

Complete-
ness

Contextual DQ, fitness for use, granularity, and relevancyAssessment of DQ is “dependent on the task at hand” [18]Contextual
validity

Accessible DQ and availabilityHow “feasible it is for users to extract the data of interest” [18]Accessibility

Timeliness“The degree to which data represent reality from the required point
in time” [32]

Currency

DQ Dimension: Accessibility
The accessibility dimension (28/227, 12.3%) is composed of
both the accessibility (15/28, 54%) and availability (13/28, 46%)
subthemes, reflecting the feasibility for users to extract data of
interest [18]. Scholars regularly view the accessibility subtheme
favorably, with the increased adoption of electronic health record
(EHR) systems overcoming physical and chronological
boundaries associated with paper records by allowing access to
information from multiple locations at any time [33,80]. Top
et al [33] noted that EHR made it possible for nurses to access
patient data, resulting in improved decision-making.
Furthermore, Rosenlund et al [81] noted that EHRs benefit
health care professionals by providing increased opportunities
for searching and using information. The availability subtheme
is an extension of the accessibility subtheme and examines
whether data exist and whether the existing data are in a format
that is readily usable [34]. For instance, Dentler et al [34] noted
that pathology reports, although accessible, are recorded in a
nonstructured, free-text format, making it challenging to readily
use the data. Although structuredness may make data more
available, Yoo et al [82] highlighted that structured data entry
in the form of drop-down lists and check boxes tends to reduce
the narrative description of patients’ medical conditions.
Although not explicitly investigating accessibility, Makeleni
and Cilliers [31] also noted the challenges associated with
structured data entry.

DQ Dimension: Accuracy
The accuracy dimension (123/227, 54.2%) is composed of 7
subthemes, namely correctness (42/123, 34.1%), validity
(23/123, 18.7%), integrity (19/123, 15.4%), plausibility (17/123,
13.8%), accurate diagnostic data (13/123, 10.6%), conformance
(7/123, 5.7%), and veracity (2/123, 1.6%). Accuracy refers to

the extent to which data reveal the truth about the event being
described [31] and conform to their actual value [83].

Studies often referred to accuracy as the “correctness” of data,
which is the degree to which data correctly communicate the
parameter being represented [32]. By contrast, other studies
focused on plausibility, which is the extent to which data points
are believable [35]. Although accuracy concerns were present
for all forms of digital health data, some studies focused
specifically on inaccuracies in diagnostic data and stated that
“the accurate and precise assignment of structured [diagnostic]
data within EHRs is crucial” [84] and is “key to supporting
secondary clinical data” [36].

To assess accuracy, the literature regularly asserts that data must
be validated against metadata constraints, system assumptions,
and local knowledge [19] and conform to structural and
syntactical rules. According to Kahn et al [19] and Sirgo et al
[85], conformance focuses on the compliance of data with
internal or external formatting and relational or computational
definitions. Accurate, verified, and validated data as well as
data conforming to standards contribute to the integrity of the
data. Integrity requires that the data stored in health information
systems are accurate and consistent, where the “improper use
of [health information systems] can jeopardise the integrity of
a patient’s information” [31]. An emerging subtheme of
accuracy is the veracity of data, which represents uncertainty
in the data owing to inconsistency, ambiguity, latency,
deception, and model approximations [21]. It is particularly
important in the context of the secondary use of big data, where
“data veracity issues can arise from attempts to preserve
privacy,...and is a function of how many sources contributed to
the data” [86].
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DQ Dimension: Completeness
The completeness dimension (114/227, 50.2%) is composed of
5 subthemes: missing data (66/114, 57.9%), level of
completeness (25/114, 21.9%), representativeness (13/114,
11.4%), fragmentation (8/114, 7%), and breadth of
documentation (2/114, 1.8%). A well-accepted definition of
data completeness considers 4 perspectives: documentation (the
presence of observations regarding a patient in data), breadth
(the presence of all desired forms of data), density (the presence
of a desired frequency of data values over time), and prediction
(the presence of sufficient data to predict an outcome) [169].
Our analysis revealed that these 4 perspectives, although
accepted, are rarely systematically examined in the extant
literature; rather, papers tended to discuss completeness or the
lack thereof as a whole.

Missing data is a prominent subtheme and represents a common
problem in EHR data. For instance, Gloyd et al [87] argued that
incomplete, missing, and implausible data “was by far the most
common challenge encountered.” Scholars regularly identified
that data fragmentation contributed to incompleteness, with a
patient’s medical record deemed incomplete owing to data being
required from multiple systems and EHRs [18,37,88-93]. “Data
were also considered hidden within portals, outside systems, or
multiple EHRs, frustrating efforts to assemble a complete
clinical picture of the patient” [89]. Positive perspectives
pertaining to data completeness focus on the level of
completeness, with studies reporting relatively high
completeness rates in health data sets [34,38,80,94,95,170]. For
data to be considered complete, it needs to be captured at
sufficient breadth and depth over time [12,18].

Some studies have proposed techniques for improving
completeness, including developing fit-for-purpose user
interfaces [68,96,97], standardizing documentation practices,
[98,99], automating documentation [100], and performing
quality control [99].

In some instances, the level of completeness and extent of
missing data differed depending on the health status of the
patient [15,16,18,20,39-43,86,90,101,170,171], which we
classified into the subtheme of representativeness. It has been
found that there is “a statistically significant relationship
between EHR completeness and patient health status” [42], with
more data recorded for patients who are sick than for patients
with less-acute conditions. This strongly aligns with the
subtheme of contextual validity.

DQ Dimension: Consistency
The consistency dimension (157/227, 69.2%) is composed of
10 subthemes: inconsistent data capturing (33/157, 21%),
standardization (28/157, 17.8%), concordance (22/157, 14%),
uniqueness (14/157, 8.9%), data variability (14/157, 8.9%),
temporal variability (13/157, 8.3%), system differences (12/157,
7.6%), semantic consistency (10/157, 6.4%), structuredness
(7/157, 4.5%), and representational consistency (4/157, 2.5%).

Inconsistent data capturing is a prevalent subtheme caused by
the manual nature of data entry in health care settings [86],
especially when data entry involve multiple times, teams, and
goals [102]. Inconsistent data capturing results in data variability

and temporal variability. Data variability refers to
inconsistencies in the data captured within and between health
information systems, whereas temporal variability reflects
inconsistencies that occur over time and may be because of
changes in policies or medical guidelines [20,44-46,87,103-105].
Semantic inconsistency (ie, data with logical contradictions)
and representational inconsistency (ie, data variations owing
to multiple formats) can also result from inconsistent data
capturing [47].

Standardization in terms of terminology, diagnostic codes, and
workflows [99] are proffered to minimize inconsistency in data
entry, yet in practice, there is a “lack of standardized data and
terminology” [9] and “even with a set standard in place not all
staff accept and follow the routine” [99]. The lack of
standardization is further manifested because of health
information system differences across settings [106]. As a result
of the differences between systems, concordance—the extent
of “agreement between elements in the EHR, or between the
EHR and another data source”—is hampered [107].

Furthermore, inconsistent data entry can be caused by
redundancy within the system because of structured versus
unstructured data [108], which we label as the subtheme
“structuredness,” and duplication across systems
[39,48,104,109,172,173], which we label as the subtheme
“uniqueness.” Although structured data entry “facilitates
information retrieval” [33] and is “in a format that enables
reliable extraction” [18], the presence of unstructured fields
leads to data duplication efforts, hampering uniqueness, as data
are recorded in multiple places with varying degrees of
granularity and level of detail.

DQ Dimension: Contextual Validity
The contextual validity dimension (26/227, 11.5%) is composed
of 4 subthemes: fitness for use (11/26, 42%), contextual DQ
(9/26, 35%), granularity (4/26, 15%), and relevancy (2/26, 8%).
Contextual validity requires a deep understanding of the context
that gives rise to data [86], including technical, organizational,
behavioral, and environmental factors [174].

Contextual DQ is often described as “fitness of use” [20], for
which understanding the context in which data are collected is
deemed important [18,90]. Another factor that contributes to
data being fit for use is the granularity of data. Adequate
granularity of time stamps [49], patient information [16], and
data present in EHR (eg, diagnostic code [16]) was considered
important to make data fit for use. Finally, for data to be fit for
use, they must be relevant. As indicated by Schneeweiss and
Glynn [41], for data to be meaningful, health care databases
need to contain relevant information of sufficient quality, which
can help answer specific questions. The literature clearly
demonstrates the need to take context into consideration when
analyzing data and the need to adapt technologies to the health
care context so that appropriate data are collected for reliable
analysis to be performed.

DQ Dimension: Currency
The currency dimension (18/227, 7.9%) is composed of a single
subtheme: timeliness. Currency, or timeliness, is defined by
Afshar et al [32] and Makeleni and Cilliers [31] as the degree
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to which data represent reality from the required point in time.
From an EHR perspective, data should be up to date, available,
and reflect the profile of the patient at the time when the data
are accessed [32,50]. Lee et al [35] extended this to include the
recording of an event at the time when it occurs such that a
value is deemed current if it is representative of the clinically
relevant time of the event. Frequently mentioned causes for lack
of currency of data include (1) recording of events (long) after
the event actually occurred [91,99,110,111], (2) incomplete
recording of patient characteristics over time [16], (3) system
or interface design not matching workflow and impeding timely
recording of data [99], (4) mixed-mode recording—paper and
electronic [99], and (5) lack of time stamp metadata, meaning
that the temporal sequence of events is not reflected in the
recorded data [16].

Interrelationships Among the DQ Dimensions
As illustrated in Figure 4 and Multimedia Appendix 7
[16,34,40,42,78,80,90,91,109], interrelationships were found
among the digital health DQ dimensions.

Consistency influenced all the DQ dimensions. Commonly,
these relationships were expressed in terms of the presence of
structured and consistent data entry, which prompts complete
and accurate data to be entered into the health information
system and provides more readily accessible and current data
for health care professionals when treating patients. As Roukema
et al [80] noted, “structured data entry applications can prompt
for completeness, provide greater accuracy and better ordering
for searching and retrieval, and permit validity checks for DQ
monitoring, research, and especially decision support.” When
data are entered inconsistently, it impedes the accuracy of the
medical record and the contextual validity for secondary uses
of the data [40].

Accessibility of data was found to influence the currency
dimension of DQ. When data are not readily accessible, they
seldom satisfy the timeliness of information for health care or
research purposes [34]. Currency also influenced the accuracy
of data. In a study investigating where DQ issues in EHR arise,
it was found that “false negatives and false positives in the
problem list sometimes arose when the problem list...[was]
out-of-date, either because a resolved problem was not removed
or because an active problem was not added” [90].

Furthermore, completeness influences the accuracy of data; as
Makeleni and Cilliers [31] noted, “data should be complete to
ensure it is accurate.” The presence of inaccurate data was
regularly linked to information fragmentation [88], incomplete
data entry [109], and omissions [35]. Completeness also
influenced contextual validity, as it is necessary to have all the
data available to complete specific tasks [78]. When it comes
to the secondary use of EHR data, evaluation of “completeness
becomes extrinsic, and is dependent upon whether or not there
are sufficient types and quantities of data to perform a research
task of interest” [42].

Accuracy and contextual validity exhibited a bidirectional
relationship with each other. The literature suggests that
accuracy influences contextual validity; however, data cannot
simply be extracted from structured form fields, and free-text
fields will also need to be consulted. For instance, Kim and Kim
[112] identified “it is sometimes thought that structured data
are more completely optimized for clinical research. However,
this is not always the case, particularly given that extracted
EMR data can still be unstable and contain serious errors.” By
contrast, other studies suggest that when only a segment of
information regarding a specific clinical event (ie, contextual
validity) is captured, inaccuracy can ensue [16].
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Figure 4. Interrelationships between the data quality (DQ) dimensions.

Outcomes of Digital Health DQ
The analysis of the literature identified five types of digital
health DQ outcomes: (1) clinical, (2) business process, (3)
clinician, (4) research-related, and (5) organizational outcomes
(Multimedia Appendix 8 [15,16,20,31,33,39,40,42,51,52,55,57,
58,61,63,64,84,90,105,113,166,175-178]). Using NVivo’s
built-in cross-tab query coupled with subject matter expert
analysis, it was identified that different DQ dimensions were
related to DQ outcomes in different ways (Table 2). Currency
was the only dimension that did not have a direct effect on DQ
outcomes. However, as shown in Figure 5, it is plausible that
currency affects DQ outcomes by impacting other DQ
dimensions. In the subsequent paragraphs, we discuss each DQ
dimension and its respective outcomes.

We identified that the accessibility DQ dimension influenced
clinical, clinician, business process, research-related, and
organizational outcomes. In terms of clinical outcomes,
Roukema et al [80] indicated that EHRs substantially enhance
the quality of patient care by improving the accessibility and
legibility of health care data. The increased accessibility of
medical records during the delivery of patient care is further
proffered to benefit clinicians by reducing the data entry burden
[33]. By contrast, inconsistency in the availability of data across
health settings increases clinician workload; as Wiebe et al [15]
noted, “given the predominantly electronic form of
communication between hospitals and general practitioners in
Alberta, the inconsistency in availability of documentation in
one single location can delay processes for practitioners

searching for important health information.” When data are
accessible and available, they can improve business processes
(eg, quality assurance) and research-related (eg,
outcome-oriented research) outcomes and can support
organizational outcomes with improved billing and financial
management [179].

The literature demonstrates that data accuracy influences clinical
outcomes [14,39,51] and research-related outcomes [14,113];
as Wang et al [14] described, “errors in healthcare data are
numerous and impact secondary data use and potentially patient
care and safety.” Downey et al [39] observed the negative impact
on quality of care (ie, clinical outcomes) resulting from incorrect
data and stated, “manual data entry remains a primary
mechanism for acquiring data in EHRs, and if the data is
incorrect then the impact to patients and patient care could be
significant” [39]. Poor data accuracy also diminishes the quality
of research outcomes. Precise data are beneficial in producing
high-quality research outcomes. As Gibby [113] explained,
“computerized clinical information systems have considerable
advantages over paper recording of data, which should increase
the likelihood of their use in outcomes research. Manual records
are often inaccurate, biased, incomplete, and illegible.” Closely
related to accuracy, contextual validity is an important DQ
dimension that considers the fitness for research; as stated by
Weiskopf et al [42], “[w]hen repurposed for secondary use,
however, the concept of ‘fitness for use’ can be applied.”

The consistency DQ dimension was related to all DQ outcomes.
It was commonly reported that inconsistency in data negatively
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impacts the reusability of EHR data for research purposes,
hindering research-related outcomes and negatively impacting
business processes and organizational outcomes. For example,
Kim et al [114] acknowledged that inconsistent data labeling
in EHR systems may hinder accurate research results, noting
that “a system may use local terminology that allows unmanaged
synonyms and abbreviations...If local data are not mapped to
terminologies, performing multicentre research would require
extensive labour.” Alternatively, von Lucadou et al [16]
indicated the impact of inconsistency on clinical outcomes,
reporting that the existence of inconsistencies in captured data
“could explain the varying number of diagnoses throughout the
encounter history of some subjects,” whereas Diaz-Garelli et
al [84] demonstrated the negative impact that inconsistency has
on clinicians in terms of increased workload.

Incomplete EMR data were found to impact clinical outcomes
(eg, reduced quality of care), business process outcomes (eg,

interprofessional communication), research-related outcomes
(eg, research facilitation), and organizational outcomes (eg, key
performance indicators related to readmissions) [15]. For
example, while reviewing the charts of 3011 nonobstetric
inpatients, Wiebe et al [15] found that missing discharge
summary within an EHR “can present several issues for
healthcare processes, including hindered communication
between hospitals and general practitioners, heightened risk of
readmissions, and poor usability of coded health data,” among
other widespread implications. Furthermore, Liu et al [69]
reported that “having incomplete data on patients’ records has
posed the greatest threat to patient care.” Owing to the
heterogeneous nature (with multiple data points) of EHR data,
Richesson et al [20] emphasized that access to large, complete
data will allow clinical investigators “to detect smaller clinical
effects, identify and study rare disorders, and produce robust,
generalisable results.”

Table 2. The relationships between data quality (DQ) dimensions and data outcomes.

OutcomesaDQ dimension

ClinicianClinicalBusiness processOrganizationalResearch

✓✓✓✓✓Accessibility

✓✓Accuracy

✓✓✓✓Completeness

✓✓✓✓✓Consistency

✓Contextual validity

Currency

aThe checkmark symbol indicates that the relationship between the DQ dimension and the outcome is reported in the literature. Blank cells indicate that
there is no evidence to support the relationship.

Figure 5. Consolidated digital health data quality dimension and outcome framework.
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Discussion

Overview
The following sections describe the three main findings of this
research: the (1) dimensions of DQ, (2) interrelationships among
the dimensions of DQ, and (3) outcomes of DQ. As described
in the Summary of Key Findings section, these 3 findings led
to the development of the DQ-DO framework. Subsequently,
we compared the DQ-DO framework with related works. This
leads to implications for future research. The Discussion section
concludes with a reflection on the limitations of this study.

Summary of Key Findings
In summary, we unearthed 3 core findings. First, we identified
6 dimensions of DQ within the digital health domain:
consistency, accessibility, completeness, accuracy, contextual
validity, and currency. These dimensions were synthesized from
30 subthemes described in the literature. We found that
consistency, completeness, and accuracy are the predominant
dimensions of DQ. Comparatively, limited attention has been
paid to the dimensions of accessibility, currency, and contextual
validity. Second, we identified the interrelationships among
these 6 dimensions of digital health DQ (Table 2). The literature
indicates that the consistency dimension can influence all other
DQ dimensions. The accessibility of data was found to influence
the currency of data. Completeness impacts accuracy and
contextual validity, with these dimensions serving as dependent
variables and exhibiting a bidirectional relationship with each
other. Third, we identified 5 types of data outcomes (Table 2;
Multimedia Appendix 8): research-related, organizational,
business process, clinical, and clinician outcomes. Consistency
was found to be a very influential dimension, impacting all
types of DQ outcomes. By contrast, contextual validity was
shown to be particularly important for data reuse (eg,
performance measurement and outcome-oriented research).
Although currency does not directly impact any outcomes, it
impacts the accuracy of data, which impacts clinical and
research-related outcomes. Therefore, if currency issues are not
resolved, accuracy issues would still prevail. Consistency,
accessibility, and completeness were shown to be important
considerations for achieving the goal of improving
organizational outcomes. Through consolidating our 3 core
findings, we developed a consolidated DQ-DO framework
(Figure 5).

Comparison With Literature
Our findings extend those of previous studies on digital health
DQ in 3 ways. First, through our rigorous approach, we
identified a comprehensive set of DQ dimensions, which both
confirmed and extended the existing literature. For instance,
Weiskopf and Weng [17] identified 5 DQ dimensions, namely
completeness, correctness, concordance, plausibility, and
currency, all of which are present within our DQ framework,
although in some instances, we use slightly different terms
(referring to correctness as accuracy and concordance as
consistency). Extending the framework of Weiskopf and Weng
[17], we view plausibility as a subtheme of accuracy and
disentangle accessibility from completeness, and we also stress
the importance of contextual validity per Richesson et al [20].

Others have commonly had a narrower perspective of DQ,
focusing on completeness, correctness, and currency [18] or on
completeness, timeliness, and accuracy [13]. In other domains
of digital health, such as physician rating systems, Wang and
Strong’s [180] DQ dimensions of intrinsic, contextual,
representational, and accessibility have been adopted. Such
approaches to assessing DQ are appropriate, although they
remove a level of granularity that is necessary to understand
relationships and outcomes. This is particularly necessary given
the salience of consistency in our data set and the important
role it plays in generating outcomes.

Second, unlike previous studies on DQ dimensions, we also
demonstrate how these dimensions are all related to each other.
By analyzing the interrelationships between these DQ
dimensions, we can determine how a particular dimension
influences another and in which direction this relationship is
unfolding. This is an important implication for digital health
practitioners, as although several studies have examined how
to validate [38] and resolve DQ issues [16], resolving issues
with a specific DQ dimension requires awareness of the
interrelated DQ dimensions. For instance, to improve accuracy,
one also needs to consider improving consistency and
completeness.

Third, although previous studies describe how DQ can impact
a particular outcome (eg, the studies by Weiskopf et al [18],
Johnson et al [52], and Dantanarayana and Sahama [115]), they
largely focus broadly on DQ, a specific dimension of DQ, or a
specific outcome. For instance, Sung et al [181] noted that
poor-quality data were a prominent barrier hindering the
adoption of digital health systems. By contrast, Kohane et al
[182] focused on research-related outcomes in terms of
publication potential and identified that incompleteness and
inconsistency can serve as core impediments. To summarize,
the DQ-DO framework (Figure 5) developed through this review
provides not only the dimensions and the outcomes but also the
interrelationships between these dimensions and how they
influence outcomes.

Implications for Future Work

Implication 1: Equal Consideration Across DQ
Dimensions
This study highlights the importance of each of the 6 DQ
dimensions: consistency, accessibility, completeness, accuracy,
contextual validity, and currency. These dimensions have
received varying amounts of attention in the literature. Although
we observe that some DQ dimensions such as accessibility,
contextual validity, and currency are discussed less frequently
than others, it does not mean that these dimensions are not
important for assessment. This is evident in Figure 5, which
shows that all DQ dimensions except for currency directly
influence DQ outcomes. Although we did not identify a direct
relationship between the currency of data and the 6 types of
data outcomes, it is likely that the currency of data influences
the accuracy of data, which subsequently influences the
research-related and clinical outcomes. Future research,
including consultation with a range of stakeholders, needs to
further delve into understanding the underresearched DQ
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dimensions. For instance, both the currency and accessibility
of data are less frequently discussed dimensions in the literature;
however, with the advances in digital health technologies, both
have become highly relevant for real-time clinical decisions
[21,53].

Implication 2: Empirical Investigations of the Impact
of the DQ Dimensions
The DQ-DO framework identified in this study has been
developed through a rigorous systematic literature review
process, which synthesized the literature related to digital health
DQ. To extend this study, we advocate for empirical mixed
methods case studies to validate the framework, including an
examination of the interrelationships between DQ dimensions
and DQ outcomes, based on real-life data and consultation with
a variety of stakeholders. Existing approaches can be used to
identify the presence of issues related to DQ dimensions within
digital health system logs [38,183]. The DQ outcomes could be
assessed by extracting prerecorded key performance indicators
from case hospitals and be triangulated with interview data to
capture patients’, clinicians’, and hospitals’ perspectives of the
impacts of DQ [184]. This could then be incorporated into a
longitudinal study in which data collection is performed before
and after a DQ improvement intervention, which would provide
efficacy to the digital health DQ intervention.

Implication 3: Understanding the Root Causes of DQ
Challenges
Although this study provides a first step toward a more
comprehensive understanding of DQ dimensions for digital
health data and their influences on outcomes, it does not explore
the potential causes of such DQ challenges. Without
understanding the reasons behind these DQ issues, the true
potential of evidence-based health care decision-making remains
unfulfilled. Future research should examine the root causes of
DQ challenges in health care data to prevent such challenges
from occurring in the first place. A framework that may prove
useful in illuminating the root causes of DQ issues is the Odigos
framework, which indicates that DQ issues emanate from the
social world (ie, macro and situational structures, roles, and
norms), material world (eg, quality of the EHR system and
technological infrastructure), and personal world (eg,
characteristics and behaviors of health care professionals) [183].
These insights could then be incorporated into a data governance
roadmap for digital hospitals.

Implication 4: Systematic Assessment and Remedy of
DQ Issues
Although prevention remains better than the cure (refer to
implication 3), not all DQ errors can be prevented or mitigated.
It is common for many health care organizations to dedicate
resources to data cleaning to obtain high-quality data in a timely
manner, and this will remain necessary (although hopefully to
a lesser degree). Some studies (eg, Weiskopf et al [18]) advocate
evidence-based guidelines and frameworks for a detailed

assessment of the quality of digital health data. However, few
studies have focused on a systematic and automated method of
assessing and remedying common DQ issues. Future research
should also focus on evidence-based guidelines, best practices,
and automated means to assess and remedy digital health data.

Limitations
This review is scoped to studying digital health data generated
within a hospital setting and not those generated within other
health care settings. This is necessary because of the vast
differences between acute health care settings and primary care.
Future research should seek to investigate the digital health data
of primary care settings to identify the DQ dimensions and
outcomes relevant to these settings. In addition, this literature
review has been scoped to peer-reviewed outlets, with “grey”
literature excluded, which could have led to publication bias.
Although this scoping may have resulted in the exclusion of
some relevant articles, it was necessary to ensure the quality
behind the development of the digital health DQ framework.
An additional limitation that may be raised by our method is
that because of the sheer number of articles returned by our
search, we did not perform double coding (where 2 independent
researchers analyze the same article). To mitigate this limitation,
steps were taken to minimize bias by conducting coder
corroboration sessions and group validation, as mentioned in
the Methods section, with the objective of improving internal
and external reliability [66]. To further improve internal
reliability, 2 experienced researchers verified the entirety of the
analysis in NVivo and to improve external reliability,
card-sorting assessments were performed with DQ experts, and
the findings were presented and confirmed by 3 digital health
care professionals. Furthermore, empirical validation of the
framework is required, both in terms of real-life data and inputs
from a range of experts.

Conclusions
The multidisciplinary systematic literature review conducted
in this study resulted in the development of a consolidated digital
health DQ framework comprising 6 DQ dimensions, the
interrelationships among these dimensions, 6 DQ outcomes,
and the relationships between these dimensions and outcomes.
We identified four core implications to motivate future research:
specifically, researchers should (1) pay equal consideration to
all dimensions of DQ, as the dimensions can both directly and
indirectly influence DQ outcomes; (2) seek to empirically assess
the DQ-DO framework using a mixed methods case study
design; (3) identify the root causes of the digital health DQ
issues; and (4) develop interventions for mitigating DQ issues
or preventing them from arising. The DQ-DO framework
provides health care executives (eg, chief information officers
and chief clinical informatics officers) with insights into DQ
issues and which digital health-related outcomes they have an
impact on, and this can help them prioritize tackling DQ-related
problems.
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