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Abstract

Background: Turning during walking is a relevant and common everyday movement and it depends on a correct top-down
intersegmental coordination. This could be reduced in several conditions (en bloc turning), and an altered turning kinematics has
been linked to increased risk of falls. Smartphone use has been associated with poorer balance and gait; however, its effect on
turning-while-walking has not been investigated yet. This study explores turning intersegmental coordination during smartphone
use in different age groups and neurologic conditions.

Objective: This study aims to evaluate the effect of smartphone use on turning behavior in healthy individuals of different ages
and those with various neurological diseases.

Methods: Younger (aged 18-60 years) and older (aged >60 years) healthy individuals and those with Parkinson disease, multiple
sclerosis, subacute stroke (<4 weeks), or lower-back pain performed turning-while-walking alone (single task [ST]) and while
performing 2 different cognitive tasks of increasing complexity (dual task [DT]). The mobility task consisted of walking up and
down a 5-m walkway at self-selected speed, thus including 180° turns. Cognitive tasks consisted of a simple reaction time test
(simple DT [SDT]) and a numerical Stroop test (complex DT [CDT]). General (turn duration and the number of steps while
turning), segmental (peak angular velocity), and intersegmental turning parameters (intersegmental turning onset latency and
maximum intersegmental angle) were extracted for head, sternum, and pelvis using a motion capture system and a turning detection
algorithm.

Results: In total, 121 participants were enrolled. All participants, irrespective of age and neurologic disease, showed a reduced
intersegmental turning onset latency and a reduced maximum intersegmental angle of both pelvis and sternum relative to head,
thus indicating an en bloc turning behavior when using a smartphone. With regard to change from the ST to turning when using
a smartphone, participants with Parkinson disease reduced their peak angular velocity the most, which was significantly different
from lower-back pain relative to the head (P<.01). Participants with stroke showed en bloc turning already without smartphone
use.

Conclusions: Smartphone use during turning-while-walking may lead to en bloc turning and thus increase fall risk across age
and neurologic disease groups. This behavior is probably particularly dangerous for those groups with the most pronounced
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changes in turning parameters during smartphone use and the highest fall risk, such as individuals with Parkinson disease.
Moreover, the experimental paradigm presented here might be useful in differentiating individuals with lower-back pain without
and those with early or prodromal Parkinson disease. In individuals with subacute stroke, en bloc turning could represent a
compensative strategy to overcome the newly occurring mobility deficit. Considering the ubiquitous smartphone use in daily life,
this study should stimulate future studies in the area of fall risk and neurological and orthopedic diseases.

Trial Registration: German Clinical Trials Register DRKS00022998; https://drks.de/search/en/trial/DRKS00022998

(J Med Internet Res 2023;25:e41082) doi: 10.2196/41082
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Introduction

Turning-while-walking is relevant to everyday life and very
common, accounting for >40% of steps taken in daily activities
[1]. The movement itself requires a good coordination of body
segments and control of body rotation toward the new direction
while maintaining dynamic stability. In healthy adults, a
top-down temporal sequence in body segments reorientation
around the vertical axis, while turning has been described [2-5].
This starts with eyes and head movement to fix the gaze onto
the new direction, followed by sternum, pelvis, and finally feet
rotation. Being a challenging task, turning renders individuals
at higher risk of falling, particularly in older adults and people
who have mobility impairments such as neurologic patients
[6,7].

Previous evidence supports the negative association of an
effective top-down sequence of body segments reorientation
with the risk of falls, with people reorientating body segments
more simultaneously being more prone to have multiple falls
[8]. This strategy is generally called en bloc turning. On these
premises, some studies investigated the influence of kinematic
and physiological factors and pathological conditions on turning
behavior. An influence of kinematic factors such as turning
velocity, on timing and magnitude of segmental reorientation,
has been suggested; however, only a few studies have
investigated these elements, with conflicting results [5,9,10].
Age also seems to have an influence on intersegmental turning
behavior with the head, sternum, and pelvis turning more
simultaneously in older subjects [9,11]. Considering the
neurologic disorders, the results are often inconsistent with
some studies showing a preserved top-down reorientation in
chronic stroke [12-16] and individuals with Parkinson disease
[17,18], while others studies reported en bloc turning behavior
for these individuals [3,19-23]. This could depend, at least
partially, on the different experimental protocols (eg, different
turning magnitudes, on-the-spot turning, and
turning-while-walking), enrolled populations, and measures
used to investigate turning behavior (eg, number and selection
of body segments, temporal and spatial measures). Only a few
studies have investigated turning intersegmental coordination
in individuals with lower-back pain [24,25] and focused only
on the sternum and pelvis, while no studies, to the best of our
knowledge, investigated turning intersegmental coordination
in individuals with multiple sclerosis.

Turning is particularly dangerous when performed during
multitasking. This term refers to the performance of multiple
tasks simultaneously, such as walking and talking or driving
while speaking at the phone. Multitasking is very common in
everyday life, and several activities are performed while walking
and turning. Performing a secondary task while walking (dual
task [DT]) could negatively affect gait performance [26] and
predict future falls [27], and several theories have been proposed
to explain this effect, such as limited attention allocation
capacity, a bottleneck effect for tasks performed in parallel, and
competition for computational resources [28]. Differently from
gait, only a few studies investigated the effect of DT on turning
behavior. Most studies focused on general turning parameters
such as the number of steps taken, turn duration, or peak angular
velocity in both healthy subjects [29,30] and individuals with
neurologic conditions [30-33]. Only 1 study, to the best of our
knowledge, investigated the effect of DT on intersegmental
coordination [23], showing a disruption of turning sequence in
individuals who have chronic stroke only under cognitive DT
condition, while healthy participants showed a preserved
top-down sequence.

Similarly, no study to date has investigated the effect of
smartphone use on turning behavior. This is a ubiquitous
condition in everyday life, and in the last decade, some evidence
has shown a detrimental effect of smartphone use on straight
walking and balance [34-37].

To our best knowledge, this is the first study evaluating the
effect of smartphone use on turning behavior in healthy
participants of different ages and those with various neurological
diseases.

Methods

Population
Participants were recruited through flyers placed in public
facilities (healthy participants) and in the Department of
Neurology and outpatient clinics at University Hospital
Schleswig-Holstein, Campus Kiel, Germany (neurological
patients). Inclusion criteria were (1) being aged 18 years and
older and (2) ability to walk independently without walking
aids. Exclusion criteria were (1) a Montreal Cognitive
Assessment (MoCA) score of <15 and (2) other movement
impairments affecting mobility performance, as judged by the
assessor. Participants were divided into 6 groups according to
age and diagnosis. Healthy participants were divided into
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“young” (aged 18-60 years) and “older” (aged > 60 years).
Participants with neurological disorders included individuals
with Parkinson disease (according to the UK Brain Bank criteria
[38]), multiple sclerosis (according to McDonalds criteria [39]),
subacute stroke (<4 weeks), or lower-back pain as indicated on
the basis of the patients’ medical history and diagnosis upon
examination [40].

Ethics Approval
The study was approved by the ethical committee of the Medical
Faculty of Kiel University (D438/18) and was conducted in
accordance with the principles of the Declaration of Helsinki.
All participants provided written informed consent before the
start of measurements. The study is registered in the German
Clinical Trials Register (DRKS00022998, registration date:
September 4, 2020).

Demographic and Clinical Data
Demographic data including age, sex, weight, and height were
collected. Overall cognitive function at baseline was assessed
with the MoCA [41]. Participants' mobility was assessed with
the Short Physical Performance Battery [42]. Disease-specific
evaluation included the Movement Disorder Society Unified
Parkinson's Disease Rating Scale part III [43] and the Hoehn
and Yahr Scale [44] for participants with Parkinson disease
(performed in ON condition); the Expanded Disability Status
Scale [45] for participants with multiple sclerosis; the National
Institute of Health Stroke Scale [46] for participants with

subacute stroke, and a visual analog scale of pain intensity [47],
and the German Funktionsfragenbogen Hannover Scale [48]
for participants with lower-back pain.

Experimental Procedure
Participants were asked to perform an overground walking and
turning task on a 5-m-long walkway with a width of 1 m.
Participants were asked to walk up and down the walkway at
self-selected speed, thus including 180° turns to change walking
direction (Figure 1). Walking and turning tasks were performed
as a single task (ST) for a duration of 30 seconds, and while
performing 2 different cognitive tasks of similar duration (~30
seconds) of increasing complexity: a simple reaction time test
(simple DT [SDT]) and a numerical Stroop test (complex DT
[CDT]). Both cognitive tasks were administered via a handheld
smartphone. ST, SDT, and CDT conditions were performed
consecutively. In SDT, participants had to tap the screen as fast
as possible after the appearance of a black square. In CDT,
participants had to choose the higher number from 2 options
[49]. The Stroop test was administered under 3 conditions: (1)
congruent, in which the number with a higher value had a larger
character size; (2) neutral, in which the character size of both
numbers was equal; (3) incongruent, in which the number with
a higher value had a smaller character size. Participants
performed a practice trial on both ST and DT conditions to
familiarize themselves with the procedure. More details on the
study protocol can be found elsewhere [50].

Figure 1. Schematic representation of the 5-m walkway and the turning-while walking task.

Movement and Rotation Analysis
A 12-camera 3D optical motion capture system (Qualisys AB)
was used to record marker trajectories of passive retroreflective
markers attached on the skin or tight clothing and footwear of
the participants. Reflective markers were placed, among others,
on the head, sternum, pelvis, and left and right feet. The exact
placement of the markers is described elsewhere [50]. Data were
recorded at 200 Hz. The orientation of the head, sternum, and
pelvis was calculated based on the reflective markers on each
of these segments. To detect turns during walking, angles of
the head, sternum, and pelvis were calculated according to Euler
method using the orientation of the segments derived from the
position of the reflective markers [51]. The start and end of a
turn were detected by the change in SD. A change in SD from
the mean indicates an abrupt change in the signal. At the start
and end of a turn, an abrupt change in the angular signal around
the vertical axis can be seen. The detection of this abrupt change
in signal was carried out with the MATLAB function

findchangepts. This function detects the point at which a mean
changes most significantly by partitioning data into 2 regions
that minimize the sum of the residual (squared) error of each
region from its local mean. Steps were detected from the heel
and toe marker trajectories. For this purpose, vertical velocity
signals were computed from the heel and toe markers’ position
data [52], and initial contact was determined from a local
minimum in the vertical velocity of the toe marker, whereas
final contact was determined from a local maximum in the
vertical velocity of the heel marker [53].

Measures
For the analysis of turning behavior, we calculated general
turning parameters as well as segmental and intersegmental
measures for the head, sternum, and pelvis. Regarding general
parameters, turn duration, defined as the time in seconds
between the beginning and ending of the turning phase, and the
number of steps taken while turning were calculated. Concerning
segmental turning measures, the peak angular velocity for each
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of the 3 body segments was measured. Finally, to investigate
intersegmental coordination during turning in the temporal and
spatial domains, we calculated intersegmental relative turning
onset latencies and intersegmental maximum angles,
respectively. These were calculated for each pair of segments
for a total of 3 pairs. Turning onset latencies were determined
using the more cranial one as a reference in each pair (sternum
relative to the head, pelvis relative to the head, and pelvis
relative to the sternum). A negative value indicates that the
cranial segment started turning first. For each participant,
variables were calculated as the average across turns for each
of the 3 conditions.

Data and Statistical Analysis
To evaluate the impact of DT on turn duration, number of steps,
and peak angular velocity for the 3 body segments, dual-task
cost (DTC) was calculated for both SDT and CDT on the basis
of equation 1 [54,55]:

Statistical analyses were performed using JASP (version 0.16.1;
JASP Team), R (version 4.0.3; The R Foundation), and RStudio
(version 2022.02.2+433 for Windows; R Foundation for
Statistical Computing). Descriptive statistics were calculated
for the examined variables. To assess the difference in turn

duration, number of steps, peak angular velocity, turning onset
latencies, and maximum angles across the different groups and
different conditions, mixed ANOVAs, corrected for gait speed,
were used, with the factors “condition” and “group.” Post hoc
t tests with Bonferroni correction were performed in case of
significant ANOVA main effects. To assess the difference in
DTC for turn duration, number of steps, and peak angular
velocity between the different groups and between SDT and
CDT, mixed ANOVAs, corrected for gait speed, were used,
with the factors “DT condition” and “group.” To evaluate the
segmental sequence of body segment while turning, mixed
ANOVAs, corrected for gait speed, with the factors “segment
pair turning onset latency” and “group” were used. If necessary,
Greenhouse-Geisser correction for nonsphericity were applied.
The significance threshold was set at α<.05. All data were
reported as mean (SD) or median (IQR) for numerical data and
N (%) for categorical variables.

Results

A total of 121 participants were enrolled in the study. Table 1
shows the demographic and clinical data of the included groups.
Average turn magnitudes detected by our algorithm for head,
sternum, and pelvis were 160° (SD 8°), 153° (SD 7°), and 155°
(SD 7°), respectively. An example of algorithm output is shown
in Figure 2.
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Table 1. Demographics and clinical data of the enrolled groups.

Participants with
lower-back pain
(N=8)

Participants with
multiple sclerosis
(N=19)

Participants with
subacute stroke
(N=14)

Participants with
Parkinson disease
(N=26)

Older adults
(N=18)

Young adults
(N=36)

63.6 (16.8)38.5 (13.0)63.7 (16.6)63.3 (10.9)71.9 (6.3)28.9 (8.3)Age (years), mean (SD)

Sex, n (%)

3 (37)11 (58)3 (21)10 (38)9 (50)15 (42)Male

5 (63)8 (42)11 (79)16 (62)9 (50)21 (58)Female

174 (10)179 (11)175 (11)175 (8)173 (10)180 (9)Height (cm), mean (SD)

79.8 (18.1)81.7 (21.2)81.4 (16.5)83.4 (15.2)78.4 (16.3)74.8 (14)Weight (kg), mean (SD)

26.3 (3.6)25.3 (4.7)26.4 (4.8)27.1 (4)26.1 (5.1)22.9 (3)BMI, mean (SD)

25 (24-27)28 (26-29)23 (20-26)25 (23-26)23.5 (21-27)29 (28-30)MoCAa score, median (IQR)

12 (8-12)9 (7-11)11 (9-11)10 (8-11)11 (9-11)12 (12-12)SPPBb score, median (IQR)

———2 (1-3)——dH&Yc score, median (IQR)

———22 (12-28)——MDS-UPDRS-IIIe score, median (IQR)

—1 (1-4)————EDSSf score, median (IQR)

——0 (0-3)———NIHSSg score, median (IQR)

4 (1-6)——3 (0-6)——pVASh score, median (IQR)

3 (29-31)——30 (27-32)——FFbHi score, median (IQR)

aMoCA: Montreal Cognitive Assessment.
bSPPB: Short Physical Performance Battery.
cH&Y: Hoehn and Yahr Scale.
dNot determined.
eMDS-UPDRS-III: Movement Disorder Society Unified Parkinson's Disease Rating Scale part III.
fEDSS: Expanded Disability Status Scale.
gNIHSS: National Institute of Health Stroke Scale.
hpVAS: visual analog scale of pain intensity.
iFFbH: Funktionsfragenbogen Hannover Scale.

Figure 2. Example of the turning detection algorithm output. Angular signals of the pelvis, sternum, and head are reported. The vertical lines indicate
the start and end of a turn for each body segment.
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Turning Sequence
Significant effects of factor “group” (F5,99=2.689; P=.03) and
“segment pair turning onset latency” (F1.51,149.03=104.5; P<.001)
but no significant interaction between the 2 factors were found
in ST condition. No significant effects of the 2 factors, or
interaction between the 2 factors, were found for the SDT or
the CDT condition. Considering factor “segment pair,” post hoc
analysis showed a significant difference between turning onset
latency of the pelvis relative to the sternum and both turning
onset latency of the sternum relative to the head and the pelvis
relative to the head in all groups (all P<.01), except in
participants with subacute stroke.

Turn Duration and Number of Steps
Significant effects of factor “group” and “condition,” but no
significant interaction between the 2 factors were found for turn
duration (F5,83=8.091, P<.001; F1.40,116.42=18.269, P<.001) and
number of steps while turning (F5,78=2.988, P=.02;
F1.45,112.79=12.4, P<.001).

Peak Angular Velocity
Significant effects of factor “group” and “condition” were found
for peak angular velocity of the head (F5,99=12.878, P<.001;
F1.57,155.86=112.506, P<.001), sternum (F5,95=8.569, P<.001;
F1.51,146.67=4.204, P=.03), and pelvis (F5,94=10.171, P<.001;
F1.76,165.47=24.844, P<.001). A significant interaction between
the 2 factors was found only for peak angular velocity of the
pelvis (F8.80,165.47=2.520; P=.01).

Intersegmental Relative Turning Onset Latencies
Significant effects of factor “condition” were found for both
turning onset latency of the sternum relative to the head
(F1.39,120.82=116.121; P<.001) and the pelvis relative to the head
(F1.15,99.75=66.019; P<.001). A significant effect of factor
“group” and interaction between the 2 factors was found only
for turning onset latency of the sternum relative to the head
(F5,87=2.683, P=.03; F6.94,120.82=2.109; P=.048). No significant
effects or interaction between the 2 factors were found for
turning onset latency of the pelvis relative to the sternum. Details
of post hoc comparisons can be found in Figures 3-5.

Figure 3. Turning onset latencies by group (A) and task condition (B) of the sternum relative to the head. Mean of the variables is represented by bar
height. SE of the mean is shown by the vertical lines. A negative value means that the cranial body segment starts turning first and vice versa. Significant
pairwise comparisons are marked by horizontal lines and asterisks as follows: *P<.05; **P<.01; ***P<.001. CDT: complex dual task; LBP: Lower-back
pain; MS: multiple sclerosis; PD: Parkinson disease; SDT: simple dual task; ST: single task.

Figure 4. Turning onset latencies by group (A) and task condition (B) of the pelvis relative to the head. Mean of the variables is represented by bar
height. SE of the mean is shown by the vertical lines. A negative value means that the cranial body segment starts turning first and vice-versa. Significant
pairwise comparisons are marked by horizontal lines and asterisks as follows: *P<.05; **P<.01; ***P<.001. CDT: complex dual task; LBP: Lower-back
pain; MS: multiple sclerosis; PD: Parkinson disease; SDT: simple dual task; ST: single task.
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Figure 5. Turning onset latencies by group (A) and task condition (B) of the pelvis relative to the sternum. Mean of the variables is represented by bar
height. SE of the mean is shown by the vertical lines. A negative value means that the cranial body segment starts turning first and vice versa. Significant
pairwise comparisons are marked by horizontal lines and asterisks as follows: *P<.05; **P<.01; ***P<.001. CDT: complex dual task; LBP: Lower-back
pain; MS: multiple sclerosis; PD: Parkinson disease; SDT: simple dual task; ST: single task.

Intersegmental Maximum Angles
Significant effects of factor “condition” were found for
maximum angle between the head and sternum
(F1.30,128.97=104.478; P<.001), head and pelvis

(F1.24,115.65=93.328; P<.001), and the sternum and pelvis
(F1.73,164.21=4.660; P=.01) but not for factor “group” or
interaction between the 2 factors for each of the 3 segments
pairs. Details of post hoc comparisons can be found in Figures
6-8.

Figure 6. Maximum intersegmental angles by group (A) and task condition (B) between sternum and head. Mean of the variables is represented by
bar height. SE of the mean is shown by the vertical lines. Significant pairwise comparisons are marked by horizontal lines and asterisks as follows:
*P<.05; **P<.01; ***P<.001. CDT: complex dual task; LBP: Lower-back pain; MS: multiple sclerosis; PD: Parkinson disease; SDT: simple dual task;
ST: single task.

Figure 7. Maximum intersegmental angles by group (A) and task condition (B) between pelvis and head. Mean of the variables is represented by bar
height. SE of the mean is shown by the vertical lines. Significant pairwise comparisons are marked by horizontal lines and asterisks as follows: *P<.05;
**P<.01; ***P<.001.CDT: complex dual task; LBP: Lower-back pain; MS: multiple sclerosis; PD: Parkinson disease; SDT: simple dual task; ST: single
task.
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Figure 8. Maximum intersegmental angles by group (A) and task condition (B) between pelvis and sternum. The mean of the variables is represented
by bar height. SE of the mean is shown by the vertical lines. Significant pairwise comparisons are marked by horizontal lines and asterisks as follows:
*P<.05; **P<.01; ***P<.001. CDT: complex dual task; LBP: Lower-back pain; MS: multiple sclerosis; PD: Parkinson disease; SDT: simple dual task;
ST: single task.

Dual-Task Cost
A significant effect of factor “DT condition” (F1,70=7.216;
P=.009) but not for factor “group” or interaction between the
2 factors was found for turn duration DTC. No significant effects
or interactions between the 2 factors were found for DTC of
number of steps while turning. Significant effects of factor
“group” were found for DTC of peak angular velocity for head
(F5,91=3.701; P=.004) and sternum (F5,72=3.2.382; P=.047). A
significant effect of factor “DT condition” was found for DTC
of peak angular velocity for the head (F5,91=7.028; P=.009) and

pelvis (F1,82=8.237; P=.005). No interaction between the 2
factors was found for all 3 body segments. Post hoc analysis
showed a significant difference between participants with
Parkinson disease and those with lower-back pain for DTC of
peak angular velocity for the head in both SDT and CDT
conditions with participants with Parkinson disease,
demonstrating a higher DTC (mean difference 33%, SD 9%
and 32%, SD 10%, respectively; Figure 9).

More details regarding the pairwise comparisons for the
investigated variables can be found in the Multimedia Appendix
1.

Figure 9. Dual task cost of peak angular velocity of the head by group (A) and task condition (B). The mean of the variables is represented by bar
height. SE of the mean is shown by the vertical lines. Significant pairwise comparisons are marked by horizontal lines and asterisks as follows: *P<.05;
**P<.01; ***P<.001. CDT: complex dual task; DT: dual task; DTC: dual-task cost; LBP: Lower-back pain; MS: multiple sclerosis; PD: Parkinson
disease; SDT: simple dual task; ST: single task.

Discussion

Overview
This cross-sectional study aimed at evaluating the effects of
concurrent active smartphone usage and turning-while-walking
on the dynamics of intersegmental coordination of turning. Both
turning and smartphone use during walking are common in
human life, and reduced turning coordination could lead to an
increased risk of falling [8,56]. Smartphone use has already
been associated with poorer balance and gait [35-37], but no
study to date investigated the effect of smartphone use on
turning behavior. Moreover, advanced age as well as several
neurologic conditions are known to be associated with an
increased risk of falling, and smartphone usage during turning
might be particularly critical for specific groups. To determine

the effects of age and neurologic conditions, both young and
older participants as well as those with different neurologic
disorders were included into the study.

Principal Results
We found that all participants, irrespective of age and neurologic
disease, showed an en bloc turning behavior when using a
smartphone; participants with Parkinson disease showed the
most pronounced reduction in peak angular velocity, with a
significant difference for the DTC of head segment compared
to lower-back pain; and that our participants with subacute
stroke turned en bloc even without a smartphone. These results
are discussed in detail in the following paragraphs.

All groups turned en bloc while performing a cognitive task on
a smartphone irrespective of age and neurologic condition.
Although the direct effect of smartphone use on tuning has not
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been explored to date, reports investigating the influence of
smartphone on straight walking and balance showed a reduction
in gait speed [35,36,57], and altered dynamic and static balance
[37]. This was linked to the cognitive load of smartphone use
but also to the need to reduce and smoothen head movements
to maintain gaze fixation onto the screen [57]. The increased
turn duration and the reduction of head peak angular velocity,
while using a smartphone in this study is, at least indirectly, in
line with these previous findings. Importantly, impaired turning
coordination and en bloc turning have been associated with the
fear of falling and higher risk of falls [8,56]. Therefore, the
result that all participants, irrespective of disease and age, and
even young healthy adults, turn en bloc while using a
smartphone could have an important impact on future
recommendations for smartphone use while walking.

We found that participants with Parkinson disease showed the
lowest head peak angular velocity in all conditions. They also
showed the longest turn duration and needed most steps for the
turns. This was an expected result considering that bradykinesia
and rigidity as well as reduced gait speed and increased cadence
with shorter step length are typical features of Parkinson disease
[58,59]. Interestingly, participants with Parkinson disease also
showed the most marked reduction in peak angular velocity of
all 3 investigated body segments when using a smartphone
during turning, reflected by the highest peak angular velocity
DTC. The latter observation is, in our view, surprising and
difficult to explain by the mere presence of bradykinesia and
rigidity. We assume that this marked reduction in peak angular
velocity is more of a cognitive phenomenon. Individuals with
Parkinson disease have been reported to be particularly prone
to experience DT deficits, particularly during walking [27,60].
Compared to walking, turning is a more complex and demanding
task, and the simultaneous “triple task” (ie, smartphone use,
turning, and cognitive task) could represent a bottleneck in
neural processing that could lead to dangerous turning behavior,
especially in individuals with Parkinson disease. For people
with Parkinson disease experiencing falls, it could therefore be
useful to consider that turning while using a smartphone
constitutes a particular fall risk, and then to work out whether
the risk is influenced more by the motor component, the
cognitive component or by a combination of both.

Participants with lower-back pain were the only group that did
not show any significant difference in head peak angular velocity
when using a smartphone, compared with ST. This was
particularly interesting due to the following observation.
Although participants with Parkinson disease and those with
lower-back pain were comparable concerning demographic and
clinical (including pain intensity) parameters, both groups were
remarkably different when comparing head peak angular
velocity DTC (AUC of 0.96 and 0.92 for SDT and CDT,
respectively, see also Multimedia Appendix 1). Considering
that lower-back pain and similar pain conditions are common
in prodromal [61,62] and clinically evident Parkinson disease
[63,64], we speculate that the experimental paradigm presented
here could be useful in differentiating individuals with
lower-back pain without and those with (prodromal) Parkinson
disease and future specifically designed studies could help
confirming this hypothesis.

In our participants with subacute stroke, despite the head started
turning slightly before sternum and pelvis, there was no
significant difference in turning onset latencies among the 3
segment pairs even in the turning-while-walking–only condition.
We hypothesize that en bloc turning may not be deleterious
under all circumstances but, for example, in acute or subacute
medical situations, may even serve as a compensative strategy
to overcome the newly occurring mobility deficit. Increased
cocontraction and impedance control with the goal of reducing
kinematic errors, stabilizing movement, and increasing
performance is a common strategy used in the early phases of
motor learning when new dynamics have to be acquired [65].
Differing results from previous studies investigating
intersegmental turning in individuals with stroke may, at least
indirectly, also argue in this direction considering that all
previous studies [12-16] included individuals with chronic
stroke. Therefore, our results could pave the way for new
rehabilitation strategies targeting gait and turning in individuals
with subacute stroke.

Limitations
This study faces some limitations. First, the sample size at least
of some groups, the range of disease severity, and the generally
relatively high level of physical and cognitive abilities of our
participants may limit the generalizability of our results, and
further studies including participants with lower functional
scores, greater disease severity, and more severe cognitive
impairment may be helpful to address this. Second, in this
proof-of-concept study, we chose a 180° turn paradigm.
However, we are aware that other, primarily smaller turns are
also performed in everyday life, and future studies should
investigate the influence of smartphone use on these turns. Third,
on average, the turning algorithm used in this study
underestimated the turning magnitudes by 10%-15%. This could
likely be attributed to the general structure of the algorithm (see
the Methods section) in combination with the ellipse-like,
“nonabrupt” turning trajectory. As this is a systematic bias
observed in all experimental conditions and in all body
segments, we assume that it is an irrelevant aspect of our data
presented here, but future studies may use additional or
alternative turning algorithms for data analysis. Finally, we
included only smartphone tasks in which subjects had to interact
with the touchscreen and did not include tasks in which
participants had to walk while talking on the phone. The latter
is also a very common type of smartphone use, and should
therefore also be investigated concerning influence on turning
behavior in future studies.

Conclusions
Performing a secondary task on a smartphone leads to a more
en bloc turning irrespective of age and neurologic condition.
The segmental turning behavior of participants with Parkinson
disease suggests that this disease could be most affected by
smartphone use and these participants could be at high risk of
falling when turning while using a smartphone. Considering
the ubiquitous smartphone use in daily life, results of this study
could stimulate future studies in this area, as well as, in clinical
routine, the type of history taken from elderly and neurologically
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ill individuals who have increased risk of falling during ambulation.
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