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Abstract

Background: Drug-induced suicide has been debated as a crucial issue in both clinical and public health research. Published
research articles contain valuable data on the drugs associated with suicidal adverse events. An automated process that extracts
such information and rapidly detects drugs related to suicide risk is essential but has not been well established. Moreover, few
data sets are available for training and validating classification models on drug-induced suicide.

Objective: This study aimed to build a corpus of drug-suicide relations containing annotated entities for drugs, suicidal adverse
events, and their relations. To confirm the effectiveness of the drug-suicide relation corpus, we evaluated the performance of a
relation classification model using the corpus in conjunction with various embeddings.

Methods: We collected the abstracts and titles of research articles associated with drugs and suicide from PubMed and manually
annotated them along with their relations at the sentence level (adverse drug events, treatment, suicide means, or miscellaneous).
To reduce the manual annotation effort, we preliminarily selected sentences with a pretrained zero-shot classifier or sentences
containing only drug and suicide keywords. We trained a relation classification model using various Bidirectional Encoder
Representations from Transformer embeddings with the proposed corpus. We then compared the performances of the model with
different Bidirectional Encoder Representations from Transformer–based embeddings and selected the most suitable embedding
for our corpus.

Results: Our corpus comprised 11,894 sentences extracted from the titles and abstracts of the PubMed research articles. Each
sentence was annotated with drug and suicide entities and the relationship between these 2 entities (adverse drug events, treatment,
means, and miscellaneous). All of the tested relation classification models that were fine-tuned on the corpus accurately detected
sentences of suicidal adverse events regardless of their pretrained type and data set properties.

Conclusions: To our knowledge, this is the first and most extensive corpus of drug-suicide relations.
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Introduction

Background
Suicide is an intentional death that is caused by self-harm.
Although global suicide rates have declined in recent years,
suicide accounts for approximately 700,000 deaths (1.3% of all
deaths) per annum [1]. The Comprehensive Mental Health
Action Plan (2013-2020) of the World Health Organization
argues that suicide remains a critical global public health
problem [1].

Although suicide can be triggered by multiple factors and their
complex effects [2], most cases are related to psychiatric
disorders such as depression, psychosis, anxiety, and substance
use [3]. Physical disorders such as cancer, respiratory diseases,
hypertension, and diabetes are also debated as risk factors for
suicide [4,5]. Effective treatment of individual patients can
avoid and decrease the suicide risk associated with these factors;
however, caution is required because the prescribed drug may
itself be an independent risk factor for suicide.

Several studies have suggested a link between suicidal behaviors
(suicidal ideation, attempted suicide, and completed suicide)
and adverse events associated with prescribed drugs [6-9]. For
instance, a previous meta-analysis of clinical trials showed that
selective serotonin reuptake inhibitors (SSRIs) tend to increase
the risk of suicidality in patients with depression and all
indications [10]. Consequently, the United States Food and
Drug Administration issued a black box warning for the suicidal
risk of SSRIs. Qato et al [11] investigated the use of drugs that
pose a potential suicide risk in the United States. They reported
103 drugs associated with suicidality as an adverse event;
furthermore, the use of these drugs substantially increased from
17.3% in 2005-2006 to 23.5% in 2013-2014 [11].

To prevent and reduce the occurrence of drug-induced suicide,
we must improve our knowledge of the drugs that pose a
potential suicide risk. Although clinical trials have evaluated
the efficacy and safety of drugs in the premarketing phase, they
usually have strict inclusion and exclusion criteria, short-term
duration, and small sample size, which limit their ability to
detect rare adverse drug events (ADEs) [12-14]. Therefore,
ongoing evaluations of drugs introduced to the market, called
postmarketing surveillance, are crucial for rare ADEs such as
suicide.

Theoretical Background
Among various sources of information on ADEs in the
postmarketing surveillance field, research articles are the most
informative. However, extracting such information from these
data sources is challenging because it is recorded in an
unstructured free-text format.

Automatic information extraction systems can be developed
through natural language processing (NLP), a field of computer
science and artificial intelligence. A system that automatically
excerpts information from research articles can accelerate the
task of identifying drugs with potential suicide risk.

The most general purpose corpora for relation extraction tasks
in the biomedical domain contain diverse entities and relations

[15-17]. More narrowly focused data sets represent the
interactions between diseases [18], drugs [19], chemical
components and diseases [20], and drug and ADEs [21,22].
However, these corpora contain insufficient data when
developing an information extraction system for drug-related
suicidal events. For instance, the MEDLINE ADE data set
contains only 3 (0.04%) suicide-related entities among 6821
sentences. These sentences are presented in Multimedia
Appendix 1 [15,21-23].

Several studies have attempted to classify sequences as
suicide-related or nonsuicide-related sentences [24-26]. Such
fixed relation agents require information on the agents
themselves in the data set because the model must learn the
entities between which the relation should be classified.
Furthermore, models developed using the data sources of social
media may not be adjustable to data from research articles,
mainly because scientific texts follow strict grammatical rules
rather than social language [27], which is characterized by a
high rate of abbreviations, nonformal terminology, and
metaphoric phrases [28].

Related Work
As drug-induced suicide is a type of ADE, we reviewed the
published data sets on ADEs. Most of these data sets contain
information on drugs and conditions (eg, diseases, signs, and
symptoms) and the relationship between these entities.
Nikfarjam et al [23] created the ADRMine data set from posts
on Twitter and the health-related social network DailyStrength
[29]. They annotated signs and symptoms at the sentence level,
including adverse drug reactions. Van Mulligen et al [15] created
the EU-ADR corpus from the titles and abstracts of MEDLINE
articles. They annotated the drugs and diseases and the
relationship between these entities. For instance, a drug-disease
relation in their corpus indicates that the drug may produce an
adverse effect at the sentence level but does not necessarily
imply an ADE. Schulz et al [16] developed another corpus based
on case reports from PubMed. They annotated the cases,
conditions, findings, factors, negation modifiers, and relationship
between these entities. Gurulingappa et al [21] developed a
MEDLINE ADE corpus to support the automatic extraction of
drug-related adverse events from case reports in MEDLINE (a
subset of PubMed). Their corpus contains 4272 unique sentences
and 6821 relations. Alvaro et al [22] created a
source-comparative corpus called TwiMed, which includes
annotated drugs, symptoms, diseases, and negative
drug-associated outcomes. Multimedia Appendix 2 provides a
detailed comparison of these corpora.

Problem
Several studies have produced various drug-related corpora and
general diseases. However, as the existing corpora seldom focus
on drug-induced suicide events, we cannot gain extensive
knowledge of medicines that pose a potential risk of suicide.
This knowledge gap limits our ability to prevent and reduce the
occurrence of drug-related suicides. Moreover, few corpora
include the directional relationship between drugs and suicide
and vice versa. To address these concerns, we constructed a
novel drug-suicide relation (DSR) corpus from a wide range of
biomedical articles on PubMed.
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Objective
The objective of our research was to construct a DSR corpus.
The obtained corpus consisted of 11,894 sentences extracted
from PubMed research articles. It included (1) annotations on
2 entities (drug and suicidal events) and (2) annotations on the
relations between the entities. PubMed provides access to
broad-spectrum articles in the biomedical field, covering >70%
of all publications [30]. Therefore, our corpus may be useful
for developing information extraction models for diverse
biomedical databases. To validate our corpus, we evaluated the
relation classification performances of Bidirectional Encoder
Representations from Transformer (BERT) models fine-tuned
on data sets with diverse properties extracted from our corpus.

Methods

Overview
This study was conducted in two phases: (1) construction of the
DSR corpus and (2) validation of the DSR corpus. To implement

the first phase, we developed a sophisticated workflow
comprising four steps: (1) data collection, (2) preprocessing
stage, (3) data annotation, and (4) postprocessing stage. First,
we gathered data from DrugBank and PubMed and preprocessed
them for further annotation. Second, we manually annotated
the entity pairs and relation classes for each sentence. Third,
we created the corpus from the raw annotations via
postprocessing of the labeled data. We then built various data
sets from the corpus with different parameters for the subsequent
phase. In the second phase of our study, we evaluated the
performance of the BERT-based relation classification model
using several language models (LMs) fine-tuned on various
data sets compiled from our developed corpus. Both phases
were implemented using Python 3.7. Figure 1 shows the overall
workflow for constructing and testing the DSR corpus.

Figure 1. Workflow of constructing and testing the DSR (drug-suicide relation) corpus. BERT: Bidirectional; Encoder Representations from Transformer;
NER: named entity recognition; NLTK: natural language toolkit.

Generation of the DSR Corpus

Data Collection and Preprocessing
We collected the titles and abstracts of all available articles in
English on the association between drugs and suicide published
by October 13, 2021. Textbox 1 presents the search queries used
in this study.

PubMed contains metadata at the level of a paper, which are
useful for data filtering in the collection stage. When building
the search query, we used the Medical Subject Headings (MeSH)
terms [31] “suicidal ideation,” “suicide, attempted,” “suicide,
completed,” and “suicide,” along with text words associated
with the keyword “suicide” in PubMed. We considered generic
drug names from DrugBank version 5.1.8 [32,33] and their

synonyms for drugs. We excluded drugs categorized as vitamins,
mineral supplements, tonics, blood substitutes, emollients and
protectives, antiseptics and disinfectants, or medicated dressings
according to the Anatomical Therapeutic Chemical
Classification System [34] and various sections of the
classification. We used PyMed package (version 0.8.9) [35] for
PubMed to automate the task of collecting the titles and abstracts
of articles associated with each drug.

The collected titles and abstracts were tokenized at the sentence
level using a pretrained tokenizer in the NLTK package (version
3.6.1; [36]). Among the sentences obtained (N=172,249) from
17,017 articles on PubMed, we collected only those sentences
containing information on drugs and suicide. The DSR corpus
was then developed at the sentence level as follows: first,
sentences containing at least one mention of a drug were
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selected. Second, we chose suicide-related sentences that (1)
contained the suicidal keyword “suicid,” (a stemmed version
of the word “suicide”) or (2) are classified as “suicidal” by a
model. Yin et al [37] proposed a method using models pretrained
on natural language understanding data sets as zero-shot
sequence classifiers. To check whether the suicide-related
sentences are classified as “suicidal,” we used a Bidirectional

and Auto-Regressive Transformers (BART) large model [38]
pretrained on the Multi-Genre Natural Language Inference
corpus [39] with the custom binary classification of “suicide”
and “non-suicide.” If the model infers that a given sentence is
“suicide” with a probability of ≥.5, it assigns a suicidal label to
that sentence. Finally, we obtained 9732 data entries for
annotation.

Textbox 1. PubMed query template for retrieving drug-mentioning suicide-related articles.

(%DRUG% [Supplementary concept] OR %DRUG%[MeSH Terms] OR %DRUG%[TW]) AND (“suicidal ideation”[MeSH Terms] OR “suicide,
attempted”[MeSH Terms] OR “suicide, completed”[MeSH Terms] OR “suicide”[MeSH Terms] OR suicid[TW] OR suicidals[TW] OR suicidality[TW]
OR suicide[TW] OR suicidal[TW] OR suiciders[TW] OR suicidally[TW] OR suicides[TW] OR suicide s[TW] OR suicided[TW]) AND

(English[Language])

Data Annotation
During the data annotation stage, our workflow assigned three
labels to each sentence: (1) drug entity, (2) suicide entity, and
(3) relation class. Two annotators with pharmacological
backgrounds participated independently in the annotation
process. First, 2 annotators reviewed the automatically annotated
[40] labels of drug entities. The annotators assigned each drug’s
generic name, brand name, class name, and abbreviated name
as a drug entity. The metabolite and salt forms of the drug were
excluded. Second, they manually annotated the suicide entities
in each sentence. The suicidal entities were defined as mentions
of suicide-related events, tendencies, and behaviors, including
suicide risk, suicidal attempt, completed suicide, and suicidal
ideation, or suicide-related behavior disorders. Third, they
classified the relation class for each sentence as an “adverse
drug event (ADE),” “suicide means,” “treatment,”
“miscellaneous” (such as comparative sentences, research
objectives, miscellaneous sentences, and no explicit relation),
or “none.”

The primary relations between a drug and a suicidal entity were
set as follows:

1. ADEs: This relation indicates that suicidal events, including
suicide attempts, suicide completions, and self-harm–related
behaviors, followed the drug administration.

2. Suicide means: This relation indicates that the drug was
deliberately used (ie, taken in overdose) to commit suicide.

3. Treatment: This relation indicates that the drug was used
to treat the signs or symptoms of suicidal ideation and
suicidal behavior disorder.

When multiple entities for drugs or suicide appeared in a single
sentence, we represented all “sentence–drug entity–suicidal
entity” cases by duplicating the sentence. The “relation-class”
label was excluded from the identifying representation because
the relations between the same entities cannot overlap. The
annotation guidelines are detailed in Multimedia Appendix 3
[40]. Figure 2 [41] shows some relation-class entries. Each data
entry includes a sentence, drug entity, suicide-related entity,
and the relation class between the 2 entities.

Figure 2. Examples of relation class entries: the sentences of each class in the Doccano environment are annotated. ADE: adverse drug event; CDI:
Children's Depression Inventory; SE: suicidal entity.

Interannotator Agreement
Two annotators with pharmacological backgrounds
independently annotated the drug and suicide entities and their
relations in each sentence. The annotators then compared their

annotations and matched the annotations for drug and suicide
entities according to the annotation guidelines (Multimedia
Appendix 3). When a disagreement was observed, the
annotations were matched by 2 independent reviewers (one
pharmacist and the other with an NLP background). To validate
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the annotated relations between entities, we measured
interannotator agreement using the Cohen κ method [42]. We
aligned the proposed relation classes of the 2 annotators between
the same pair of entities in the same sentence. The interannotator
agreement score was calculated as a pairwise Cohen κ score.
The data were annotated with a Cohen κ score of 0.64, implying
a substantial level of agreement [43,44].

Annotation Postprocessing Process
In the postprocessing stage, we revised the annotations of labels
completed by the annotators and adjusted the data format to be
used for relation classification with the BERT models. Before
this step, the data were sorted in ascending order of occurrence
number of each sentence in the data set. This sorting procedure
reduced the probability of choosing duplicates when constructing
the data set (selecting specific classes and implementing the
downsampling process). Meanwhile, we eliminated examples
with (1) ambiguous annotations not related to suicide (such as
“suicide gene” and “suicidal patients”) for the suicidal entity,
(2) at least one missing value of assigned labels, (3) sentence
lengths >512 characters (the maximum allowed by the vanilla
BERT model) [45], (4) no mentions of the annotated entities in
the sentence, or (5) overlapped entities. Excluding the examples
with sentence lengths >512 characters was deemed acceptable
as most (but not all) of the recent relation classification models
[46-52] use BERT-based or RoBERTa-based approaches [53].
Although the BERT architecture of RoBERTa [53] has been
optimized for faster learning, the maximum sequence length
remains at 512 characters. Furthermore, such long sentences
were few in our corpus; therefore, their impact was almost
negligible. We then distributed the data records with multiple

appearances of the same entity in a sentence and calculated the
exact positions of the entities in the sentence. Finally, we
obtained the final corpus with a size of 11,894.

Validation of the DSR Corpus: Fine-tuning R-BERT
Models for Relation Classification

Data Set Construction
For the relation classification experiments, we constructed
several data sets based on our DSR corpus, removing duplicated
sentences to avoid the overfitting risk. As our DSR corpus is
imbalanced, we applied random downsampling to control the
distribution between the relation classifications. In previous
studies, this approach achieved the highest performance at all
levels of imbalance [54]. In addition, because differences in
entity order can affect the performance of the relation
classification model [55,56], we designated the order of drug
and suicide entities in the relation class. For example, if the
drug entity (e1) preceded the suicidal entity (e2) in a sentence,
the sentence was designated as “e1-e2”; otherwise, it was
designated as “e2-e1.”

The performance of the relation classification model is also
affected by the properties of the data set. Therefore, we
constructed various data sets with different properties from our
DSR corpus and compared the model performances on each
data set.

Table 1 lists the properties of the data sets used in this study.
The data set properties are the split ratio for training and test
data sets, categorization of relation classifications, and order
of entity mentions (within a sentence).

Table 1. Eight data sets constructed from our drug-suicide relation (DSR) corpus and their respective properties.

Order of entitiesCategorization of relation classificationsSplit ratio for training and test data sets (training:test)Data set

NoNone and ADEa90%:10%1

YesNone and ADE80%:20%2

NoNone and ADE90%:10%3

YesNone and ADE80%:20%4

NoNone, ADE, suicide means, and treatment90%:10%5

YesNone, ADE, suicide means, and treatment80%:20%6

NoNone, ADE, suicide means, and treatment90%:10%7

YesNone, ADE, suicide means, and treatment80%:20%8

aADE: adverse drug event.

R-BERT Model and Evaluation Metrics of Relation
Classification
A suicide-drug relation class in a sentence containing an entity
pair was predicted using the relation classification model
R-BERT [46]. The R-BERT model enriches the pretrained
BERT [45] model with entity information for relation
classification by placing a special token at the beginning and
end of each entity. In this study, vanilla BERT [45], BioBERT
[57], PubMedBERT [58], ClinicalBERT [59], and SciBERT
[60] LMs were used as the embedding layers of R-BERT. We

fine-tuned the resulting R-BERT variations in 10 epochs and
increased the maximum sentence length to 512, which is a
limitation of the BERT model [45]. A 10-fold cross-validation
of all data sets was performed using the Stratified Shuffle Split
method provided in the sklearn library (version 1.0.2; [61]).

The performances of the relation classification models on ADE
classes were evaluated in terms of the F1-score, defined as the
weighted average of precision (ratio of correctly predicted
positive observations to all predicted positive observations) and
recall (ratio of correctly predicted positive observations to all
observations in the actual class). The F1-score is considered as
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the gold standard of relation extraction, relation classification,
and other NLP tasks. In the present evaluation, the true class
was the ADE class and the false class was the non-ADE class.

Results

On the basis of the titles and abstracts of 17,017 articles
collected from PubMed, we created a corpus of 11,894 sentences
with drug-suicide entity pairs and their relation classes.

Table 2 presents the frequencies of sentences in each relation
class of the DSR corpus. The most frequent relation classes are
“miscellaneous” (4250/11,894, 35.73%) and “none”
(3761/11,894, 31.62%). The most common relation class is
“Suicide means” (1726/11,894, 14.51%) followed by
“treatment” (1281/11,894, 10.77%) and “ADE” (876/11,894,
7.36%). In the sentences of the “none,” “ADE,” and “treatment”
classes, the “e1-e2” order appears more frequently than the
“e2-e1” order. In the sentences classified as “suicide means”
and “miscellaneous,” the order was similarly distributed between
“e1-e2” and “e2-e1.”

Table 3 presents the top 10 most frequently mentioned drugs
and their respective relation classes in the sentences of our DSR
corpus (listed are the numbers of drug names, not the numbers
of sentences). The most frequently mentioned ADE drug was
isotretinoin (34/717, 4.7%), followed by varenicline (33/717,
4.6%), fluoxetine (30/717, 4.2%), and paroxetine (29/717, 4%).
In the “suicidal means” category, the most commonly mentioned

drug is insulin (63/1549, 4.07%). In the “treatment relation
class,” the most commonly mentioned drugs are lithium
(331/1042, 31.77%) and ketamine (261/1042, 25.05%). Most
of the “treatment” drugs were among the top 10 drugs in “ADE.”
Next, we explored the embedding LM that best improved the
relation classification performance of the R-BERT model
fine-tuned with our corpus.

Table 4 shows the performances of various R-BERT models
with different embedded LMs after refinement on distinct data
sets (Table 1 describes the properties of the data sets derived
from our corpus). The F1-score of the R-BERT models ranged
from 0.8781 to 0.9583. Overall, BioBERT predicted the ADE
class better than the other embedding models, with an average
F1-score of 0.9362. BioBERT also achieved the highest F1-score
across 6 of the 8 data sets (the exceptions were data sets 5 and
8). Even in the exception cases, BioBERT achieved near-optimal
performance. BioBERT was closely lagged by PubMedBERT
(average F1-score=0.9238), which did not perform optimally
across all the individual experiments.

Among the different data sets, data set 1 achieved the highest
average F1-score. Data set 1 ignores the entity order and uses
a 90% split ratio and a binary class (0.9498; see the Average
column in Table 4). Meanwhile, 4 out of the 5 LMs achieved
their highest F1-score when fine-tuned on data set 1 (BioBERT,
0.9583; PubMedBERT, 0.9503; ClinicalBERT, 0.9519; and
SciBERT, 0.9496).

Table 2. Frequency of sentences (N=11,894) in each relation class in our drug-suicide relation (DSR) corpus (“suicide means” is the most common
relation class).

Value, nIDClass and ordered entity pair of drug and suicidal entity

0No relation (n=3761, 31.62%)

2226No relation (e1-e2)

1535No relation (e2-e1)

1ADEa (n=876, 7.37%)

512DRUG-ADE (e1-e2)

364DRUG-ADE (e2-e1)

2Means (n=1726, 14.51%)

844Means-event (e1-e2)

882Means-event (e2-e1)

3Treatment (n=1281, 10.77%)

890Treatment-event (e1-e2)

391Treatment-event (e2-e1)

9Miscellaneous (n=4250, 35.73%)

2141Miscellaneous (e1-e2)

2109Miscellaneous (e2-e1)

aADE: adverse drug event.
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Table 3. Top 10 drugs in each relation class of our drug-suicide relation (DSR) corpus (m: # of sentences mentioning an associated drug name).

Treatment (m=1042)Means (m=1549)ADEa (m=717)Total (m=3308)Rank

CountDrugCountDrugCountDrugCountDrug

331Lithium63Insulin34Isotretinoin354Lithium1

261Ketamine56Paracetamol33Varenicline264Ketamine2

141Clozapine38Barbiturates30Fluoxetine168Clozapine3

22Fluoxetine38Metformin29Paroxetine67Insulin4

21Buprenorphine25Caffeine25Cocaine58Fluoxetine5

16Esketamine25Colchicine22Zolpidem57Paracetamol6

9Paroxetine19Amitriptyline17Rimonabant43Barbiturates7

9Olanzapine19Analgesics15Venlafaxine40Metformin8

7Milnacipran19Diazepam14Lithium39Cocaine9

6Antidepressants16Nicotine13Clozapine39Paroxetine10

aADE: adverse drug event.

Table 4. Performance comparison of various R-BERT (Bidirectional Encoder Representations from Transformers) models built by (1) applying different
language models (LMs) as embedding layers and (2) fine-tuning different data sets.

AverageSciBERT [60]ClinicalBERT [59]PubMedBERT [58]BioBERT [57]Vanilla BERT [45]Data set

0.94980.94960.95190.95030.95830.93891

0.94800.94590.94890.94870.95280.94352

0.94510.94970.94320.94470.95220.93603

0.94360.94680.94480.93720.94860.94064

0.91590.91790.92620.90390.92230.90935

0.90950.91130.91020.91430.92680.88476

0.90620.89610.91320.90590.91940.89657

0.89980.91000.91620.88560.90890.87818

N/Aa0.92840.93180.92380.93620.9159Average

aN/A: not applicable.

Table 5 presents the performance results of the R-BERT models
in terms of the different properties of the 8 data sets. The average
F1-score for each property was determined from all the
individual experimental results. When the training:testing split
ratio of the data set was 90%:10%, the average F1-score was
0.9297, which was only 0.49% higher than that of the 80%:20%
split ratio (F1=0.9248). This performance difference is minor.
On average, the models performed 3.88% better in the binary

class (F1=0.9466) than in the quaternary class (F1=0.9078). This
result indicates a need to improve the performance of n-ary
classification when n is >2. Finally, learning the order of the
entities (0.9260) improved the performance by 0.24% compared
with ignoring the ordering (0.9260), which is consistent with
earlier findings [55,56]. The same tendencies frequently
appeared in the precision and recall results (Multimedia
Appendix 4).
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Table 5. Average performances of the R-BERT (Bidirectional Encoder Representations from Transformers) models on data sets with different properties
(the binary relation data set yields the best F1-score).

F1-score, mean (SD)Data set properties and category

Split ratio for training and test data sets

0.9297 (0.0078)90%:10%

0.9248 (0.0078)80%:20%

Relation set

0.9466 (0.0048)Binary relation set

0.9078 (0.0110)Quaternary relation set

Ordered entity pair of drug and suicidal entities

0.9284 (0.0058)Yes

0.9260 (0.0103)No

Discussion

Principal Findings
To our knowledge, this is the first and largest data set of DSRs.
The existing data sets include information on ADEs but do not
focus on drug-suicide ADEs; thus, they deliver insufficient data
on drug-suicide associations. Among the 6821 sentences on
drug-related adverse events in the MEDLINE corpus, only 3
(0.04%) contained an entity related to suicide. In contrast, our
corpus contained a large number (876) of entities uniquely
relating suicide as an ADE.

A valuable data set must contain sufficient data. When collecting
the titles and abstracts containing information on DSRs, we
applied a detailed search query using both MeSH and text words.
The MeSH term was particularly useful when searching for a
wide range of articles in PubMed. Previous studies used only
MeSH terms when searching PubMed for corpora. However,
the indexing time of MeSH is likely to miss the latest relevant
articles [62]. DeMars and Perrusso [63] compared the precision
and recall of each strategy after searching for relevant articles
using MeSH and text words in PubMed. They recommended
combining MeSH and text words to obtain the most
comprehensive number of papers.

Manual annotation is time-consuming, costly, and laborious.
Although MeSH and text words garnered the titles and abstracts
from articles mentioning drugs and suicidal behaviors, it could
not guarantee that every sentence was suicide related. To address
this problem, we filtered the sentences classified as suicide
relevant using a pretrained zero-shot classifier. In other words,
we checked whether the classifier assessed the given sentences
as suicide related and contained suicidal keywords.
Consequently, only 6.9% (11,894/172,249) sentences collected
from PubMed included relevant information for the DSR corpus.
This new approach effectively reduced the data that could be
annotated and provided a new strategy for preannotations. To
reduce the annotation effort, previous studies randomly sampled
the initial documents [15,18,20-22], restricted the publication
date of the documents [18,22], or filtered the initial documents
based on some required properties [18]. These techniques risk
decreasing the quantity of fundamental data that can be collected
and annotated.

Some of the top 10 drugs associated with ADEs (fluoxetine,
paroxetine, venlafaxine, lithium, and clozapine) were also
classified as treatment drugs. This tendency may reflect the
ongoing controversy on the association between suicide and
drugs administered to patients with mental health disorders.
Some representative studies have reported that SSRIs effectively
prevent suicidal risk, whereas others have reported that such
drugs potentially increase the suicidal risk [64]. Furthermore,
medication adherence is an important determining factor for
successful pharmacotherapy for mental disorders. To fill this
data gap, diverse methods for real-time monitoring of medication
adherence using the medical devices have been recently reported
[65].

We also evaluated the performance of the R-BERT relation
classification model with several pretrained LMs as the
embedding layers. After pretraining on PubMed, R-BERT
provided a slightly higher relation classification performance
on the corpus with BioBERT than with PubmedBERT. This
tendency can be explained either by the larger pretraining
vocabulary of BioBERT than that of PubmedBERT or the
continuous pretraining process of BioBert from the base LM
[58] (whereas PubmedBERT was pretrained from scratch).
Increasing the pretraining data set and vocabulary increases the
diversity of the patterns that a model can learn. The results
indicate that BioBERT maintains the base vocabulary during
ongoing pretraining and uses the base (Vanilla BERT) weights
as the initial weights.

Concerning the data set properties, the performance was
maximized when the data set was split into a 90%:10%
training:testing ratio, when the classification scheme was binary,
and when the entities were ordered. More importantly, all tested
models classified the drug-suicide relationships with F1-score
around 0.9 after fine-tuning on our corpus, higher than on the
available corpora. For example, Gurulingappa et al [21], who
dealt with sentence classification, reported an F1-score of 0.70
after training MaxEnt on the MEDLINE corpus. Kim et al [66],
who dealt with key sentence extraction, trained the BERT
classification model on the Drug-Food Interaction corpus of
drug and food interactions, obtaining F1-score from 0.506 to
0.738. The varied scopes and sizes of corpora and the different
types of classification models preclude a direct comparison of
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results of this study with those of the previous studies.
Nevertheless, this result clearly demonstrates the value of our
corpus in NLP tasks.

These results were obtained through experiments on a specific
type of ADE but appear to be applicable to other drug-related
adverse events. All nondrug entities were linked to suicide in
our research, but the portion of the corpus having the assigned
ADE relation can (in theory) be used to investigate drug adverse
events not related to suicide. In practice, applying a specific
type of ADE to a broader ADE task may decrease the overall
performance or change the performances of different LMs.
Masking the events in BERTMTB+EM [47] might reduce the effect
of suicide-related bias, but eliminating the bias through event
masking is difficult because specific words cueing the suicidal
nature of an entity may remain in the context; for example, a
sentence with the entities excluded can retain the term
“attempted.”

This corpus is extendible to the development of other NLP
systems. For instance, an automatic extraction system accessing
our corpus can obtain additional information on the drug-suicide
association, such as treatment of suicidal ideation and drugs
used in suicide attempts. Our DSR corpus contains sufficient
data on the DSR not only for “ADEs” but also for “suicidal
treatment” and “means” (14.5% and 10.8% of the corpus,
respectively). Moreover, the newly discovered suicide-related
entity can complement the existing named entity recognition
tools.

Limitations
There are some drawbacks to this study. First, the ADEs are
more narrowly distributed than other relation categories, leading
to potential class imbalances when developing relation
classification systems using the corpus. To alleviate these

problems, we performed downsampling [67] and eliminated the
sentence duplicates before applying the relation classification
model to various data sets generated from our corpus. We expect
this treatment to offset the negative effects of the class
imbalance. Solving for the class imbalance issues is beyond the
scope of this work but should be addressed in future work. For
the same reasons, we did not explore the noisy miscellaneous
class, which reveals little information on DSRs. The
“Miscellaneous” class is also worthy of investigation in future
studies. Note that this work concentrated on building the data
set and assessing its suitability in performance evaluations.
Moreover, we restricted the sentence length to 512 characters
(the upper limit of BERT encoding), but this restriction could
be relaxed for NLP jobs that do not use BERT. This study
excluded overlaps between drugs and suicidal events. Finally,
because this corpus was created solely from academic literature,
its scope may not extend to social media.

Conclusions
Extracted from research articles, this developed DSR corpus is
the largest and most comprehensive corpus for drug-suicide
entities and their relations (Multimedia Appendix 5). After
confirming the consistency of the annotations in the DSR corpus,
we applied a new approach for reducing the load of manual
annotations. When fine-tuned on our corpus, all R-BERT models
achieved competitive performance with F1-score above or only
slightly below 0.9. We believe that our corpus can be widely
used for developing automatic information extraction systems
and for activating relevant research on DSRs.

In future, we plan to expand the data set by revising ambiguous
cases and diversifying the ADE class into 6 subclasses [68].
We will also cover colloquial text sources from Twitter and
other social media sites.
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