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Abstract

Background: Polysomnography is the gold standard for measuring and detecting sleep patterns. In recent years, activity
wristbands have become popular because they record continuous data in real time. Hence, comprehensive validation studies are
needed to analyze the performance and reliability of these devices in the recording of sleep parameters.

Objective: This study compared the performance of one of the best-selling activity wristbands, the Xiaomi Mi Band 5, against
polysomnography in measuring sleep stages.

Methods: This study was carried out at a hospital in A Coruña, Spain. People who were participating in a polysomnography
study at a sleep unit were recruited to wear a Xiaomi Mi Band 5 simultaneously for 1 night. The total sample consisted of 45
adults, 25 (56%) with sleep disorders (SDis) and 20 (44%) without SDis.

Results: Overall, the Xiaomi Mi Band 5 displayed 78% accuracy, 89% sensitivity, 35% specificity, and a Cohen κ value of
0.22. It significantly overestimated polysomnography total sleep time (P=.09), light sleep (N1+N2 stages of non–rapid eye
movement [REM] sleep; P=.005), and deep sleep (N3 stage of non-REM sleep; P=.01). In addition, it underestimated
polysomnography wake after sleep onset and REM sleep. Moreover, the Xiaomi Mi Band 5 performed better in people without
sleep problems than in those with sleep problems, specifically in detecting total sleep time and deep sleep.

Conclusions: The Xiaomi Mi Band 5 can be potentially used to monitor sleep and to detect changes in sleep patterns, especially
for people without sleep problems. However, additional studies are necessary with this activity wristband in people with different
types of SDis.

Trial Registration: ClinicalTrials.gov NCT04568408; https://clinicaltrials.gov/ct2/show/NCT04568408
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Introduction

Background
In recent years, technological advances have made it possible
to carry out diverse daily tasks (eg, health management) more
quickly, efficiently, and immediately [1,2]. In this context, the
Internet of Things is revolutionizing the health care system,
allowing daily users to monitor their health status in real time
through, for example, wearable devices [2]. Thus, the Internet
of Things has spurred a digital social transformation resulting
from changes in lifestyle patterns through the connection
between everyday life and communication networks [3].

Activity wristbands have become more popular among
consumers because of their usefulness, affordability, and
attractive design [4]. Sales of these device have risen in recent
years, with approximately 65.1 million units sold worldwide
[5]. The technology industry has moved to brand these devices
as an increasingly rigorous option for measuring biomedical
parameters [4]. Scientific evidence indicates that these
wristbands can promote participatory medicine because they
encourage people to be active agents in their health management
[6]. Moreover, several studies indicate that these devices can
help stakeholders to become more aware of their health status
and to improve their healthy lifestyle habits [7,8].

Activity wristbands can collect a myriad of daily health
information in the user’s free-living environments [9,10].
Although these devices were designed primarily to record
physical activity, companies are increasingly focused on
developing algorithms that record other variables such as sleep
and its patterns [9,10]. Thus, the use of wristbands not only
aims to monitor sleep patterns but also contributes to make the
population more aware of sleep relevance [11,12]. In this sense,
it is important to know the details of sleep behavior in the
population because sleep is a vital part of daily life and a
determinant of health and well-being [13-15].

Polysomnography (PSG) represents the reference method used
to measure sleep patterns. Its objective is the diagnosis of sleep
problems by assessing the quality and quantity of sleep [16,17].
However, PSG is limited to the clinical setting owing to its cost,
invasiveness, the need for specialized professionals, and
difficulty functioning in the user’s free-living environment
[15,18]. Therefore, clinicians consider actigraphy to be a
common alternative to address the drawbacks of PSG [19,20].
Several studies have compared actigraphy with PSG, showing
that the former provides high sensitivity in detecting sleep
epochs but low specificity in detecting wakefulness [20-22].
Actigraphy has poor accessibility, and a lack of feedback to
users hinders its daily use in the general population [11,20].
Nevertheless, it is a validated and accepted tool for detecting
certain sleep disorders (SDis) at the clinical and research levels
[15,21].

On the basis of actigraphy, activity wristbands can combine
movement signals from an accelerometer and heart rate (HR)
variability from sensors to detect sleep-wake cycles [23,24].
Recently, some sleep researchers have considered these devices
to be a potential complement to traditional sleep assessment

methods because they can sense long-term variations in the
circadian rhythm and sleep quantity and quality [4,25,26].
However, previous evidence indicates that the sleep data
recorded by these devices are unreliable because they do not
accurately detect sleep stages, being more precise in detecting
sleep than wakefulness [9,19,27]. Hence, health professionals
have stated that data from these devices can lead to excessive
concern among consumers about getting optimal sleep, a
phenomenon known as orthosomnia [28,29]. In addition, the
lack of access to the raw data and algorithms used for sleep
parameter measurements raises doubts about their use in clinical
and research settings [4,27,30].

Given the aforementioned limitations, sleep health entities, such
as the American Academy of Sleep Medicine (AASM), consider
it necessary to perform validation studies of activity devices to
evaluate their performance and reliability against PSG, which
is the gold standard [4,31,32]. In this view, it is relevant that
validation studies follow some criteria to assess these devices,
such as the American National Standards Institute (ANSI) and
Consumer Technology Association (CTA) standard [33]. This
standard is based on 2 levels of compliance to test how the
devices classify sleep and wake stages and how they classify
sleep stages (wake, rapid eye movement [REM] sleep, light
sleep, and deep sleep) [33].

Few studies have analyzed the sleep data performance of activity
wristbands. Most of these studies focused on validation of the
Fitbit [34-37], Jawbone UP [10,38], and Oura ring [39,40]
devices. In general, compared with PSG, these devices have
good accuracy in sleep versus wake differentiation (between
65% and 91%) and high sensitivity (between 96% and 97%)
but low specificity (between 42% and 51%) [10,34-39]. These
devices overestimate PSG total sleep time (TST) and sleep
efficiency (SE), and they underestimate PSG wake after sleep
onset (WASO) and sleep onset latency (SOL) [10,34-39,41,42].

Some of these validated devices can also identify sleep stages,
although the Fitbit Charge 2 overestimates PSG N1+N2 stages
of non-REM sleep and underestimates N3 stage of non-REM
sleep [36,37], whereas the Oura ring overestimates PSG REM
sleep and underestimates N3 sleep [39]. In addition, the authors
of some comparative studies claim that it is essential to know
the performance of these devices in people with SDis,
considering that most studies have only included healthy
populations [23,34,36]. Kahawage et al [34] and Moreno-Pino
et al [36] used the Fitbit Alta HR in a population with
obstructive sleep apnea (OSA) and insomnia. Both studies
showed similar concordance against PSG, with high sensitivity
and low specificity [34,36].

According to the literature, it is necessary to continue testing
the validity of wearable devices [11,30]. Therefore, this research
focused on the Xiaomi Mi Band (Xiaomi Inc), which is one of
the most popular activity wristbands on the market owing to its
low cost and suitable quality [4,5]. The Xiaomi Mi Band is not
a device that is frequently used in scientific research, unlike
other devices, such as those manufactured by Fitbit [4,7,9].
However, recent studies have used the Xiaomi Mi Band as an
objective tool to record physical activity and sleep in older
populations [43-45] and work environments [46,47]. Moreover,
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previous research compared the sleep data of Xiaomi devices,
specifically the Xiaomi Mi Bands 2 and 3, with other devices,
concluding that the Xiaomi devices do not correctly identify
the TST and WASO periods [9,30]. Nevertheless, researchers
have not comprehensively assessed the Xiaomi Mi Band against
PSG and specifically analyzed how it records sleep stages in
people with SDis as well as those without SDis. Therefore, this
study is the first to address validation of the Xiaomi Mi Band
5 against PSG.

Objectives
This study aimed to compare the performance of the Xiaomi
Mi Band 5 in measuring the sleep-wake stages compared with
PSG performed at a hospital sleep unit. The secondary objectives
were (1) to determine the agreement between sleep measures
from PSG and the Xiaomi Mi Band 5; (2) to assess the accuracy,
specificity, and sensitivity for classifying sleep and wake stages
by the Xiaomi Mi Band 5 compared with PSG; and (3) to
determine the performance level of the Xiaomi Mi Band 5 for
detecting sleep stages (wake, light sleep, deep sleep, and REM
sleep) compared with PSG.

Methods

Participants
This study was carried out from August 4, 2020, to December
10, 2021. Participants were recruited from the sleep unit of a
hospital in A Coruña, Spain. These people were attending the
sleep unit to participate in a PSG study, intended to detect

possible sleep alterations, independent of this project. All
participants had access to a study information sheet and provided
written informed consent for their participation. The protocol
study was registered with the ClinicalTrials.gov Protocol
Registration and Results System (NCT04568408) and published
in an international journal, where the design and recruitment
process of the study are detailed [48]. The research group
maintained the anonymization of all data recorded and obtained
from each participant, following and respecting the European
(UE 2018/1725) and Spanish (BOE-A-2018-16673) laws on
personal data protection at all times.

A total of 58 people participated in the Xiaomi Mi Band 5
validation project. However, data from 13 (22%) of the 58
participants were not used in the sleep analysis owing to
different factors, such as Xiaomi device malfunction (10/13,
77%), not meeting the inclusion criteria (2/13, 15%), and not
performing a PSG (1/13, 8%). Therefore, the final sample
comprised 45 people (n=23, 51%, men and n=22, 49%, women;
aged 23-81 [mean 53.24 SD 15.44] years; BMI mean 27.86,

SD 4.44 kg/m2). Of these 45 participants, 25 (56%) were
diagnosed with SDis after they had undergone PSG. The sleep
diagnoses were OSA syndrome (18/25, 72%), insomnia (4/25,
16%), narcoleptic syndrome (1/25, 4%), a combination of
hypersomnia and narcoleptic syndrome (1/25, 4%), and a
combination of sleep apnea syndrome and hypoventilation
syndrome (1/25, 4%). For this reason, the sleep measures were
also analyzed in 2 groups according to whether there were SDis.
The demographic characteristics of the No SDis (20/45, 44%)
and SDis (25/45, 56%) groups are shown in Table 1.

Table 1. Sample characteristics (n=45).

SDis group (n=25)No SDisa group (n=20)Characteristics

Sex, n (%)

10 (40)12 (60)Female

15 (60)8 (40)Male

56.08 (16.06)49.7 (14.22)Age (years), mean (SD)

28.91 (4.79)26.55 (3.67)BMI (kg/m2), mean (SD)

9.8 (4.07)10.30 (4.66)PSQIb, mean (SD)

aSDis: sleep disorders.
bPSQI: Pittsburgh Sleep Quality Index.

Procedure
All participants slept in the sleep unit for 1 night. On the day
of the recording, participants did not drink liquids for 3 hours
before PSG, and they attended the sleep unit a few hours earlier
to become acquainted with the bedroom. The technical team
members of the sleep unit were in charge of supervising,
preparing the participants for PSG, and meeting their possible
demands. Regarding PSG, the technicians placed the sensors
with electrode gel on the participants and connected them to
start the test. Participants wore the Xiaomi Mi Band 5 during
the recording test, and its location on the wrist was noted by
the technicians. During the registration, the technical team
members supervised the PSG and the Xiaomi device worn by

the participants, making notes and marking alterations that
emerged throughout the night for subsequent analysis. The
lights-off and lights-on times, temperature, and sound were
controlled in the room by the technicians. PSG and Xiaomi data
were collected and synchronized simultaneously. The data
coincided with the lights-off and lights-on times, providing a
record of approximately 8 hours of time in bed (TIB).

PSG Assessment
PSG was performed using the NicoletOne v44 Sleep Diagnostic
System (Natus Medical Incorporated). This device uses several
recordings that included an electroencephalogram (EEG; 6 leads:
FP1/FP2, F3/F4, C3/C4, and O1/O2 referenced by the
contralateral mastoid), a submental (P3 and P4) and bilateral
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anterior tibial (2 electrodes on each leg to assess leg movements)
electromyogram (EMG), a bilateral electro-oculogram (EOG),
and an electrocardiogram (ECG) [16]. EEG, EMG, EOG, and
ECG signals were sampled at 256 Hz. The EEG and EOG
signals were filtered at 0.3 to 35 Hz, the EMG signal was filtered
at 10 to 100 Hz, and the ECG signal was filtered at 0.3 to 70
Hz. At the same time, other biomedical parameters such as
respiratory movements and efforts (thoracic and abdominal
bands), nasal and oral airflow (nasal cannula), arterial oxygen
saturation (pulse oximeter), cardiac activity, and body movement
band were recorded to provide relevant information for a
potential diagnosis of SDis [16]. PSG parameters were
interpreted by the specialized physician of the sleep unit to
obtain the cycles and stages of sleep (wake time, N1 sleep, N2
sleep, N3 sleep, and REM sleep) and were scored in 30-second
epochs according to the standards of the AASM [49].

Xiaomi Mi Band 5
The Xiaomi Mi Band 5 includes a 3-axis accelerometer, a 3-axis
gyroscope, an HR sensor, and a photoplethysmography sensor
to measure some biomedical parameters. This device contains
updated software that continuously records daily activity (eg,
steps, distance, activity time, and calories), sleep (eg, light sleep,
deep sleep, REM sleep, wake, TST, start and end of the sleep
period, and naps), and HR [50]. The device also calculates and
classifies the stress level (classified using the terms relaxed,
mild, moderate, and high) through HR data. In addition, the
wristband requires a series of personal data such as age, sex,
weight, height, handedness, and wristband location. The Xiaomi
Mi Band connects to its app, the Zepp Life app, via Bluetooth,
where the recorded data are transferred and displayed [50]. The
Zepp Life app allows the export of activity data (broken down
into total activity, minute-by-minute activity, and activity stage),
sleep data (start and end sleep periods, WASO, light sleep, deep
sleep, and REM sleep), HR data (broken down into total HR;
minimum, maximum, and mean HR; and minute-by-minute
HR), sports data, and body data in CSV files [50]. In this study,
some modes of the Xiaomi device were activated, such as
automatic HR, sleep assistant, and night mode, to obtain accurate
data and to not disturb the participant. Moreover, there were no
problems with the charging of the wristband battery or with the
battery itself.

Processing the PSG and Xiaomi Mi Band 5 Data
The Xiaomi Mi Band 5 and PSG source data were originally
available in different formats. The Xiaomi Mi Band 5 data were
collected from the Zepp Life app manually and exported to an
Excel sheet (Microsoft Corp) because it did not allow
downloading of the raw data from the wristband. By contrast,
PSG data consisted of CSV text files that contained the manually
scored sleep stages and the corresponding reports with clinical
sleep diagnostic parameters, available in Word format
(Microsoft Corp), both exported using the NicoletOne software.
Hence, to enable performance analysis, data were converted
into a common format using the European Data Format +
(EDF+) [51]. For this purpose, a Python script (version 3.10.5;
Python Software Foundation) was developed with help of the
PyEDFlib library [52].

To carry out this process, start time, lights off, lights on, and
end of the test markers were set according to the expert
annotations available in the corresponding PSG reports. Sleep
stages were coded using EDF+ standard texts following the
AASM guidelines [49]. For the Xiaomi Mi Band 5 data, it was
necessary to adjust the resolution to standard 30-second epochs
because the device originally reported on the basis of 1-minute
epochs only. This was achieved by splitting each 1-minute epoch
into 2 corresponding epochs of 30 seconds each sharing the
same sleep stage. Likewise, the Xiaomi hypnogram information
does not consider N1 and N2 stages separately. For this reason,
epoch-by-epoch (EBE) performance analysis was carried out
using a 4-way classification (wake, light sleep, deep sleep or
N3, and REM sleep) by merging the corresponding N1 and N2
labels from the PSG in the corresponding light sleep category.
Performance analysis was carried out using information within
the TIB periods. It should be noted that the Xiaomi Mi Band 5
only starts reporting after the first sleep period is identified by
the device; therefore, it is assumed that the periods before the
first sleep period and after the last sleep period detected by the
device within the TIB period are scored as wakefulness.

After this process, and using the corresponding EDF+ annotation
files, different standard sleep parameters were calculated and
compared [53]. More specifically, TIB (calculated in min), total
sleep period duration (TSPD; a measure containing the duration
of both sleep and wake cycles; min), TST (min), WASO (min),
awakenings (number), SOL (min), SE (percentage), light sleep
(min), deep sleep (min), REM sleep (min), and awake (min)
were analyzed for both the Xiaomi Mi Band 5 and PSG in this
study. Normative values for some of these parameters have been
proposed based on the consensus of a panel of experts regarding
objective assessment of sleep quality [41].

Statistical Analysis
Statistical analysis was performed using R software (version
4.1.2; R Foundation for Statistical Computing). The analysis
was carried out with the total sample (n=45). Likewise, data
were analyzed with the participants grouped depending on the
existence of SDis to determine the differences between PSG
and the Xiaomi Mi Band 5.

Summary measures of PSG and the Xiaomi Mi Band 5
equivalents were compared using the paired 2-tailed t test [54]
or the Mann-Whitney Wilcoxon test [54]. The choice of the test
was based on whether the data were normally distributed,
determined by using the Shapiro-Wilk normality test. Normally
distributed data were analyzed using the parametric 2-tailed t
test, whereas nonnormally distributed data were analyzed using
the Mann-Whitney Wilcoxon test. Moreover, the effect size
was measured using Cohen d, classified as 0.2 (small effect),
0.5 (moderate effect), and 0.8 (large effect) [54].

Furthermore, the Bland-Altman method was used to determine
the agreement between PSG and the Xiaomi Mi Band 5 for each
sleep parameter. The mean difference (or bias) between the
methods, the SD, the 95% CI, and the Bland-Altman 95% limits
of agreement (mean observed difference ± 1.96 × SD of
observed differences) were calculated. A positive bias indicates
that the Xiaomi Mi Band 5 tends to underestimate a variable
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when compared with the gold standard (PSG). A negative bias
indicates that a sleep variable is overestimated [55].

EBE analysis was performed according to the 2 levels of
compliance as provided in the ANSI and CTA performance
evaluation guidelines [33]. The first level analyzed the
performance of the devices in a 2-way classification for
detecting sleep-wake stages using a confusion matrix. For this
purpose, accuracy (proportion of correctly classified sleep and
wake epochs), sensitivity (proportion of epoch segments
identified as sleep by the Xiaomi Mi Band 5 of those classified
as sleep by the PSG), specificity (proportion of epoch segments
identified as wake by the Xiaomi Mi Band 5 of those classified
as wake by PSG), and Cohen κ values (agreement corrected by
chance between the Xiaomi Mi Band 5 and PSG) were analyzed
[33]. The standard label definitions used to classify Cohen κ
values were used: 0 to 0.2 (slight), 0.21 to 0.40 (fair), 0.41 to
0.60 (moderate), 0.61 to 0.80 (substantial), and >0.80 (almost
perfect) [56]. The second level analyzed how the device detected
sleep stages using a 4-way classification (wake, REM sleep,
light sleep, and deep sleep). For this purpose, accuracy and
Cohen κ values were analyzed [33].

Ethics Approval
The study was approved by the A Coruña-Ferrol research ethics
committee (2020/318).

Results

Comparison of PSG and Xiaomi Mi Band 5 Sleep
Measures
The sleep parameters obtained from PSG and the Xiaomi Mi
Band 5 were compared using the 2-tailed t test or the

Mann-Whitney Wilcoxon test. Table 2 provides the sleep
outcomes for PSG and the Xiaomi Mi Band 5 in the total sample.
Overall, there were no significant differences between the
methods in the initial sleep onset (P=.27), TSPD (P=.78), and
SOL (P=.29) measures. However, the Xiaomi Mi Band 5
significantly overestimated PSG TST (z=−2.73; P=.009), the
percentage of PSG SE (z=−2.59; P=.03), PSG light sleep
(t44=−2.49; P=.005), and PSG deep sleep (t44=−2.58; P=.01).
In addition, it underestimated PSG WASO (z=2.96; P=.005),
PSG awakenings (z=7.72; P=.001), PSG REM sleep (t44=3.59;
P=.001), and PSG awake (z=2.61; P=.01).

Table 3 shows the results of sleep measures for PSG and the
Xiaomi Mi Band 5 in the No SDis and SDis groups. There were
no significant differences between PSG and the Xiaomi Mi
Band 5 for the initial sleep onset (No SDis: P=.37; SDis: P=.52)
and TSPD (No SDis: P=.47; SDis: P=.57) variables in either
group. However, the Xiaomi Mi Band 5 differed significantly
from PSG in the rest of the sleep measures, depending on
whether the participants presented or did not present SDis. In
the No SDis group, the Xiaomi Mi Band 5 overestimated PSG
SOL (z=−1.83; P=.046) and PSG light sleep (t19=−3.23;
P=.004), and it underestimated PSG awakenings (z=5.50;
P<.001) and PSG REM sleep (t19=2.66; P=.02). By contrast, in
the SDis group, it overestimated PSG TST (z=−2.70; P=.007),
the percentage of PSG SE (z=−2.19; P=.03), and PSG light
sleep (t19=−3.97; P<.001), and it underestimated PSG WASO
(z=2.35; P=.02), PSG awakenings (z=5.35; P<.001), PSG REM
sleep (t19=2.37; P=.03), and PSG awake time (z=3.13; P=.005).
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Table 2. Comparison of polysomnography (PSG) and Xiaomi Mi Band 5 sleep measures in the total sample.

Cohen dP valuez scoreat test (df)Xiaomi Mi Band 5, mean (SD; 95% CI)PSG, mean (SD; 95% CI)

—————b07:01 (00:17; 06:56-
07:10)

Lights on (hh:mm)

—————23:36 (00:40; 22:29-
01:03)

Lights off (hh:mm)

0.208c.27—1.12 (44)00:11 (01:05; 23:55-00:31)00:29 (01:31; 22:47-
01:33)

Initial sleep onset (hh:mm)

—————443.58 (44.98; 430.07
to457.1)

TIBd (min)

0.250c.78—0.28 (44)406.16 (51.27; 390.75-421.56)408.05 (57.13; 390.88-
425.23)

TSPDe, (min)

−0.407c.009−2.73—374.17 (72.42; 352.42-395.93)344.62 (79.58; 320.71-
368.53)

TSTf (min)

0.442c.0052.96—31.99 (51.64; 16.47-47.50)63.42 (57.42; 46.17
to80.68)

WASOg (min)

1.15h.0017.72—0.69 (0.94; 0.97-0.40)3.64 (2.27; 4.33-2.96)Awakenings (>5 min; num-
ber per night)

−0.206c.29−1.07—40.26 (42.59; 27.47-53.06)31.64 (33.97; 21.43-
41.84)

SOLi (min)

−0.329c.03−2.59—84.14 (15.70; 79.42-88.86)78.32 (16.56; 73.35-
83.30)

SEj (%)

—————12.65 (9.21; 9.9-15.42)Time in N1 stage of non-

REMk sleep (min)

—————202.14 (57.47; 184.87-
219.40)

Time in N2 stage of non-
REM sleep (min)

−0.439c.005—−2.49 (44)244.62 (56.59; 227.61-261.62)214.79 (55.12; 198.23-
231.35)

Time in N1+N2 sleep (light
sleep; min)

−0.385c.01—−2.58 (44)75.37 (31.73; 65.83-84.90)60.72 (29.41; 51.88-
69.56)

Time in N3 sleep (deep
sleep; min)

0.536l.001—3.59 (44)49.61 (30.7; 40.01-59.22)69.11 (28.08; 60.67-
77.54)

Time in REM sleep (min)

0.390c.012.61—66.51 (66.22; 86.40-46.61)94.86 (71.88; 116.46-
73.27)

Awake (min)

aMann-Whitney Wilcoxon test.
bNot available.
cSmall effect.
dTIB: time in bed.
eTSPD: total sleep period duration.
fTST: total sleep time.
gWASO: wake after sleep onset.
hLarge effect.
iSOL: sleep onset latency.
jSE: sleep efficiency.
kREM: rapid eye movement.
lModerate effect.
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Table 3. Comparison of polysomnography (PSG) and Xiaomi Mi Band 5 sleep measures in the no sleep disorders (No SDis) and sleep disorders (SDis)
groups.

Cohen dP valuez scoreat test (df)Xiaomi Mi Band 5, mean (SD; 95% CI)PSG, mean (SD; 95% CI)

Lights on (hh:mm)

—————b07:02 (00:11; 06:57-07:07)No SDis group

—————07:01 (00:45; 06:52-07:10)SDis group

Lights off (hh:mm)

—————23:32 (00:48; 23:09-23:54)No SDis group

—————23:42 (00:32; 23:28-23:55)SDis group

Initial sleep onset (hh:mm)

0.204c.37—0.91 (19)00:10 (00:56; 23:43-00:37)00:37 (02:00; 23:41-01:33)No SDis group

0.230c.52—0.64 (24)00:12 (01:13; 23:42-00:43)00:22 (01:02; 23:56-00:48)SDis group

TIBd (min)

—————446.66 (50.37; 423.09-
470.24)

No SDis group

—————441.12 (41.06; 424.16-
458.07)

SDis group

TSPDe (min)

0.475c.47—2.12 (19)410.56 (50.66; 386.84-434.27)442.80 (42.35; 402.97-
442.62)

No SDis group

−0.508f.57—−0.58 (24)402.64 (52.51; 380.96-424.32)396.26 (65.11; 369.38-
423.13)

SDis group

TSTg (min)

−0.208c.41—−0.83 (19)378.26 (70.98; 345.04-411.49)363.55 (68.20; 331.63-
395.47)

No SDis group

−0.625f.007−2.70—370.90 (74.84; 340.00-401.79)329.48 (85.97; 293.99-
364.97)

SDis group

WASOh (min)

0.361c.121.98—32.30 (54.31; 6.87-57.71)59.25 (56.44; 32.83-85.66)No SDis group

0.504f.022.35—31.75 (50.53; 10.89-52.61)66.77 (59.14; 42.36-91.18)SDis group

Awakenings (>5 min; number per night)

1.20i<.0015.50—0.65 (0.98; 1.11-0.18)3.90 (2.38; 5.01-2.78)No SDis group

1.07i<.0015.35—0.72 (0.93; 1.10-0.33)3.44 (2.22; 4.35-2.52)SDis group

SOLj (min)

−0.478c.05−1.83—38.75 (32.46; 23.56-53.95)26.47 (15.19; 19.36-33.58)No SDis group

−0.474c.80−0.25—41.48 (49.88; 20.89-62.07)35.78 (43.50; 17.82-53.73)SDis group

SEk (%)

−0.206c.37−1.46—84.61 (15.24; 77.47-91.74)81.02 (13.67; 74.63-87.42)No SDis group

−0.421c.03−2.19—83.77 (16.36; 77.02-90.53)76.17 (18.56; 68.51-83.83)SDis group

Time in N1 stage of non-REMl sleep (min)

—————13.85 (10.05; 9.14-18.55)No SDis group

—————11.70 (8.56; 8.16-15.23)SDis group

Time in N2 stage of non-REM sleep (min)
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Cohen dP valuez scoreat test (df)Xiaomi Mi Band 5, mean (SD; 95% CI)PSG, mean (SD; 95% CI)

—————198.74 (52.72; 174.06-
223.42)

No SDis group

—————204.86 (61.95; 179.28-
230.43)

SDis group

Time in N1+N2 sleep (light sleep; min)

−0.724f.004—−3.23 (19)254.63 (52.78; 229.93-279.33)212.59 (48.09; 190.08-
235.10)

No SDis group

−0.268c.19—−1.34 (24)236.59 (59.29; 212.12-261.07)216.56 (61.09; 191.34-
241.77)

SDis group

Time in N3 sleep (deep sleep; min)

−0.345c.67—0.42 (19)73.88 (30.54; 59.59-88.17)77.05 (20.68; 67.37-86.73)No SDis group

−0.796f<.001—−3.97 (24)76.55 (33.22; 62.84-90.27)47.66 (29.11; 35.64-59.67)SDis group

Time in REM sleep (min)

0.597f.02—2.66 (19)49.85 (27.20; 37.12-62.58)73.90 (23.56; 62.88-84.94)No SDis group

0.475c.03—2.37 (24)49.43 (35.89; 34.62-64.24)65.26 (31.17; 52.39-78.13)SDis group

Awake (min)

0.218c.420.83—71.01 (73.04; 105.21-36.83)85.72 (62.81; 115.12-56.33)No SDis group

0.625f.0053.13—60.77 (62.39; 86.53-35.01)102.18 (78.90; 134.75-
69.61)

SDis group

aMann-Whitney Wilcoxon test.
bNot available.
cSmall effect.
dTIB: time in bed.
eTSPD: total sleep period duration.
fModerate effect.
gTST: total sleep time.
hWASO: wake after sleep onset.
iLarge effect.
jSOL: sleep onset latency.
kSE: sleep efficiency.
lREM: rapid eye movement.

Bland-Altman Plots
Table 4 shows Bland-Altman biases, SDs, 95% CIs, and the
upper and lower Bland-Altman 95% limits of agreement. Figure
1 presents Bland-Altman plots for the main sleep measures. In
the total sample, the Xiaomi Mi Band 5 significantly
overestimated PSG TST by 29.54 minutes, PSG SE by 5.82%,
PSG light sleep by 29.81 minutes, and PSG deep sleep by 14.64
minutes. By contrast, it underestimated PSG WASO by 31.44
minutes, PSG awakenings by 2.95 epochs, PSG REM sleep by
19.49 minutes, and PSG awake time by 28.36 minutes.

There were also differences between the sleep groups. The
Xiaomi Mi Band 5 significantly overestimated PSG light sleep
by 42.02 minutes and PSG SOL by 12.28 minutes in the No

SDis group. In addition, it underestimated PSG awakenings by
3.25 epochs and PSG REM sleep by 24.05 minutes in this group.
However, in the SDis group, the Xiaomi Mi Band 5
overestimated PSG TST by 41.41 minutes, PSG SE by 7.6%,
and PSG deep sleep by 28.89 minutes. In addition, it
underestimated PSG WASO by 35.03 minutes, PSG awakenings
by 2.72 epochs, PSG REM sleep time by 15.83 minutes, and
PSG awake time by 41.41 minutes.

On average, the Bland-Altman agreement limits were exceeded
every 4 and 2 participants for the total sample, especially in
TST, WASO, awakenings, and SE measures. The participants
with sleep problems were the ones who mainly exceeded these
aggregation limits.

J Med Internet Res 2023 | vol. 25 | e42073 | p. 8https://www.jmir.org/2023/1/e42073
(page number not for citation purposes)

Concheiro-Moscoso et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 4. Bland-Altman parameters for the comparison between polysomnography and the Xiaomi Mi Band 5 in the total sample as well as the no sleep
disorders (No SDis) and sleep disorders (SDis) groups.

Number of participants exceeding the agreement limits, n (%)Agreement limitsBias (SD; 95% CI)

Initial sleep onset (hh:mm)

2 (4)a−03:06 to 03:4000:17 (01:44; 00:49 to 00:13)Total sample

2 (10)b−01:36 to 02:3000:27 (02:13; 01:29 to 00:35)No SDis group

0 (0)c−02:22 to 02:4000:09 (01:17; 00:41 to 00:21)SDis group

TSTd (min)

3 (7)a−171.72 to 112.63−29.54 (72.54; −7.75 to 51.33)Total sample

1 (5)b−169.44 to 140.01−14.71 (78.94; −51.66 to 22.23)No SDis group

2 (8)c−171.18 to 88.36−41.41 (66.20; −68.73 to 14.08)SDis group

TSPDe (min)

1 (2)a−86.25 to 90.041.89 (44.97; −11.61 to 15.40)Total sample

0 (0)b−38.24 to 62.7312.24 (25.75; 0.19 to 24.29)No SDis group

1 (4)c−114.14 to 101.37−6.38 (54.97; −29.07 to 16.31)SDis group

WASOf (min)

4 (9)a−107.97 to 170.8631.44 (71.13; 10.07 to 52.81)Total sample

1 (5)b−119.47 to 173.4026.96 (61.92; −8.00 to 61.93)No SDis group

3 (12)c−101.15 to 171.2135.03 (69.48; 6.35 to 63.71)SDis group

Awakenings (>5 min; number per night)

4 (9)a−2.07 to 3.732.95 (2.57; 3.73 to 2.18)Total sample

3 (15)b−1.91 to 8.413.25 (2.63; 4.48 to 2.01)No SDis group

1 (4)c−2.26 to 7.702.72 (2.54; 3.77 to 1.67)SDis group

SOLg (min)

2 (4)a−114.00 to 96.75−8.62 (53.76; −24.77 to 7.53)Total sample

0 (0)b−62.65 to 38.08−12.28 (25.69; −24.31 to 0.26)No SDis group

2 (8)c−140.88 to 129.48−5.7 (68.97; −34.17 to 22.77)SDis group

SEh (%)

4 (9)a−40.46 to 28.82−5.82 (17.67; −11.13 to 0.51)Total sample

2 (10)b−37.63 to 30.46−3.85 (17.37; −11.71 to 4.54)No SDis group

2 (8)c−43.00 to 27.80−7.60 (18.06; −15.06 to 0.14)SDis group

Time in N1+N2 sleep (light sleep; min)

2 (4)a−163.07 to 103.44−29.81 (67.98; −50.24 to 9.39)Total sample

0 (0)b−155.81 to 71.72−42.04 (58.04; −69.20 to 14.87)No SDis group

2 (8)c−166.49 to 126.42−20.03 (74.72; −50.88 to 10.81)SDis group

Time in N3 sleep (deep sleep; min)

0 (0)a−89.27 to 59.98−14.64 (59.97; −26.08 to 3.20)Total sample

0 (0)b−61.53 to 67.863.17 (33.00; −12.28 to 18.62)No SDis group

0 (0)c−100.08 to 36.32−28.89 (36.32; −43.88 to 13.90)SDis group
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Number of participants exceeding the agreement limits, n (%)Agreement limitsBias (SD; 95% CI)

Time in REMi sleep (min)

2 (4)a−51.85 to 90.8419.49 (36.40; 8.55 to 30.42)Total sample

0 (0)b−54.93 to 103.0524.05 (40.30; 5.20 to 42.92)No SDis group

2 (8)c−49.52 to 81.2015.83 (33.34; 2.07 to 29.60)SDis group

Awake (min)

3 (7)a−114.11 to 170.8428.36 (72.69; 50.20 to 6.52)Total sample

2 (10)b−140.00 to 169.4314.71 (78.93; 51.65 to 22.23)No SDis group

1 (4)c−88.36 to 171.1841.41 (66.21; 14.08 to 68.74)SDis group

an=45.
bn=20.
cn=25.
dTST: total sleep time.
eTSPD: total sleep period duration.
fWASO: wake after sleep onset.
gSOL: sleep onset latency.
hSE: sleep efficiency.
iREM: rapid eye movement.
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Figure 1. Bland-Altman plots for initial sleep onset, total sleep time (TST), total sleep period duration (TSPD), wake after sleep onset (WASO),
awakenings, sleep onset latency (SOL), sleep efficiency (SE), light sleep, deep sleep, rapid eye movement (REM) sleep, and awake time. The PSG-Xiaomi
Mi Band 5 differences for sleep parameters (y-axis) are plotted as a function of the PSG-Xiaomi Mi Band 5 means (x-axis) for sleep parameters. Circles
represent participants without sleep disorders (No SDis group; n=20), and triangles represent participants with sleep disorders (SDis group; n=25). Zero
lines are marked and represent perfect agreement. The dotted lines represent the biases and Bland-Altman 95% limits of agreement (mean observed
difference ± 1.96 × SD of observed differences). PSG: polysomnography.

EBE Analysis
Tables 5-7 show the confusion matrices resulting from the 2-way
(wake vs sleep) classification of 30-second epochs between

PSG and the Xiaomi Mi Band 5. Results are shown separately
for the total sample as well as for the No SDis and SDis groups.

Table 5. Confusion matrix for the 2-way (wake vs sleep) epoch-by-epoch classification for the total sample.

Xiaomi Mi Band 5

SleepWake

PSGa

55253019Wake

27,7863238Sleep

aPSG: polysomnography.
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Table 6. Confusion matrix for the 2-way (wake vs sleep) epoch-by-epoch classification for the no sleep disorders group.

Xiaomi Mi Band 5

SleepWake

PSGa

21171305Wake

13,0181528Sleep

aPSG: polysomnography.

Table 7. Confusion matrix for 2-way (wake vs sleep) epoch-by-epoch classification for the sleep disorders group.

Xiaomi Mi Band 5

SleepWake

PSGa

34081714Wake

14,7861710Sleep

aPSG: polysomnography.

According to the results, the Xiaomi Mi Band 5 correctly
classified both sleep and wake epochs in 30,805 (77.85%) of
the 39,568 available epochs. It correctly detected 27,786
(89.56%) of the 31,024 sleep epochs, thus resulting in 0.90
sensitivity for the sleep class, and it was able to identify 3019
(35.33%) of the 8544 wake stages, leading to a corresponding
0.35 specificity for the wake class. Because of the binary
classification, we derive immediately the respective sensitivity
and specificity values for the wake class as 0.35 and 0.90. On
the basis of the Cohen κ value, the level of concordance between
PSG and the Xiaomi Mi Band 5 was 0.22.

These results were similar in the No SDis and SDis groups. The
Xiaomi Mi Band 5 had an accuracy of 0.80 and 0.76 in the No
SDis group and the SDis group, respectively. The sensitivity
for the sleep class was 0.89 for both groups, and the
corresponding sensitivity was 0.38 for the No SDis group and
0.33 for the SDis group. The Cohen κ values for the Xiaomi Mi
Band 5 were 0.27 in the No SDis group and 0.26 in the SDis
group.

Tables 8-10 show the corresponding confusion matrices for the
4-way sleep stage classification between PSG and the Xiaomi
Mi Band 5. In general, the accuracy level was 0.44. More
specifically, the agreement with PSG was 0.48 for the detection
of wakefulness, 0.51 for light sleep, 0.33 for deep sleep, and
0.26 for REM sleep. The No SDis and SDis groups had
outcomes similar to those of the total sample. Moreover, the
Xiaomi Mi Band 5 misidentified PSG epochs 40% to 70% of
the time. It should be noted that the Xiaomi device misclassified
3957 (46.31%) of the 8544 wake epochs and 4044 (65.01%) of
the 6221 REM sleep stages as light sleep in the total sample. In
addition, it misclassified 1945 (65.38%) of the 2975 and 2099
(64.31%) of the 3264 REM sleep epochs in the No SDis group
and the SDis group, respectively, as light sleep.

Table 11 shows that the Cohen κ coefficients for the 4-way
epoch classification ranged between 0.11 and 0.15 for agreement
between PSG and the Xiaomi Mi Band 5 among the 3 groups,
indicating that most of the accuracy agreement was due to
chance.

Table 8. Confusion matrix for 4-way (wake, light sleep, deep sleep, and rapid eye movement [REM] sleep) epoch-by-epoch classification for the total
sample.

Xiaomi Mi Band 5

REMDeep sleepLight sleepWake

PSGa

548102039573019Wake

2274346811,3662236Light sleep

49417752653537Deep sleep

11935194044465REM

aPSG: polysomnography.
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Table 9. Confusion matrix for 4-way (wake, light sleep, deep sleep, and rapid eye movement [REM] sleep) epoch-by-epoch classification for the no
sleep disorders group.

Xiaomi Mi Band 5

REMDeep sleepLight sleepWake

PSGa

21527216301305Wake

105514385142872Light sleep

2099821469422Deep sleep

5152631945234REM

aPSG: polysomnography.

Table 10. Confusion matrix for 4-way (wake, light sleep, deep sleep, and rapid eye movement [REM] sleep) epoch-by-epoch classification for the
sleep disorders group.

Xiaomi Mi Band 5

REMDeep sleepLight sleepWake

PSGa

33374823271714Wake

1219203062241364Light sleep

2857931184115Deep sleep

6782562099231REM

aPSG: polysomnography.

Table 11. Overall accuracy and Cohen κ statistics for 2-way and 4-way epoch-by-epoch classifications for the total sample as well as the no sleep
disorders (No SDis) and sleep disorders (SDis) groups.

4-Way epoch-by-epoch classification2-Way epoch-by-epoch classification

Cohen κ, mean (SD)Accuracy, mean (SD)Cohen κa, mean (SD)Accuracy, mean (SD)

0.12 (0.13)0.44 (0.10)0.22 (0.23)0.78 (0.13)Total sample

0.15 (0.12)0.45 (0.10)0.27 (0.21)0.80 (0.13)No SDis

0.11 (0.14)0.43 (0.10)0.26 (0.25)0.76 (0.12)SDis

aCohen κ: 0 to 0.2 (slight), 0.21 to 0.40 (fair), 0.41 to 0.60 (moderate), 0.61 to 0.80 (substantial), and >0.80 (almost perfect).

Discussion

Principal Findings
The Xiaomi Mi Band 5 is one of the most popular wristbands
among consumers around the world [4,5]. Its use has increased
because it can continuously record different parameters,
including sleep [4,5]. Nevertheless, it was not developed for
clinical or scientific purposes in the diagnosis of SDis or sleep
monitoring, a factor that could influence its performance [11,28].
Thus, we considered it necessary to determine the quality and
accuracy of sleep data obtained from this device by comparing
it against PSG performed at a clinical sleep unit. To our
knowledge, this is the first study that has validated the ability
of the Xiaomi Mi Band 5 to measure sleep parameters in people
with SDis as well as those without SDis.

This study investigated the agreement in sleep measures from
PSG and the Xiaomi Mi Band 5. Overall, the Xiaomi Mi Band

5 had some limitations in the detection of several sleep
measures. There were no significant differences detected among
initial sleep onset, TSPD, and SOL measures compared with
PSG. However, the Xiaomi Mi Band 5 significantly
overestimated TST, SE, light sleep, and deep sleep. It also
significantly underestimated WASO, the number of awakenings,
REM sleep, and awake time. These results are similar to those
of previous studies that validated activity wristbands such as
the Fitbit Alta HR [34], Fitbit Charge HR [57], Fitbit Charge 2
[37], and Jawbone UP [38].

The Bland-Altman analysis showed the biases between the
Xiaomi Mi Band 5 and PSG in general, which ranged from 1.89
to 31.44 minutes. Unlike other devices, the Xiaomi Mi Band 5
more accurately estimated some summary measures of sleep
compared with PSG (Multimedia Appendix 1). PSG TST was
overestimated by 25 to 30 minutes more by the Jawbone UP
(59.10 min) [38] and the Fitbit Alta HR (53.33 min) [34] than
by the Xiaomi Mi Band 5 (29.54 min). Moreover, the Xiaomi
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Mi Band 5 overestimated PSG light sleep by 29.81 minutes,
but the Fitbit Charge 2 overestimated it by 34 minutes [37].
Likewise, the Xiaomi Mi Band 5 underestimated PSG WASO
by 31.44 minutes and PSG awake time by 28.36 minutes,
whereas the Fitbit Alta HR underestimated WASO by 48.37
minutes and awake time by 41.93 minutes [34,36]. By contrast,
WASO was underestimated 25.85 minutes [35] less by Fitbit
Charge HR (5.6 min) than by the Xiaomi Mi Band 5 (31.44
min).

Furthermore, 2 studies evaluated previous versions of the
Xiaomi wristband against other devices [9,30]. However, the
authors did not comprehensively compare the sleep parameters
of the Xiaomi devices against PSG. Ameen et al [30] used the
Xiaomi Mi Band 2 alongside other devices to determine the
reliability of sleep data, concluding that the Xiaomi device
overestimated TST by 69.64 minutes and SE by 13.25%, and
it underestimated WASO by 33.57 minutes. Topalidis et al [9]
compared sleep data from the Xiaomi Mi Band 3 and GT3X
scientific actigraphy devices, showing low concordance among
the devices in the wake periods and TST. Thus, these authors
report results that are similar to ours, but TST, SE, and WASO
sleep measurement estimates by the Xiaomi Mi Band 5 were
more accurate than those in the previous Xiaomi versions [9,30].

The Bland-Altman 95% limits of agreement (Table 4) were
generally high, especially for the TST, WASO, the number of
awakenings, and SE variables. These limits are similar to those
reported in studies that compared the Jawbone UP or the Fitbit
Alta HR with PSG [34,38]. However, they differ from those
obtained in the Fitbit Charge 2 wristband or the Oura ring
validation studies, whose limits of agreement were narrower
for all sleep measures [37,39]. In this study, between 9% (4/45)
and 4% (2/45) of the participants exceeded the limits of
agreement, mainly for the TST, WASO, the number of
awakenings, and SE measures. In fact, some of these participants
(3/45, 7%) coincide with the disagreement on the limits on these
sleep measures. Likewise, several studies have reported a similar
number of participants (8%-12% of the participants) who
exceeded the aggregation limits [35,38,39].

The Xiaomi Mi Band 5 showed an accuracy of 78% for
identifying sleep and wake stages and a sensitivity of 89% for
detecting sleep epochs. However, it showed a specificity of only
35%. These findings are similar to those of previous studies,
highlighting that, in general, these devices have high accuracy
and sensitivity but low specificity [37,38,58]. However, Cohen
κ analysis revealed that most of the accuracy was due to chance
(Cohen κ=0.22), with 78% (31,024/39,568) of all available
epochs in the total sample belonging to the sleep class according
to PSG. Regarding this aspect, some authors suggest that poor
detection of wakefulness time could be due to difficulties the
wristbands have in detecting periods of immobility [11,39,59].

Furthermore, this study analyzed the Xiaomi Mi Band 5’s level
of performance regarding the identification of sleep stages using
a 4-way EBE classification. The device obtained an accuracy
of 44% for this task. Specifically, the Xiaomi Mi Band 5 was
more accurate in detecting wake (48%) and light sleep (51%)
than in identifying deep sleep (34%) and REM sleep (28%),
misclassifying these stages as light sleep and misclassifying

light sleep as REM sleep on several occasions and, to a lesser
extent, as deep sleep. Overall, other validated devices seem to
have greater accuracy in identifying sleep stages than the Xiaomi
Mi Band 5 [11,37,39,60], except for the Fitbit Charge 2, which
showed lower accuracy in detecting deep sleep (49%) than the
Xiaomi Mi Band 5 [37].

Cohen κ corrects the agreement owing to chance between the
Xiaomi Mi Band 5 and PSG. Overall, the obtained values
hovered between 0.11 and 0.27 for the different 2-way (wake
vs sleep) and 4-way stage classifications and patient groups.
Thus, the levels of agreement between the Xiaomi Mi Band 5
and PSG were slight to fair. Conversely, other authors reported
that the Fitbit Alta HR and the Fitbit Charge 2 devices had
Cohen κ coefficients ranging from 0.52 to 0.66, indicating a
moderate agreement with PSG [36,37,61].

Experts who have validated other devices have concluded the
need to focus on people with sleep problems owing to their
increased prevalence during the COVID-19 pandemic [14,62].
The existing literature that validated these devices in people
with sleep problems reflects the myriad difficulties that come
with measuring sleep parameters [34,36,58]. In this study, the
total sample was divided into 2 groups, namely one with SDis
and one without SDis. Both groups presented similar results for
the initial sleep onset and TSPD measures, showing only slight
biases with the PSG measures. However, in the rest of the
measures, there were relevant differences between the 2 sleep
groups. Specifically, the Xiaomi Mi Band 5 showed almost no
variation compared with PSG for the TST, SE, deep sleep, and
awake time variables in the No SDis group. However, in the
SDis group, the Xiaomi Mi Band 5 overestimated several
parameters compared with PSG, namely TST and deep sleep
by 28 to 41 minutes and SE by 7.6% in the SDis group. In
addition, it underestimated PSG WASO more in the SDis group
than in the No SDis group.

The estimations of these sleep measures are consistent with
those made by the Jawbone or Fitbit devices in a group of people
with SDis [36,38]. However, the Jawbone and Fitbit biases
compared with PSG are greater than those obtained in this study
[36,38]. Conversely, unlike the No SDis group, the SDis group
did not present significant differences with PSG in the variables
light sleep and SOL. In addition, PSG REM sleep was mainly
underestimated in the No SDis group rather than in the SDis
group.

Moreover, both groups presented similar results regarding the
performance of sleep and wake stage detection, but participants
with SDis presented lower values. Overall, Cohen κ coefficients
were also lower in the SDis group. Specifically, the Xiaomi Mi
Band 5 misidentified more epochs in the SDis group than in the
No SDis group. The device misclassified light sleep epochs as
awake, deep sleep, and REM sleep epochs in the SDis group
and to a lesser extent in the No SDis group.

Overall, the outcomes obtained from people without SDis were
a bit more accurate in some sleep measures and sleep stages.
Consistent with the literature, devices such as the Xiaomi Mi
Band 5 may be an alternative for health management in people
without SDis because the data are more reliable than in people
with SDis [8,11,41,61].
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However, the outcomes of the SDis group could have been
influenced by the inclusion of multiple SDis (rather than a single
disorder), with OSA being the most prevalent syndrome. Similar
to the results of other studies, the performance of this activity
wristband can be lower among people diagnosed with OSA.
There are reports that devices such as the Xiaomi Mi Band 5
had worse outcomes in this population than in populations with
other conditions [36]. In this study, the biases between the
Xiaomi device and PSG differed between participants with OSA
and those with other SDis (Multimedia Appendix 2). Our results
show better performance in detecting sleep and wake stages,
but higher biases were detected for sleep variables in the other
SDis group.

Limitations
There are some limitations that could have negatively influenced
the main findings of this study. The first limitation is attrition:
only 45 of the 58 participants completed the study. Participants
did not complete the study owing to difficulties with the use of
the wristband and data collection. Hence, the sample was
heterogeneous, and the size of the groups (SDis and No SDis)
was small. In addition, how the participants were monitored
might have influenced the data because this was not done in the
usual context in which people sleep. Moreover, participants
should be followed up for more days for better assessment of
the performance of the Xiaomi Mi Band 5.

This study includes other limitations. Specifically, the Xiaomi
Mi Band 5 and other devices only combine movement and HR

to classify sleep parameters, whereas PSG includes several
sensors; therefore, the accuracy of the data collected by wearable
devices could be lower than that of the data collected by PSG.
These devices present more limitations in the detection of
WASO, light sleep, and REM sleep. Moreover, it would be
necessary to have access to raw data in 30-second epochs and
to the algorithm that Xiaomi uses to classify the data; this
additional information would improve data analysis [11].
Although synchronization of the Xiaomi Mi Band 5 and PSG
was simultaneous, there may be certain deviations that could
affect the results of the study, specifically those obtained in the
EBE analysis [11].

Conclusions
In conclusion, the very popular Xiaomi Mi Band 5 may be an
acceptable activity wristband in terms of quality and price.
Moreover, its use can promote greater awareness of the
importance of sleep and promote good healthy lifestyle habits
so that people obtain more quality sleep. Likewise, this device
could be considered a tool to monitor sleep and to screen
changes in sleep patterns through which health professionals
could determine the quality and quantity of people’s sleep.
Specifically, it could be a potential tool for use in populations
without SDis, especially to identify TST and deep sleep. Future
research must study the performance of this device in various
populations, such as people with OSA, insomnia, narcolepsy,
parasomnias, and other health conditions.
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