
Original Paper

Machine Learning for Predicting Micro- and Macrovascular
Complications in Individuals With Prediabetes or Diabetes:
Retrospective Cohort Study

Simon Schallmoser1,2, MSc; Thomas Zueger3,4, MD; Mathias Kraus5, PhD; Maytal Saar-Tsechansky6, PhD; Christoph

Stettler3, MD; Stefan Feuerriegel1,2, PhD
1Institute of AI in Management, LMU Munich, Munich, Germany
2Munich Center for Machine Learning (MCML), Munich, Germany
3Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital Bern, University of Bern, Bern, Switzerland
4Department of Endocrinology and Metabolic Diseases, Kantonsspital Olten, Olten, Switzerland
5Institute of Information Systems, FAU Erlangen-Nuremberg, Nuremberg, Germany
6The McCombs School of Business, The University of Texas at Austin, Austin, TX, United States

Corresponding Author:
Simon Schallmoser, MSc
Institute of AI in Management
LMU Munich
Geschwister-Scholl-Platz 1
Munich, 80539
Germany
Phone: 49 89 2180 6790
Email: schallmoser@lmu.de

Abstract

Background: Micro- and macrovascular complications are a major burden for individuals with diabetes and can already arise
in a prediabetic state. To allocate effective treatments and to possibly prevent these complications, identification of those at risk
is essential.

Objective: This study aimed to build machine learning (ML) models that predict the risk of developing a micro- or macrovascular
complication in individuals with prediabetes or diabetes.

Methods: In this study, we used electronic health records from Israel that contain information about demographics, biomarkers,
medications, and disease codes; span from 2003 to 2013; and were queried to identify individuals with prediabetes or diabetes
in 2008. Subsequently, we aimed to predict which of these individuals developed a micro- or macrovascular complication within
the next 5 years. We included 3 microvascular complications: retinopathy, nephropathy, and neuropathy. In addition, we considered
3 macrovascular complications: peripheral vascular disease (PVD), cerebrovascular disease (CeVD), and cardiovascular disease
(CVD). Complications were identified via disease codes, and, for nephropathy, the estimated glomerular filtration rate and
albuminuria were considered additionally. Inclusion criteria were complete information on age and sex and on disease codes (or
measurements of estimated glomerular filtration rate and albuminuria for nephropathy) until 2013 to account for patient dropout.
Exclusion criteria for predicting a complication were diagnosis of this specific complication before or in 2008. In total, 105
predictors from demographics, biomarkers, medications, and disease codes were used to build the ML models. We compared 2
ML models: logistic regression and gradient-boosted decision trees (GBDTs). To explain the predictions of the GBDTs, we
calculated Shapley additive explanations values.

Results: Overall, 13,904 and 4259 individuals with prediabetes and diabetes, respectively, were identified in our underlying
data set. For individuals with prediabetes, the areas under the receiver operating characteristic curve for logistic regression and
GBDTs were, respectively, 0.657 and 0.681 (retinopathy), 0.807 and 0.815 (nephropathy), 0.727 and 0.706 (neuropathy), 0.730
and 0.727 (PVD), 0.687 and 0.693 (CeVD), and 0.707 and 0.705 (CVD); for individuals with diabetes, the areas under the receiver
operating characteristic curve were, respectively, 0.673 and 0.726 (retinopathy), 0.763 and 0.775 (nephropathy), 0.745 and 0.771
(neuropathy), 0.698 and 0.715 (PVD), 0.651 and 0.646 (CeVD), and 0.686 and 0.680 (CVD). Overall, the prediction performance
is comparable for logistic regression and GBDTs. The Shapley additive explanations values showed that increased levels of blood
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glucose, glycated hemoglobin, and serum creatinine are risk factors for microvascular complications. Age and hypertension were
associated with an elevated risk for macrovascular complications.

Conclusions: Our ML models allow for an identification of individuals with prediabetes or diabetes who are at increased risk
of developing micro- or macrovascular complications. The prediction performance varied across complications and target
populations but was in an acceptable range for most prediction tasks.

(J Med Internet Res 2023;25:e42181) doi: 10.2196/42181
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Introduction

Background
Micro- and macrovascular complications are a major burden
for individuals with diabetes, resulting in an increased risk of
morbidity and mortality [1]; for example, individuals with
diabetes are at increased risk of developing cardiovascular
disease (CVD) in comparison with individuals without diabetes
[2]. Furthermore, macrovascular complications are responsible
for the majority of diabetes-related deaths [3]. Other examples
are diabetic retinopathy, which is the primary cause of blindness
among adults aged 20 to 74 years [4], and diabetic nephropathy,
which is responsible for the majority of new cases of renal
failure in the United States [5]. Furthermore, it has been shown
that already individuals with prediabetes have an increased risk
of developing micro- or macrovascular complications [6,7].

Hence, identifying these individuals (with either prediabetes or
diabetes) at increased risk of developing micro- or
macrovascular complications is important to allocate treatments,
which might prevent the onset of these complications.
Importantly, interventions have proven useful in reducing the
risk of developing micro- or macrovascular complications in
individuals with diabetes [8,9], and targeted interventions to
those at highest risk were shown to be more effective than
population-wide interventions [10]. Although several risk factors
for the different micro- and macrovascular complications are
known, identifying those at highest risk is complex, and machine
learning (ML) may improve the prediction performance.

Objectives
Prior studies have used traditional statistical methods (eg, Cox
proportional hazards models) to predict complications in
individuals with diabetes [11,12]. Such methods typically have
a linear structure and thus have the advantage of being
interpretable. However, they usually cannot effectively handle
high-dimensional data. By contrast, ML allows for modeling
more complex (eg, nonlinear) relationships between predictors
and outcomes and thus makes effective use of high-dimensional
data as in the case of electronic health records (EHRs).
Therefore, in recent studies, ML methods were increasingly
applied for predicting complications in individuals with diabetes
[13-18]. However, these studies suffer from (1) a small and
nonrepresentative population (eg, individuals in a single
hospital) or (2) a limited number of complications, or (3) they
lack important patient information (eg, biomarkers or disease
codes). Furthermore, according to a review of prediction models
for diabetes complications [19], there exist no prediction models

for micro- or macrovascular complications in individuals with
prediabetes. However, such prediction models are important
because they allow for an earlier intervention (ie, treatment via
medications or lifestyle changes) to prevent the onset of micro-
or macrovascular complications. Therefore, we aimed to develop
ML models (logistic regression and gradient-boosted decision
trees [GBDTs]) for predicting micro- and macrovascular
complications in individuals with diabetes or prediabetes over
a forecast horizon of 5 years.

Methods

This section was structured in accordance with the Transparent
Reporting of a Multivariable Prediction Model for Individual
Prognosis or Diagnosis (TRIPOD) statement for the
development of prediction models in medicine [20].

Source of Data
This is a retrospective analysis, where we analyzed anonymized
EHRs from an Israeli health provider [21,22]. The EHRs contain
data from multiple centers across Israel and cover the years
from 2003 to 2013. The EHRs consist of 6 tables in a
longitudinal data format with information on demographics (age
and sex), blood pressure, BMI, biomarkers, medications, and
disease codes. The baseline year to build the prediction models
was 2008. We used a 5-year forecast horizon, that is, the end
of follow-up was in 2013. This forecast horizon was chosen
analogous to previous work [11,16-18] because it allows for
identification of the individuals at highest risk for developing
a micro- or macrovascular complication.

Participants
We built our prediction models for 2 different target populations,
consisting of individuals with either prediabetes or diabetes.
Definitions of prediabetes and diabetes were based on laboratory
measurements of glycated hemoglobin (HbA1c), recorded disease
codes (using the International Classification of Diseases, Ninth
Revision [ICD-9]), and medications. Onset of diabetes was
defined by (1) 2 measurements of HbA1c ≥6.5% (48 mmol/mol),
where the onset is then set to the year of the first measurement;
(2) an ICD-9 code corresponding to diabetes (249 or 250); or
(3) if any prescription for antidiabetic medication or device for
self-measurement of blood glucose was recorded. The list of
antidiabetic medications and devices for self-measurement of
blood glucose is presented in Multimedia Appendix 1. An
individual was considered to have prediabetes if either a single
measurement of HbA1c of 5.7% to 6.4%
(39 mmol/mol-47 mmol/mol) or an ICD-9 code corresponding
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to prediabetes (790.2) was recorded. In addition, individuals
with prediabetes were only considered if none of the
aforementioned definitions of diabetes were fulfilled.

Inclusion and exclusion criteria were as follows: we selected
individuals who were considered to have prediabetes or diabetes
in 2008. We only included individuals where information on
sex and age was recorded. To account for patient dropout, we
only considered individuals where ICD-9 codes were recorded
until 2013. This ensured that, for each individual, an ICD-9

code corresponding to a possible complication could have been
recorded over the entire 5-year forecast horizon. For
nephropathy, we required that either ICD-9 codes or
measurements of serum creatinine or the albumin-to-creatinine
ratio in the urine were recorded until 2013. In addition, we only
included individuals at baseline who had not been diagnosed
with the specific complication beforehand. Hence, the baseline
populations differed across complications. A flowchart of the
inclusion and exclusion criteria is displayed in Figure 1.

Figure 1. Flowchart of the inclusion criteria. CeVD: cerebrovascular disease; CVD: cardiovascular disease; ICD-9: International Classification of
Diseases, Ninth Revision; PVD: peripheral vascular disease.

Outcome
Definitions of micro- and macrovascular complications were
based on recorded ICD-9 codes. We included the following
microvascular complications: retinopathy (ICD-9 codes 250.5
and 362.0), nephropathy (ICD-9 codes 250.4 and 585), and
neuropathy (ICD-9 codes 250.6 and 357.2). Furthermore, we
considered 3 macrovascular complications: peripheral vascular
disease (PVD; ICD-9 codes 250.7, 443.9, and 440),
cerebrovascular disease (CeVD; ICD-9 codes 430, 431, 432,
433, 434, 435, 437, and 438), and CVD (ICD-9 codes 410, 411,
412, 413, and 414).

For nephropathy, we additionally included the ratio of albumin
to creatinine in the urine (albuminuria) and the estimated
glomerular filtration rate (eGFR) as disease-defining markers.
We considered an individual to have developed nephropathy if

1 measurement of eGFR <60 ml/minute per 1.73 m2 or 2
measurements of the ratio of albumin to creatinine in the urine
≥30 mg/g were recorded [23]. The eGFR has been calculated
using the formula from the study by Levey et al [24], which
takes serum creatinine, age, sex, and ethnicity as inputs. As the
formula only differentiates between a Black ethnicity and a
non-Black ethnicity, we assumed a non-Black ethnicity for all
individuals because the EHRs did not cover that information
but represent an Israeli population.
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Predictors
The following predictors were used: age, sex, BMI, and blood
pressure (systolic blood pressure [SBP] and diastolic blood
pressure). We further included predictors from the following
categories: biomarkers, medications, and ICD-9 codes. Feature
selection was applied, whereby we selected the most frequent
biomarkers, medications, and ICD-9 codes. Specifically, we
added to our predictors the 60 most frequently recorded
biomarkers and the 20 most frequently recorded ICD-9 codes.
We did not include the ICD-9 code 250 (diabetes mellitus)
because this code was used in our inclusion criteria to define
the diabetes cohort (among other criteria). We grouped the 50
most often prescribed medications into 20 classes (Multimedia
Appendix 1) and added them to our predictors. In total, this
resulted in 105 predictors (Multimedia Appendix 2).

The predictors were preprocessed by applying the following
steps: first, ICD-9 codes and medications were one-hot encoded,
and ICD-9 codes were forward filled to account for the disease
history of the individual. Second, we averaged measurements
for BMI, blood pressure, and biomarkers if multiple
measurements were recorded within 1 year. Third, missing
values at the point of evaluation were forward filled from
previous years. For the logistic regression, measurements that
were still missing were imputed using the median. For the
GBDTs, we did not impute missing data because the chosen
model can handle missing values automatically. Finally, the
predictors were standardized (by removing the mean and
dividing by the SD) for the logistic regression. By contrast,
standardization is not necessary for the GBDTs.

Sample Size
The primary end point of this study was the diagnostic accuracy
of our ML models to predict micro- and macrovascular
complications. Therefore, we included all individuals who
fulfilled our inclusion criteria (as specified in the Participants
subsection) to maximize the discriminatory power of our models.

Missing Data
Missing data in the predictors were handled as follows: we only
included individuals with recorded age and sex. Hence, no data
are missing for these predictors. For numerical values (ie, blood
pressure, BMI, and biomarkers), missing values at the baseline
were forward filled from the last measurement. For the logistic
regression, values that were still missing were imputed using
the median. For the GBDTs, no imputation was performed as
described previously, but, internally, GBDTs treat missing
values as informative and replace them with a dummy variable
[25].

Statistical Analysis Methods
We built separate ML models for each complication and disease
state at baseline (either prediabetes or diabetes). Specifically,
we used a logistic regression with L1 regularization and GBDTs.
Logistic regression is a linear model, which typically performs
well in clinical settings [26]. It is inherently interpretable, which
is advantageous—and often demanded—for medical predictions
[27]. Gradient boosting is an ML technique where a sequence
of weak learners (here, decision trees) are sequentially optimized
to minimize the prediction errors of the previous weak learners.

The final gradient-boosting model consists of an ensemble of
weak learners. GBDTs are highly effective in modeling
complex, nonlinear relationships and in handling
high-dimensional data as in the case of EHRs. Both models
were chosen because they are well-established in the medical
literature [26,28,29]. Furthermore, this allows us to make direct
comparisons between a linear model (logistic regression) and
a more flexible model (GBDTs).

The ML models were implemented in Python (version 3.6.9;
Python Software Foundation). In particular, we used scikit-learn
(version 0.23.2 [30]) for the logistic regression and the CatBoost
package (version 1.0.4 [25]) for the GBDTs.

We applied a nested cross-validation, where we used 5 outer
folds to measure the out-of-sample performance of the ML
models and 4 inner folds to choose the optimal hyperparameters
(Multimedia Appendix 3). More specifically, within each
training set in the outer fold, an additional 4-fold
cross-validation is performed to select the hyperparameters.
Thereafter, the model is trained on the training set using these
optimal hyperparameters, and the out-of-sample performance
is evaluated on the test set corresponding to the current outer
fold. This procedure is repeated within each of the 5 folds of
the outer cross-validation. As such, nested cross-validation is
best practice in ML to optimize the hyperparameter tuning and
to assess how well the model generalizes to new data because
it ensures that each individual in the data set is used once for
measuring the out-of-sample performance [31].

We evaluated the performance of our ML models primarily on
the area under the receiver operating characteristic curve
(AUROC). We report the mean and the SD of the AUROC
across the 5 different test sets generated by the outer
cross-validation. For discussing the results, we categorized the
AUROC into moderate (0.600-0.700), acceptable (0.700-0.800),
and good (0.800-0.900). Additional performance metrics such
as area under the precision recall curve, sensitivity, specificity,
and balanced accuracy are reported in Multimedia Appendix 4.

The calibration (observed risk vs raw prediction score) of a
prediction model is often relevant in medical settings [32]. In
contrast to logistic regression, GBDTs may not be well
calibrated. Therefore, we applied a post hoc calibration by fitting
a logistic regression to the predictions on the validation set. We
evaluate the calibration in Multimedia Appendix 5 by plotting
the calibration curves and reporting the Brier score [33].

To explain the predictions of the GBDTs, we calculated Shapley
additive explanations (SHAP) values [34]. These represent a
unified approach for estimating the individual contribution of
a predictor to the overall model output. Thus, SHAP values
provide a ranking of the most important predictors [34].
Furthermore, SHAP values inform whether larger (smaller)
values of a predictor are attributed with an increased risk of
developing a certain complication. In addition, we report the
coefficients of the logistic regression in Multimedia Appendix
6.

Risk Groups
We followed best practice to check for potential algorithmic
bias [35] and thus added a separate analysis, where we evaluated
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the performance differences between male and female
individuals. For this, we did not train new prediction models
on only a male or female population but instead checked the
performance of our final models on these subgroups. The results
are presented in Multimedia Appendix 7.

Ethics Approval
This study was approved by the ethics committee of the faculty
of mathematics, computer science, and statistics at Ludwig
Maximilian University Munich (EK-MIS-2022-116). We report
the Minimum Information About Clinical Artificial Intelligence
Modeling (MI-CLAIM) checklist [36], which was developed
to improve transparent reporting of ML in medicine, in
Multimedia Appendix 8 [36].

Results

Participants
The final cohorts consisted of 13,904 individuals with
prediabetes and 4259 individuals with diabetes (Figure 1). Of

the 13,904 individuals with prediabetes, 2096 (15.1%) developed
diabetes within 5 years. Table 1 (individuals with prediabetes)
and Table 2 (individuals with diabetes) show the cohort
characteristics at baseline in comparison with the characteristics
at the time of diagnosis with a certain complication. Across all
complications, the 5-year incidence was smaller for the
individuals with prediabetes than for those with diabetes. The
cohorts at baseline contained more female individuals than male
individuals (diabetes: 56.3% vs 43.7%, respectively; prediabetes:
53.3% vs 46.7%, respectively). For the macrovascular
complications PVD and CVD, this ratio turned the other way:
more male individuals developed these complications in both
cohorts. The mean age of individuals with prediabetes at
baseline was 51.2 (SD 8.7) years and that of individuals with
diabetes was 52.9 (SD 9.5) years. Furthermore, BMI, SBP,
blood glucose, and HbA1c values were higher at the time of
diagnosis of a complication than at baseline. This was observed
in both cohorts.

Table 1. Characteristics of individuals with prediabetes at baseline and at the time point of first manifestation of the corresponding complication
(N=13,904).

CVDcCeVDbPVDaNeuropathyNephropathyRetinopathyCharacteristics of in-
dividuals at baseline

544462258587533513,904Number of individuals, n

12,67513,41113,66413,90112,18913,893N/AdNumber of individuals without specific
complication at/before baseline, n

4.33.41.90.46.20.3N/A5-year incidence (%)

Demographic data

Sex, n (%)

188 (34.6)255 (55.2)107 (41.5)29 (50.0)392 (52.1)20 (57.1)7412 (53.3)Female

356 (65.4)207 (44.8)151 (58.5)29 (50.0)361 (47.9)15 (42.9)6492 (46.7)Male

57.4 (7.0)58.6 (7.2)59.8 (6.0)57.6 (8.5)58.0 (6.8)57.3 (8.7)51.2 (8.7)Age (years), mean (SD)

30.9 (6.4)30.4 (5.0)30.2 (5.3)33.6 (6.8)31.4 (6.1)32.0 (5.1)30.0 (5.8)BMI (kg/m2), mean (SD)

128.5 (13.1)128.4
(13.1)

128.7
(13.5)

127.5 (14.0)128.9 (14.0)130.3 (17.0)124.8 (15.5)SBPe (mmHg), mean (SD)

78.5 (6.9)78.4 (7.7)78.7 (10.2)76.8 (7.7)78.8 (7.5)80.0 (6.9)77.8 (10.9)DBPf (mmHg), mean (SD)

Biomarkers, mean (SD)

100.77
(12.68)

100.9
(14.11)

102.46
(11.84)

111.98
(16.23)

103.15
(14.12)

113.51
(14.48)

97.5 (9.9)Glucose (mg/dL)

5.97 (0.46)5.97 (0.54)6.03 (0.41)6.36 (0.59)6.05 (0.57)6.28 (0.41)5.84 (0.26)HbA1c
g (%)

41.78 (4.91)41.75
(5.81)

42.39
(4.45)

45.96 (6.52)42.57 (6.17)45.16 (4.58)40.41 (2.69)HbA1c (mmol/mol)

aPVD: peripheral vascular disease.
bCeVD: cerebrovascular disease.
cCVD: cardiovascular disease.
dN/A: not applicable.
eSBP: systolic blood pressure.
fDBP: diastolic blood pressure.
gHbA1c: glycated hemoglobin.
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Table 2. Characteristics of individuals with diabetes at baseline and at the time point of first manifestation of the corresponding complication (N=4259).

CVDcCeVDbPVDaNeuropathyNephropathyRetinopathyCharacteristics of indi-
viduals at baseline

229195123130374594259Number of individuals, n

367840204101414435414197N/AdNumber of individuals without specific
complication at/before baseline, n

6.24.93.03.110.61.4N/A5-year incidence (%)

Demographic data

Sex, n (%)

96 (41.9)98 (50.3)52 (42.3)68 (52.3)203 (54.3)33 (55.9)2,397 (56.3)Female

133 (58.1)97 (49.7)71 (57.7)62 (47.7)171 (45.7)26 (44.1)1,862 (43.7)Male

59.8 (6.5)60.2 (7.5)61.7 (5.7)60.7 (7.4)59.7 (6.8)58.8 (9.8)52.9 (9.5)Age (years), mean (SD)

31.6 (6.5)31.1 (5.8)32.2 (5.9)33.3 (6.3)31.9 (5.6)32.8 (5.0)30.6 (5.8)BMI (kg/m2), mean (SD)

129.7
(14.5)

130.8
(14.7)

131.6
(12.6)

128.6 (11.8)130.8 (13.5)135.0 (16.3)126.6 (13.8)SBPe (mmHg), mean (SD)

77.8 (6.6)78.1 (7.7)80.5 (22.5)76.6 (5.8)78.5 (7.3)78.6 (7.4)77.7 (7.8)DBPf (mmHg), mean (SD)

Biomarkers, mean (SD)

109.09
(15.07)

107.38
(14.46)

114.38
(23.62)

116.98
(25.79)

113.15
(22.51)

123.88
(39.55)

104.72 (15.54)Glucose (mg/dL)

6.41 (0.88)6.23 (0.72)6.39 (0.79)6.59 (0.75)6.49 (0.87)6.79 (1.0)6.16 (0.72)HbA1c
g (%)

46.55
(9.55)

44.65
(7.85)

46.36
(8.62)

48.56 (8.21)47.42 (9.56)50.75
(10.93)

43.89 (7.93)HbA1c (mmol/mol)

aPVD: peripheral vascular disease.
bCeVD: cerebrovascular disease.
cCVD: cardiovascular disease.
dN/A: not applicable.
eSBP: systolic blood pressure.
fDBP: diastolic blood pressure.
gHbA1c: glycated hemoglobin.

Prediction Performance
Figure 2 shows the performance of the logistic regression and
the GBDTs for predicting micro- and macrovascular
complications in individuals with prediabetes (Figure 2A) and
diabetes (Figure 2B) over a 5-year forecast horizon. For the
prediabetes cohort, the mean AUROCs of the respective best
model were in a range of 0.681 (SD 0.164) to 0.815 (SD 0.009).
For the diabetes cohort, the mean AUROCs spanned over a
range of 0.651 (SD 0.043) to 0.775 (SD 0.033). Nephropathy
showed the best prediction performance in both cohorts. The
prediction performance for macrovascular complications was
generally better for individuals with prediabetes, whereas for

microvascular complications (except nephropathy), the
performance was better for individuals with diabetes. A
comparison of the performance differences between logistic
regression and GBDTs revealed that it depends on the cohort
and the complication which model performs better. However,
it can be observed that the prediction performance is comparable
between the 2 models for most prediction tasks. Especially
because in all cases the error bars are largely overlapping, we
argue that no model should be preferred over the other.
Additional performance metrics are reported in Multimedia
Appendix 4. These metrics also show that both models
performed comparably.
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Figure 2. Performance of the logistic regression and the gradient boosted decision trees (GBDTs) for predicting micro- and macrovascular complications
in (A) individuals with prediabetes or (B) diabetes. We report the mean of the area under the receiver operating characteristic curve (AUROC) across
the 5 different test sets. The error bars denote SD. CeVD: cerebrovascular disease; CVD: cardiovascular disease; PVD: peripheral vascular disease.

In Multimedia Appendix 5, we report the results of the
calibration of the GBDTs. In summary, we observe that the
GBDTs were already well calibrated before the post hoc
calibration. However, in most cases, the calibration improved
thereafter.

In Multimedia Appendix 7, we present the prediction
performance for male and female individuals. No systematic
deviation in performance was observed.

Model Explainability
Figures 3A and 3B show the 5 most important predictors for
all 6 complications for individuals with prediabetes and diabetes,

respectively. The HbA1c value is an important predictor for all
microvascular complications in both populations, where larger
values are related to an increased risk of developing one of these
complications. For nephropathy, increased age and large serum
creatinine levels are the most important risk factors. In both
populations, age is ranked as the most relevant predictor for all
macrovascular complications. Hypertension (either determined
by ICD-9 code 401, elevated SBP, or a prescription of beta
blockers or calcium channel blockers) is important for predicting
PVD and CeVD in both populations. Male sex was identified
as a risk factor for developing CVD.
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Figure 3. (A) SHAP plots for individuals with prediabetes. (B) SHAP plots for individuals with diabetes. For the SHAP plots, the ranking of the
predictors is based on their importance listed in descending order. Each dot represents 1 individual, and its position on the x axis denotes its SHAP
value. Elements with a positive (negative) SHAP value pull the prediction toward an increased (decreased) risk of developing a complication. The color
of each dot is a representation of the corresponding predictor value, where red indicates a high, blue a low, and gray a missing value. BB: beta blocker;
BUN: blood urea nitrogen; CCB: calcium channel blocker; CeVD: cerebrovascular disease; CPK: creatine phosphokinase; CVD: cardiovascular disease;
HbA1c: glycated hemoglobin; HDL: high-density lipoprotein; ICD-9 719: other and unspecified disorders of joint; ICD-9 786: symptoms involving
respiratory system and other chest symptoms; ICD-9 401: essential hypertension; LDH: lactate dehydrogenase; LDL: low-density lipoprotein; MCH:
mean corpuscular hemoglobin; PVD: peripheral vascular disease; SBP: systolic blood pressure; SCr: serum creatinine; SHAP: Shapley additive
explanations; UACR: albumin to creatinine ratio in urine; UCr: creatinine in urine.
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Robustness Checks
We experimented with other model variants to corroborate our
findings. First, we tested sequential ML models (ie, recurrent
neural networks with gated recurrent units and long short-term
memory networks). Such models are hypothesized to improve
prediction performance by taking into account the entire patient
trajectory [37]. However, in our case, this did not improve the
performance in comparison with our models. Second, we
experimented with multitask learning where the different
predictions are learned jointly. Again, our models were found
to be superior. More details and the corresponding results can
be found in Multimedia Appendix 9 [37].

Discussion

Principal Findings
We developed ML models to predict the risk of developing
micro- or macrovascular complications in individuals with
prediabetes or diabetes using routinely collected EHRs. Across
all microvascular complications, the respective best ML model
showed at least an acceptable performance for both cohorts.
The only exception was retinopathy within the prediabetes
cohort, where the performance was moderate. The reason for
this might be the small number of individuals who developed
retinopathy within the prediabetes cohort and a 5-year forecast
horizon. The prediction performance for nephropathy in
individuals with prediabetes showed good performance and,
interestingly, thereby a better performance than the respective
model for the diabetes cohort. It might be assumed that
diabetes-related complications can be predicted with better
performance in individuals with diabetes than in a population
with prediabetes. This is because diabetes-related complications
tend to occur earlier in individuals with diabetes because they
have already passed through the stage of prediabetes. However,
our diagnosis criteria for nephropathy (eGFR and albuminuria
in addition to the ICD-9 codes) might also include individuals
whose nephropathy is not directly linked to prediabetes or
diabetes. Furthermore, the prediabetes cohort contains almost
3 times more individuals than the diabetes cohort, which makes
it easier for the ML models to learn the specific relationships
leading to nephropathy.

For the macrovascular complications, we observed that the
performance of the best model for PVD was acceptable in both
cohorts. By contrast, for CeVD, the prediction performance was
only moderate, which reduces its value for possible application
in clinical settings. The best model for CVD for the prediabetes
cohort showed a performance between moderate and acceptable
(closer to acceptable), whereas for the diabetes cohort, it was
slightly below this level. In addition, we observed that all
macrovascular complications were easier to predict in
individuals with prediabetes. One possible explanation would
be that these complications are not as directly related to diabetes
as are microvascular complications. The latter depend more on
glycemic control (eg, blood glucose and HbA1c levels), whereas
macrovascular complications highly depend on additional risk
factors (eg, age and blood pressure). In combination with the
larger prediabetes cohort, this might be responsible for the better
performance.

Furthermore, we observed that the comparative performance of
the ML models depends upon the cohort and the specific
complication. Overall, both ML models showed a similar
prediction performance. Although GBDTs are widely considered
to outperform logistic regression, a systematic review has found
that a variety of ML models (including GBDTs) do not generally
perform better than logistic regression in clinical prediction
models [26]. However, in recent studies that used EHRs to build
clinical prediction models, GBDTs significantly outperformed
logistic regression [28,29]. Hence, it is not surprising that in
this study, for some prediction tasks, logistic regression
performed better, whereas for others, GBDTs performed better.
In 1 case (retinopathy for individuals with diabetes), a large
difference (>0.050) in the mean AUROC was observed between
the 2 models. However, in this case, the number of outcomes
compared with the overall sample size is small, thus resulting
in large, overlapping error bars of the AUROCs. Hence, we
argue that this difference does not reflect a substantial
performance difference between the 2 models.

To identify the most important predictors of the GBDTs, SHAP
values were calculated. These revealed that the HbA1c value is
an important predictor for all microvascular complications, and
higher values are related to an increased risk. This relationship
is well known and has been reported previously [4,38,39]. Serum
creatinine is relevant for predicting nephropathy in individuals
with prediabetes or diabetes. This finding is not surprising
because serum creatinine is used to calculate the eGFR, which
is one of the variables defining nephropathy. For macrovascular
complications, age was identified as the most important
predictor. This correlation is well known in the literature [40].
For PVD and CeVD, hypertension was related to an increased
risk of developing one of these complications, which has been
described previously [41,42].

Comparison With Prior Work
To the best of our knowledge, no prediction models for micro-
and macrovascular complications exist for individuals with
prediabetes; hence, a comparison with prior work is not possible.
By contrast, several prediction models for individuals with
diabetes exist. Two previous studies have used Cox proportional
hazards models [11,12]. Tanaka et al [11] built prediction
models for coronary heart disease (CHD), stroke,
noncardiovascular mortality, overt nephropathy, and retinopathy
for a forecast horizon of 5 years. Our prediction models for
stroke, nephropathy, and retinopathy outperformed their models;
theirs performed better only for CHD and CVD (theirs: 0.725;
ours: 0.686). The models by Basu et al [12] estimate the 10-year
risk, which makes a direct comparison with our models with a
5-year forecast horizon difficult. In their work, the AUROCs
on the internal validation set were often only moderate (ie,
0.550-0.680 for retinopathy, 0.600-0.840 for nephropathy, and
0.570-0.640 for neuropathy). In comparison, our best ML
models achieved acceptable performances (ie, mean 0.726, SD
0.069; mean 0.775, SD 0.033; and mean 0.771, SD 0.031,
respectively) on these complications for individuals with
diabetes. Their model for myocardial infarction (MI) showed a
performance similar to ours. For stroke, they reported an
AUROC of 0.700 (our best model for CeVD: mean 0.651, SD
0.043).
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ML models for predicting microvascular complications in
individuals with diabetes were built in the study by Dagliati et
al [13]. Therein, the authors reported acceptable performance
for retinopathy and moderate performances for nephropathy
and neuropathy (using logistic regression and a 5-year forecast
horizon). By contrast, our models showed acceptable
performances for these 3 complications. Dworzynski et al [14]
built ML models for cardiovascular disease, stroke, and chronic
kidney disease with AUROCs of 0.690, 0.720, and 0.770,
respectively. In comparison, we report mean AUROCs of 0.686
(SD 0.017), 0.651 (SD 0.043), and 0.775 (SD 0.033) for CVD,
CeVD, and nephropathy, respectively. In a study by Ljubic et
al [15], recurrent neural networks were used to estimate the
9-year risk for 10 different complications. Therein, separate
performances for angina pectoris, ischemic CHD, and MI are
reported, which are all grouped together in our outcome CVD.
The performances of the models built by Ljubic et al [15] range
from acceptable (MI) to good (ischemic CHD), thereby
outperforming our model for CVD. Furthermore, their model
for PVD outperformed ours (0.738-0.767 vs mean 0.715, SD
0.027, respectively). For nephropathy and neuropathy, our
models performed better than theirs (nephropathy: mean 0.775,
SD 0.033, vs 0.742-0.768, respectively; neuropathy: mean 0.771,
SD 0.031, vs 0.715-0.746, respectively), whereas for
retinopathy, their model outperformed ours by a small margin
(0.728-0.796 vs mean 0.726, SD 0.069, respectively).
Furthermore, a prediction model to estimate the 1-year risk for
chronic kidney disease was reported in the study by Song et al
[17]. Therein, the authors state a prediction performance
between acceptable and good (closer to good), which is slightly
better than the performance of our model for nephropathy. ML
models for predicting retinopathy and CVD within 3 years were
reported in the study by Ravaut et al [18]. These models showed
good performance for retinopathy (ours: acceptable) and
acceptable performance for CVD (ours: moderate).

Overall, the prediction performance of our models for
individuals with diabetes is comparable to the performances
reported in prior work. However, the advantage of our study is
that we are the first to also include prediction models for
individuals with prediabetes. Prediction models for such a
population are relevant because already half of the individuals
when diagnosed with type 2 diabetes have had vascular
complications [6]. Furthermore, our models are based on EHRs
that include a large and representative population. This is
because our EHRs contain data from multiple centers across
Israel. In addition, our models account for an individual’s
personal history by including a large number of predictors from
demographics, biomarkers, medications, and comorbidities. In
clinical settings, our prediction models could prove useful
because they can be derived directly from EHRs and are
therefore easily scalable. Furthermore, they allow for an early
identification of individuals at risk. For these individuals,
treatment could be administered earlier than usual and thus
could increase the chances to prevent the complication.
However, the prediction performance is in some cases worse
than acceptable (AUROC <0.700). The benefit of these
models—CeVD for both cohorts, retinopathy for the prediabetes
cohort, and CVD for the diabetes cohort—is questionable.

Limitations
This study has limitations. First, we used EHR data, which may
be prone to wrongly reported or missing data. This may explain
the small number of individuals who developed a specific
complication within 5 years in comparison with individuals in
data obtained from specialized diabetes clinics [13]. Moreover,
it may also be the reason why our models did not achieve a
better predictive performance although the general sample size
was large. Furthermore, we only had access to data until 2013.
It is possible that the reporting within the EHRs got better over
time. Therefore, our analysis might be based on data from times
when the quality of EHRs was lower than current standards. By
contrast, an advantage of these EHRs is that they typically
include measurements and diagnoses across the care continuum.
This is due to their origin from a health insurance company.
However, we cannot state this with absolute certainty because
patients may switch among health care providers or receive
treatment abroad. Finally, our EHRs did not contain information
regarding living status (eg, income, diet, and physical activity)
or sociodemographics (eg, race), which could be relevant
predictors for estimating the risk of developing a micro- or
macrovascular complication. Future studies may use more recent
and more complete EHRs to improve the prediction
performance. In addition, adjudicated claims or problem lists
could be used to improve the reliability of the diagnosis of
micro- and macrovascular complications.

Second, the data only covers an Israeli population. However,
our approach could be generalized to other populations as well.
This may be addressed in future work and, thereby, our ML
models could additionally be validated on an external data set.
As our EHRs did not contain information regarding ethnicity
but encompass an Israeli population, we had to assume a
non-Black ethnicity to calculate the eGFR. Furthermore, we
could not assess whether our models perform equally well
among different ethnicities.

Third, our definitions of prediabetes or diabetes were only based
on HbA1c measurements and recorded ICD-9 codes. We did not
consider blood glucose measurements because the EHRs did
not provide information on the time point of blood glucose
measurement. Therefore, disease-defining fasting values were
not available. However, this might also be beneficial because
it ensures direct applicability of our ML models to EHRs, where
the fasting state is not always recorded.

Fourth, our ML models were not trained on individuals at the
time of diagnosis of prediabetes or diabetes but rather at a
specific point in time (2008). The advantage of this approach
is that it ensures an application of our ML models to all
individuals with prediabetes or diabetes and not only to those
who were just recently diagnosed. In addition, in clinical
practice, the time point of prediabetes or diabetes diagnosis is
often unknown, and the disease may have been already present
for several years without being diagnosed.

Fifth, diagnosing nephropathy based on measurements of eGFR
and ratio of albumin to creatinine in the urine may identify
individuals whose nephropathy is unrelated or not exclusively
related to prediabetes or diabetes but developed because of other
reasons (eg, hypertension). Nonetheless, because prediabetes
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or diabetes is a major contributing factor for renal impairment,
a correct prediction of nephropathy may be helpful, irrespective
of its primary cause.

Sixth and last, we only consider a forecast horizon of 5 years.
For the prediabetes cohort, a larger forecast horizon would be
useful because diabetes-related complications typically occur
later than in individuals with diabetes. Hence, an extension to
larger forecast horizons would be an interesting analysis.
However, it should be noted that the time span of our data set
is not sufficient for such an analysis.

Conclusions
Micro- and macrovascular complications are a major burden
for individuals with prediabetes or diabetes. An early
identification of individuals at risk is important because it could
help to offer adequate treatment to prevent these complications.
In this study, we built ML models to identify individuals with
prediabetes or diabetes at high risk of developing micro- or
macrovascular complications. For the first time, we showed
that ML allows for predicting micro- and macrovascular
complications in individuals with prediabetes. The prediction
performance varied across complications and target populations
but was acceptable for most prediction tasks.
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