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Abstract

Background: The burden of influenza-like illness (ILI) is typically estimated via hospitalizations and deaths. However,
ILI-associated morbidity that does not require hospitalization remains poorly characterized.

Objective: The main objective of this study was to characterize ILI burden using commercial wearable sensor data and investigate
the extent to which these data correlate with self-reported illness severity and duration. Furthermore, we aimed to determine
whether ILI-associated changes in wearable sensor data differed between care-seeking and non–care-seeking populations as well
as between those with confirmed influenza infection and those with ILI symptoms only.

Methods: This study comprised participants enrolled in either the FluStudy2020 or the Home Testing of Respiratory Illness
(HTRI) study; both studies were similar in design and conducted between December 2019 and October 2020 in the United States.
The participants self-reported ILI-related symptoms and health care–seeking behaviors via daily, biweekly, and monthly surveys.
Wearable sensor data were recorded for 120 and 150 days for FluStudy2020 and HTRI, respectively. The following features were
assessed: total daily steps, active time (time spent with >50 steps per minute), sleep duration, sleep efficiency, and resting heart
rate. ILI-related changes in wearable sensor data were compared between the participants who sought health care and those who
did not and between the participants who tested positive for influenza and those with symptoms only. Correlative analyses were
performed between wearable sensor data and patient-reported outcomes.

Results: After combining the FluStudy2020 and HTRI data sets, the final ILI population comprised 2435 participants. Compared
with healthy days (baseline), the participants with ILI exhibited significantly reduced total daily steps, active time, and sleep
efficiency as well as increased sleep duration and resting heart rate. Deviations from baseline typically began before symptom
onset and were greater in the participants who sought health care than in those who did not and greater in the participants who
tested positive for influenza than in those with symptoms only. During an ILI event, changes in wearable sensor data consistently
varied with those in patient-reported outcomes.

Conclusions: Our results underscore the potential of wearable sensors to discriminate not only between individuals with and
without influenza infections but also between care-seeking and non–care-seeking populations, which may have future application
in health care resource planning.

Trial Registration: Clinicaltrials.gov NCT04245800; https://clinicaltrials.gov/ct2/show/NCT04245800

(J Med Internet Res 2023;25:e41050) doi: 10.2196/41050
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Introduction

Background
In the United States, an estimated 9 to 41 million annual
illnesses are attributable to influenza virus infection, resulting
in up to 710,000 hospitalizations and 52,000 deaths annually
[1]. Less severe influenza and influenza-like illness (ILI) that
do not require hospitalization also cause significant morbidity,
the measurement of which historically relied on dedicated
studies using self-reported outcomes, often of varying quality
[2-5]. Digital syndromic surveillance tools enable the
self-reporting of ILI symptoms for influenza and SARS-CoV-2
surveillance on a larger scale, regardless of whether patients
sought health care for their ILI [6-9]. Although these tools
enable a wider surveillance of ILI outside of traditional health
care records, person-generated health data afford means for a
more thorough sampling of ILI, unlocking previously
inaccessible evidence from non–care-seeking individuals using
novel metrics. Commercial wearable sensors passively record
health-related data such as step count, exercise intensity, resting
heart rate (RHR), and sleep duration and stages. As such, they
provide person-generated health data that can be investigated
in relation to ILI burden, independently of or in combination
with traditional sources of medical data. These data may enhance
our understanding of disease states and inform public health
and clinical decision-making [10,11].

Using commercial wearable sensors (Fitbit [Fitbit LLC]), we
previously demonstrated that nationwide mobility (measured
as total daily steps in a US population) decreased owing to ILI
symptoms and that ILI burden (determined by the difference in
total daily steps) was associated with care-seeking behaviors,
the number of workdays missed, and self-reported overall health

[12]. Another study showed that abnormalities in RHR and
sleep duration, measured using wearable sensors, could be
leveraged to predict the real-time incidence of ILI [13].
Recently, wearable sensor data have also been used to assess
the physiological signs associated with COVID-19 [14-23].

Overview of This Study
Here, we investigated the extent to which commercial wearable
sensor data (total steps, the proportion of the day spent active,
sleep duration, sleep efficiency, and RHR) can be used to assess
the severity and clinical course of ILI events. We further
characterized the differences in commercial wearable sensor
data between individuals who sought health care during their
ILI event and those who did not and between those who tested
positive for influenza virus infection and those who did not.

Methods

Study Design and Participants

Overview
For a participant to be included in the ILI analysis population,
they must have either tested positive for influenza as part of the
testing regime in the FluStudy2020 or Home Testing of
Respiratory Illness (HTRI) study, met the FluStudy2020
study–defined ILI symptom criteria, or received an antiviral
prescription from a health care professional for their ILI event.
The FluStudy2020 and HTRI studies were designed
independently by different sponsors, but both were performed
concurrently by Evidation Health. Both studies were conducted
in the United States between December 2019 and October 2020.
Given the similarity in study designs (Figure 1A), the data sets
were merged and jointly analyzed here to increase the sample
size; a participant flow diagram is shown in Figure 1B.
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Figure 1. Study design overview and flow diagram for preparing analysis data sets. (A) Study design overview for the FluStudy2020 and Home Testing
of Respiratory Illness (HTRI) studies. During the enrollment period, the participants completed a screener survey and a baseline survey and connected
their commercial wearable sensor (Fitbit) to the Evidation platform. The participants in the HTRI study were issued with an influenza diagnostic kit
during enrollment to be used as instructed based on symptoms reported in the daily survey. Once enrolled, participants completed daily surveys for 120
days, in addition to monthly and biweekly surveys. Wearable sensor data were collected for 150 and 120 days in the FluStudy2020 and HTRI studies,
respectively. The participants completed the Daily follow-up A survey on days when they reported feeling symptomatic (yellow and red boxes). They
completed the Daily follow-up B, healthy survey on days when they reported feeling healthy (white boxes), and Daily follow-up B, recovering survey
on days when they reported feeling healthy but were recovering from a recent influenza-like illness (ILI; green boxes). The labels highlight selected
examples of events that the participants could self-report on surveys, as well as study-related activities (such as an influenza diagnostic kit being triggered
by the participant’s self-reported symptoms). (B) Participant flow diagram for the FluStudy2020 and HTRI studies.
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FluStudy2020 Design
Participants were enrolled in the FluStudy2020 study if they
were aged ≥18 years, lived in the United States, and wore a
Fitbit device with heart rate (HR)-tracking capabilities.
Participants were excluded from the study if they had been
diagnosed with influenza by a health care professional in the
previous 3 months.

Before enrollment, the participants completed a baseline survey,
which collected data regarding key demographics, medical
history, comorbidities, and influenza history (specifically, prior
influenza diagnosis, previous influenza treatment, and current
influenza vaccination status).

The participants completed daily surveys for the first 120 days
and fortnightly surveys for the remainder of the study period.
If the participants reported ILI symptoms within the previous
24 hours, detailed symptom, quality of life (QoL), and health
care use data were collected through follow-up surveys. To

verify the diagnoses, an influenza diagnostic kit
(self-administered nasal swab [Molecular Testing Labs]) was
sent to the participants who experienced fever, at least 1
respiratory symptom (cough, sore throat, or nasal congestion),
and at least 1 systemic symptom (headache, muscle or joint
ache, chills, or fatigue). The diagnostic criteria were based on
those highlighted by precedents in the literature and influenza
clinical trials [24-26]. Data on total steps, active time, HR, and
sleep were collected through continuous passive monitoring
using a Fitbit.

HTRI Study Design
Participants were enrolled in the HTRI study prospectively and
responded to daily surveys about their symptoms, medical
experiences, etc. Many of the questions used a similar or
identical language to that used in the surveys conducted in
FluStudy2020. However, there were some notable differences
between the 2 study designs (Table 1).

Table 1. FluStudy2020 and Home Testing of Respiratory Illness (HTRI) study designs.

HTRI studyFluStudy2020

Influenza test kit •• Sent to the participants during enrollment; they completed the test only
when prompted after they reported relevant symptoms in a daily survey

Sent to the participants immediately after
they reported relevant symptoms in a daily
survey • The participants could only submit a sample upon their first trigger

• The participants could complete multiple
test kits

Influenza test kit
trigger

•• CoughFever
• •At least 1 respiratory symptom (cough, sore

throat, or nasal congestion)
At least one of the following symptoms: fever, sweats, chills or shivering,
body or muscle aches

• At least 1 systemic symptom (headache,
muscle or joint ache, chills, or fatigue)

Health care visits •• The participants were asked whether they made a health care visit in a
recovery survey, which was completed 14 days after the influenza test

kit criteria were met and captured the dates of ILIa onset and recovery

The participants were asked whether they
made a health care visit in their daily sur-
veys

aILI: influenza-like illness.

Given these differences in study design, the current analysis
excluded participants who tested positive for influenza in the
HTRI study but did not meet any of the FluStudy2020 ILI
population criteria. There was also a small subset of HTRI
participants whose symptoms would have met the influenza test
kit criteria for FluStudy2020 but from whom a sample was not
collected because they did not meet the HTRI influenza test kit
criteria. To combine the HTRI data set with the FluStudy2020
data set, it was necessary to verify that the HTRI participants’
self-reported illness dates (which were provided in the same
recovery survey in which a health care visit was reported)
aligned with the analysis-derived ILI event dates (which were
identified during the analysis of the daily survey responses).
This permitted the verification that only health care visits made
during the same illness period as the ILI event period were
included in the analysis. The HTRI participants were categorized
as having made or not made a health care visit only if their
self-reported ILI event period overlapped with the
analysis-derived ILI event period.

Analysis of ILI-Related Changes in Fitbit Data
Before the analysis, wearable sensor data were assessed for
quality and completeness in 3 steps. First, minute-level streams
were assessed for their physiological plausibility. Second,
participant days (day-level aggregates of minute-level streams)
were assessed for wear time and data availability, excluding
missing minutes with null or physiologically implausible values
from wear-time estimates. Third, the participants’ Fitbit data
density was assessed, excluding days with insufficient wear
time or unavailable data from consideration. Only the
participants who met the data density criteria were eligible for
inclusion in the analyses of the relevant data stream.

In the first step, physiologically implausible values were
removed. Minutes with >400 steps were removed from the steps
stream. Minutes with <30 beats per minute (bpm) or >220 bpm
were removed from the HR stream. In the second step, HR data
were considered valid on days with available Fitbit-estimated
daily RHR and at least 10 hours of HR wear time (the sum of
the minutes with nonzero, nonmissing HR values), consistent
with the standard wear-time criteria [27]. Steps data were
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considered valid on days with valid HR wear time or at least
10 hours of steps wear time, which was assessed on a rolling
basis; steps nonwear periods were 180 consecutive minutes with
missing values or 0 steps value. This definition was consistent
with standard criteria [25], except for the modification of the
nonwear threshold from 60 to 180 minutes to accommodate our
population, who may have more prolonged periods of 0 steps
during ILI events. Sleep data were considered valid on days
with at least 1 minute of total sleep time. In the third step, each
participant’s day-level Fitbit time series was indexed on the
date of ILI onset, which is hereon denoted as day 0. Then, the
participants’ Fitbit data density was assessed during 4 time
periods of interest to ensure that only those with sufficient
coverage were included in the analyses. Valid data were required
on >50% of days during the ILI event and ≥10% of each day
of the week during the baseline period, following previously
published methods [20]. The 50% of days during the ILI were
broken down as follows: to ensure that the participants were
observed during the latent period of the ILI event, at least 1
valid day was required from days −1 to −4 relative to ILI onset;
to ensure that the participants were observed at ILI onset, valid
data were required on day 0; and to ensure that dense data were
available throughout the ILI event, particularly during the
earliest days when symptoms were expected to be most severe,
it was required that the participants had ≥6 valid days during
the symptomatic period (days +1 to +9), including at least 1
valid day from days +1 to +3. The baseline period criteria (ie,
valid data on 10% of all baseline Mondays, 10% of all baseline
Tuesdays, etc) were enforced to accommodate the baseline
model, which included a term for the day of the week. The above
criteria were applied on a per-channel basis, making it possible
for a participant to be included in the analysis of steps data but
not RHR, for example.

Before enforcing the data quality criteria, there were 2848
potential participants with at least 1 day of Fitbit data. In total,
14.5% (413/2848) of participants did not meet the data density
criteria for any of the 3 channels; the remaining 85.5%
(2435/2848) of participants comprised the final ILI analysis
population. Overall, 2329 (95.6%) participants had 297,239
participant-days with valid Fitbit steps data (92.5% of 321,480
possible days [{1400 FluStudy2020 participants with valid steps
data × 150 study days} + {929 HTRI participants × 120 study
days}]); 2316 (95.1%) participants had 290,116 participant-days
with valid Fitbit sleep data (90.7% of 319,740 possible days);
and 2206 (90.6%) participants had 280,501 participant-days
with valid Fitbit HR data (92.2% of 302,790 possible days).

Five day-level aggregate features hypothesized to be relevant
to ILI were computed from the minute-level Fitbit data: total
daily steps (ie, the total number of steps taken in a day), the
proportion of the day that the participant spent being physically
active (≥50 steps per minute), daily RHR (ie, Fitbit-estimated
HR while at rest), total sleep duration (ie, Fitbit-estimated total
length of time the participant spent sleeping), and sleep
efficiency (ie, Fitbit-estimated proportion of the main sleep
interval spent asleep [minutes asleep / total time spent in bed −
minutes spent in bed after waking up], which range from 0 to
100). In the time to return to baseline (TTRB) analysis,
day-to-day changes in RHR (RHR δ) were also included to

reduce the impact of autocorrelation of RHR measurements.
The day-level features were winsorized, clipping extreme values
to the 99.95th percentile value (taken across all
participant-days).

Baseline Model
A model comparison procedure was performed to identify
relevant terms for the baseline model using the dredge function
of the MuMIn package in R (R Foundation for Statistical
Computing) [28]. Subsequently, the following linear
mixed-effects regression model was fit to day-level Fitbit
features from healthy days (ie, excluding days −4 to +9 relative
to the participant’s ILI onset):

[Wearable sensor measure] ≈ β0 + β1 × week + β2
× week2 + β3 × week3 + β4 × day of week + β5 ×
regional shelter in place (SIP) + u0 + ε

The data input into the model comprised a panel with 1 row per
participant day (ie, n valid participants × m study days, where
the number of valid participants was determined by the number
of participants meeting density criteria for the relevant channel,
and the number of study days was determined by the number
of study days with valid wear time for each of the n participants).
The model included 3 fixed effects for the first, second, and
third expansion of the week of the year (denoted by “week,”

“week2,” and “week3”), where a week refers to one of the first
7 dates on which activity data were available across the analysis
population and is incremented until the final date on which
activity data were collected across all participants. Categorical
fixed effects were specified for the day of the week (7 levels,
one for each day of the week; denoted by “day of week”) and
for regional SIP orders related to COVID-19 (denoted by
“regional SIP”; 4 levels: no order, advisory or recommendation,
mandatory for at-risk individuals, and mandatory for all
individuals), which were specific to the participant’s geographic
region of residence and the calendar date. A random intercept
was specified on the participant ID to control for individual
differences in average activity levels (denoted by “u”). This
model was repeated 5 times, once for each wearable sensor
measure. Residuals were computed as the difference between
the model-estimated wearable sensor measure value and the
observed value for each participant day.

Day-by-Day and Cumulative ILI Burden
Day-by-day ILI burden was defined as the residual variance in
behavior on days −4 to +9 that was not accounted for in the
baseline model and was computed separately for each of the 5
Fitbit features examined in this study. Cumulative ILI burden
was calculated as the sum of residuals across days −4 to +9.
Missing residuals were imputed with an individual-level
exponentially weighted rolling mean for the purpose of
computing only the cumulative ILI burden. The cumulative ILI
burden was computed for the total number of steps and total
sleep duration, as a cumulative sum would not have a
meaningful interpretation for the other features. Our original
analyses included 2 other aggregate metrics for ILI burden: the
sum of residuals across days −1 to +1 and the residual on day
0 only. These results were omitted in the interest of reducing
redundancy, as they closely mirrored the results of the
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cumulative burden across days −4 to +9. However, P values
from the statistics for the cumulative ILI burden across days −4
to +9 were still Bonferroni corrected for all 3 methods to reduce
the likelihood of reporting false positives.

Defining the Baseline Period for TTRB Metrics
When computing the TTRB, the baseline activity period for
each participant was defined as any time before the latent ILI
phase (ie, at least 5 days before ILI onset) or more than 21 days
after ILI onset. To mitigate the potential effects of
COVID-19–related SIP orders, ILI events were separated
according to whether they occurred before, on, or after March
15, 2020. For the former, the baseline period was additionally
restricted to before March 15, 2020, and for the latter, the
baseline period was restricted to after March 15, 2020.

TTRB Activity Levels
This analysis was used to estimate the time at which the
participants resumed their typical healthy behavior patterns
following an ILI event (ie, the TTRB). The analysis was
performed on residuals from the baseline model. Residuals were
smoothed with a rolling centered 3-day mean to reduce spurious
patterns that could interfere with the TTRB.

The TTRB was computed as follows: for each individual and
each activity feature, the mean and SD during the baseline period
were calculated. Then, all days within 1× SD of the individual’s
baseline mean were considered to be within the healthy range
of behavior. Starting with the day of ILI onset, the first of 2
consecutive days on which the activity feature was within the
range of healthy behavior (within 1× SD of baseline activity)
was determined. For RHR, the TTRB was computed for each
individual by taking the mean and SD of RHR. Then, the first
day that was followed by 14 days that had <32% of values
outside the healthy range (greater than 1× SD from baseline
activity) was identified. Our original analyses included 6
different methods of computing the TTRB, and 3 smoothing
functions were applied to the residuals. As with the cumulative
ILI burden, only 1 TTRB method and 1 smoothing function per
activity feature are reported here, and redundant results have
been omitted. P values were Bonferroni corrected for all 18
TTRB method × smoothing function combinations to reduce
the false-positive rate.

Differences in ILI Burden and TTRB Between
Participant Cohorts
The day-by-day deviations from typical healthy behavior,
cumulative ILI burden, and TTRB were compared between the
participants who did and did not seek health care as well as
between those with confirmed influenza infection and those
with ILI symptoms only.

Differences between the cohorts in the day-by-day residuals
were assessed using linear mixed-effects regression. The
dependent measures were day-level residuals from days −4 to
+9 and an additional measurement for baseline, which was the
mean residual across healthy days. The model included a
categorical fixed effect for ILI day (15 levels, one for each day
from days −4 to +9 and an intercept for baseline) and a
categorical fixed effect for cohort membership (health care

seeker vs nonseeker for one model and confirmed influenza vs
ILI symptoms only for the other model). A random intercept
was specified on the participant ID. This model was repeated
10 times, once for each combination of the 5 activity features
and 2 cohort comparisons. A total of 14 pairwise contrasts were
computed per model; each compared the change in residuals
from baseline between the 2 cohorts (ie, cohort 1 [flu day −
baseline] − cohort 2 [flu day − baseline]). P values were
Bonferroni corrected for 14 tests per cohort comparison.

Differences between the cohorts in the cumulative ILI burden
were assessed using Welch 2-sample t tests (2-tailed). P values
were Bonferroni corrected for 3 tests per cohort comparison.

Differences between the cohorts in the TTRB were calculated
using the Mann-Whitney U test, and P values were Bonferroni
corrected for each activity feature separately with 36 different
tests (3 smoothing conditions × 6 TTRB methods × 2 cohort
comparisons).

Digital Correlates of Patient-Reported Outcomes
Pairwise correlations were run to assess the direction, strength,
and significance of the relationship between digital measures
of ILI and subjective measures of ILI from patient-reported
outcomes (PROs). Spearman rank-order correlations were used
to accommodate skewed distributions of digital measures and
PROs. P values were false discovery rate corrected for 3105
tests following the Benjamini-Hochberg procedure: 23 PRO
variables × 135 wearable sensor variables ([126 TTRB features
comprising 7 sensor data features originally explored × 3
smoothing functions × 6 TTRB computation methods] + [9
cumulative burden features comprising 3 sensor data features
originally explored × 3 cumulative burden windows]). Only a
subset of these features is presented here in the interest of
parsimony and redundancy reduction.

Software
R and Python standard packages were used to compile the data
sets and prepare them for analysis. Statistical analyses were
performed in R using the following packages: stats (version
3.6.4), lme4 (version 1.1-25), Hmisc (version 4.5.0), effects
(version 4.2-0), and gtsummary (version 1.3.5). Visualizations
were created in R using the package ggplot2 (version 3.3.0).

Ethics Approval
The FluStudy2020 protocol was reviewed and approved by the
institutional review board of the WIRB-Copernicus Group (study
number: 1271500). Written informed consent was obtained
from all the participants before their enrollment in the study.
The HTRI study (NCT04245800) protocol was approved by
the institutional review board of the WIRB-Copernicus Group
(study number: 1271380), and written informed consent was
obtained from all the participants before their enrollment in the
study [29].

Results

Demographics and Baseline Characteristics
At recruitment, 10,004 individuals were enrolled in
FluStudy2020, of whom 1738 (17.4%) experienced an ILI event
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during the study period. Of these 1738 participants, 1470
(84.6%) had wearable sensor data from at least 1 channel (steps,
sleep, or HR) that were valid for inclusion in the analysis (refer
to Methods for data quality criteria) and were included in the
final ILI population (ie, the analysis population). A total of 5229
participants were enrolled in the HTRI study, of which 8 (0.2%)
were concurrently enrolled in FluStudy2020; therefore, only
their data from FluStudy2020 were considered for analysis. Of
the remaining 99.8% (5221/5229) HTRI participants, 21.6%
(1130/5221) experienced an ILI event, among whom 85.4%
(965/1130) had wearable sensor data from at least 1 channel
that were valid for inclusion in the analysis.

After combining the FluStudy2020 and HTRI data sets, the final
ILI population comprised 2435 participants (number of patients
with analyzable data per channel: steps, n=2329, 95.6%; sleep,
n=2316, 95.1%; and HR, n=2206, 90.6%). Most participants in

the final ILI population were aged 18 to 49 years (2183/2435,
89.7%), female (2080/2435, 85.4%), and White (2175/2435,
89.3%; Table 2).

The ILI population included 14.9% (364/2435) of participants
who tested positive for influenza with an at-home test provided
by the study and 83.1% (2024/2435) of participants whose
self-reported symptoms met the prespecified clinical diagnostic
criteria of ILI: experiencing a combination of fever, at least 1
respiratory symptom, and at least 1 systemic symptom. The
remaining 1.9% (47/2435) of participants were included in the
ILI population because they self-reported having been diagnosed
with influenza by their physician or self-reported having been
prescribed an antiviral medication. Among the participants who
reported care-seeking behavior during their illness (1988/2435,
81.6%), 31.1% (618/1988) of participants reported making a
health care visit.
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Table 2. Baseline demographics and clinical characteristics of the study participants.

HTRIa study (n=965), n (%)FluStudy2020 (n=1470), n (%)Overall (n=2435), n (%)Characteristics

Age (years)

871 (90.26)1312 (89.25)2183 (89.65)18-49

88 (9.12)148 (10.07)236 (9.69)50-64

6 (0.62)10 (0.68)16 (0.66)>65

Sex

230 (23.83)112 (7.62)342 (14.05)Male

733 (75.96)1347 (91.63)2080 (85.42)Female

2 (0.21)11 (0.75)13 (0.53)Nonbinary

Race

4 (0.41)3 (0.2)7 (0.29)American Indian or Alaska Native

37 (3.83)27 (1.84)64 (2.63)Asian

24 (2.49)53 (3.61)77 (3.16)Black or African American

0 (0)3 (0.2)3 (0.12)Native Hawaiian or Other Pacific Islander

864 (89.53)1311 (89.18)2175 (89.32)White

29 (3.01)55 (3.74)84 (3.45)Multiple races

7 (0.73)18 (1.22)25 (1.03)Other

American region

183 (18.96)258 (17.55)441 (18.11)Northeast

262 (27.15)465 (31.63)727 (29.86)South

315 (32.64)485 (32.99)800 (32.85)Midwest

205 (21.24)261 (17.76)466 (19.14)West

0 (0)1 (0.07)1 (0.04)Unknown

BMI (kg/m2)

5 (0.52)17 (1.16)22 (0.9)Underweight (<18.5)

227 (23.52)326 (22.18)553 (22.71)Normal (18.5-24.9)

284 (29.43)395 (26.87)679 (27.89)Overweight (25.0-29.9)

449 (46.53)730 (49.66)1179 (48.42)Obese (≥30.0)

0 (0)2 (0.14)2 (0.08)Unknown

Health care visit

188 (19.48)430 (29.25)618 (25.38)Yes

379 (39.27)1001 (68.10)1380 (56.67)No

398 (41.24)39 (2.65)437 (17.95)Unknown

Influenza statusb

171 (17.72)193 (13.13)364 (14.95)Positive

786 (81.45)1238 (84.22)2024 (83.12)Symptom criteria only

8 (0.83)39 (2.65)47 (1.93)Unknown

94 (9.74)182 (12.38)276 (11.33)Prescribed antiviral

10 (1.04)21 (1.43)31 (1.27)Baloxavir marboxil

85 (8.81)164 (11.16)249 (10.23)Oseltamivir phosphate

Data validity

929 (96.27)1400 (95.24)2329 (95.65)Valid steps data
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HTRIa study (n=965), n (%)FluStudy2020 (n=1470), n (%)Overall (n=2435), n (%)Characteristics

937 (97.1)1269 (86.33)2206 (90.6)Valid heart rate data

922 (95.54)1394 (94.83)2316 (95.11)Valid sleep data

aHTRI: Home Testing of Respiratory Illness.
bDefined using symptom criteria.

Characterization of ILI Burden Using Wearable Sensor
Measures: Steps
Across the study period, the ILI population took an average of
8019 daily steps and spent 15% of the nonresting portion of
their day active with >50 steps per minute (out of all the minutes
with nonzero steps), which is hereafter referred to as active
time.

Participants saw a change in their total daily steps during ILI
events. Just before ILI onset, daily step counts began decreasing
from baseline values, with a peak change observed on day 0

(day of symptom onset), when participants lost a mean of 2516
daily steps (Figure 2). This pattern was exacerbated in the subset
of participants with a positive influenza test, who lost a mean
of 4218 steps on day 0 (Figure 2). In statistical comparisons of
ILI days with baseline (entire ILI population included), the
difference in total daily steps was significantly negative across
days −1 to +9 (P<.005; Table S1 in Multimedia Appendix 1).
The cumulative ILI burden (ie, the summed daily deviations
from baseline) amounted to a mean loss of 12,594 (SD 26,527;
median −11,108, IQR −26,633 to 2372; Figure S1 in Multimedia
Appendix 1) steps, and the median TTRB for total daily steps
following an ILI event was 3 (IQR 1-6) days.

Figure 2. Deviations from baseline levels across wearable measures during an influenza-like illness (ILI) event. Day-by-day group mean (SE) changes
from baseline values for 5 wearable sensor features derived from day-level sensor data are shown. “Steps total” was the total number of steps taken per
day. “Total steps count” was the total number of steps taken per day. “Proportion of steps taken with >50 spm” was the ratio of minutes in the day that
the participant took over 50 steps per minute (spm) relative to the total number of minutes with at least 1 step. “Sleep duration” was the total number
of minutes in the day that the participant spent asleep. “Sleep efficiency” was the ratio of minutes the participant was asleep relative to the total minutes
spent in bed until the end of the main sleep event (obtained from the Fitbit application programming interface). “RHR” was heart rate (beats per minute
[bpm]) during periods of inactivity (obtained from the Fitbit application programming interface). Gray lines illustrate values for the entire wearable
analysis population available for that wearable sensor feature; colored lines represent values for the subset of the analysis population who tested positive
for influenza. The shaded region covers days −4 to +9 relative to ILI onset, which was the time window used in statistical analyses of day-by-day ILI
burden. Influenza+: influenza-positive; RHR: resting heart rate.
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Active time also decreased from baseline values during ILI
events. Across the ILI population, the peak mean change in
active time was −4% of the total daily minutes, which was
observed on days 0 and 1 (Figure 2). In the subset of participants
with a positive influenza test, the peak mean change in active
time was −8% on day 1 (Figure 2). In statistical comparisons,
active time was significantly less than the baseline values from
days −1 to +6 relative to ILI onset (P<.001; Multimedia
Appendix 1, Table S1). The median TTRB for active time
following an ILI event was 3 (IQR 1-6) days.

Characterization of ILI Burden Using Wearable Sensor
Measures: Sleep
Across the study period, participants in the ILI population slept
an average of 427 minutes (7.1 hours) per day, with an average
sleep efficiency score of 89.2%.

Sleep duration changed during ILI events. Shortly before ILI
onset, sleep duration began to increase from baseline values,
with the peak change occurring on day 0 when participants slept
43 minutes more than baseline values on average across the ILI
population. In the participants who tested positive for influenza,
the peak change occurred on day +1 when they slept 87 minutes
more than baseline values (Figure 2). Statistical test results
revealed a significant increase in sleep duration across the ILI
population on days −1 to +5 and on day +9 compared with
baseline values, with a peak statistical increase by 43 minutes
occurring on days 0 and +1 (95% CI 37-49; P<.001; Table S1
in Multimedia Appendix 1). The cumulative ILI burden in sleep
time amounted to a mean increase of 182.7 (SD 542.4) minutes
across the ILI event (median 150.1, IQR −124 to 476; Figure
S1 in Multimedia Appendix 1), and the median TTRB for daily
sleep duration following an ILI event was 3 (IQR 1-5) days.

Sleep efficiency decreased from baseline levels during ILI
events, beginning on day −1 and peaking on day 0, when sleep
efficiency was 2.34% lower than baseline levels on average
across the ILI population. In the participants who tested positive
for influenza, the peak change was −3.62%, which also occurred
on day 0 (Figure 2). In statistical tests, the negative change in
sleep efficiency observed in the ILI population was significant

across days −1 to +4 (P<.001), with a peak statistical difference
of −2.3 on day 0 (P<.001; Table S1 in Multimedia Appendix
1). The median TTRB for sleep efficiency following an ILI
event was 3 (IQR 1-5) days.

Characterization of ILI Burden Using Wearable Sensor
Measures: RHR
The mean RHR across the study period was 68 bpm. RHR began
to rise above baseline levels shortly before ILI onset and
remained elevated for several days during the ILI event (Figure
2). RHR fell below baseline levels on day +8 before a secondary,
smaller increase to above baseline levels, which lasted longer
than the initial elevated phase. The RHR of participants was
elevated significantly above baseline levels on days −2 to +6
(P≤.001) and fell significantly below baseline levels on days
+8 and +9 (P=.002 and P<.001, respectively; Table S1 in
Multimedia Appendix 1). The greatest change from baseline
levels was 1.8 bpm, which was observed on day +1 (Figure 2).
In the subset of participants who tested positive for influenza,
the peak increase in RHR was 3.2 bpm (Figure 2). Across the
entire ILI population, the median TTRB for RHR was 10 (IQR
1-22) days, and the median TTRB for RHR δ (the change in
RHR from the preceding day) was 6 (IQR 1-15) days.

Digital Correlates of PROs
Wearable sensor data showed a statistically significant but weak
correlation with patient-reported severity and duration of key
ILI symptoms, as well as QoL outcomes. The total ILI burden
on daily step count and sleep duration over the course of an ILI
event correlated with patient-reported severity of fever, cough,
headache, muscle ache, chills, fatigue, and QoL outcomes (hours
of missed work; Figure 3). Wearable measures of illness
duration were derived based on the TTRB for each wearable
sensor feature, which characterized the duration of ILI-related
deviations from the participants’ typical day-to-day activity
patterns. TTRB measures also showed a statistically significant
but weak correlation with patient-reported symptom duration
and symptom severity for key ILI symptoms, including fever;
cough; muscle aches; chills; fatigue; and QoL measures, notably
hours of missed work (Figure 3).
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Figure 3. Correlations between patient-reported outcomes (y-axis) and wearable sensor data (x-axis). The color shading and the value printed in each
cell indicate Spearman ρ correlation coefficient for the association between the variables in the corresponding row and column. P values of statistical
associations were false discovery rate corrected for 3105 total tests (not all depicted here), following the Benjamini-Hochberg procedure. Associations
that reached statistical significance are illustrated with more intense color and are annotated with an asterisk (*P<.05; **P<.01; ***P<.001). QoL:
quality of life; RHR: resting heart rate; RHR δ: the change in RHR from the previous day; spm: steps per minute; TTRB: time to return to baseline.

Cohort Comparison: Wearable Measures of ILI
Burden and TTRB in Participants Who Sought Health
Care Compared With Those Who Did Not
The participants who sought health care were defined as those
who self-reported that they received primary or urgent care for
their ILI. Demographics and baseline characteristics were similar
between the participants who sought health care for their ILI
event and those who did not, except that those who sought health
care tended to be older (85/618, 13.8% were aged ≥50 years)
than those who did not (126/1380, 9.1% were aged ≥50 years;
Table S2 in Multimedia Appendix 1). The proportion of
participants with a positive influenza test result during the study
was greater among those who sought health care than among
those who did not (160/618, 25.9% vs 197/1380, 14.3%).

Day-by-day ILI burden for participants who sought health care
versus those who did not are shown for each wearable sensor
feature in Figure 4A. The peak loss of daily steps was 1765
steps greater in the participants who sought health care than in
those who did not (Table S3 in Multimedia Appendix 1).
Furthermore, care seekers lost significantly more active time
than non–care seekers (Table S3 in Multimedia Appendix 1).

A significant difference in the mean overall ILI burden on total
daily steps was observed between the participants who sought
health care and those who did not (Δ −11,016; 95% CI −13,676
to −8356; P<.001; Figure 4B). Health care seekers also
experienced a significantly greater ILI burden on sleep duration
on days +1, +2, and +9 than those who did not seek health care
(Figure 4A). The change in mean sleep duration from baseline
over the course of the ILI event was 159 minutes more for health
care seekers than for participants who did not seek health care
(Δ 159, 95% CI 103.7-214.1; P<.001; Figure 4B). Sleep
efficiency scores were significantly lower for those who sought
health care than for those who did not on days 0 and +1 (Figure
4A). In addition, those who sought care experienced
significantly greater RHR elevations from baseline on days 0
and +1 than those who did not seek care (Figure 4A).

Finally, the participants who sought health care tended to have
a longer TTRB for wearable sensor features after ILI onset than
those who did not seek health care (Figure 4B); TTRB was 2
and 4 days longer for total daily steps (U=291,474.5; P≤.001)
and the day-to-day change in RHR (RHR δ; U=294,092;
P<.001), respectively, for health care seekers.

J Med Internet Res 2023 | vol. 25 | e41050 | p. 11https://www.jmir.org/2023/1/e41050
(page number not for citation purposes)

Hunter et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 4. Daily influenza-like illness (ILI) burden and time to return to baseline (TTRB) in health care–seeking versus non–health care–seeking
populations. Colored data (plot points, lines, and boxes) represent health care–seeking participants; gray lines represent non–health care–seeking
participants. (A) Results of regression analyses of day-by-day ILI burdens of health care–seeking and non–health care–seeking cohorts are shown;
separate regression analyses were conducted for each wearable sensor feature. Plotted points are model-fitted estimates (95% CI error bars) for each
cohort, on each day of the ILI window and for the baseline period (computed as the mean across all healthy days; represented by b on the x-axis).
Diamonds above the x-axis indicate contrasts reaching statistical significance after Bonferroni correction for 14 tests; contrasts were the difference in
ILI burden between day n and baseline for the health care–seeking cohort compared with the non–health care–seeking cohort. (B) TTRB and cumulative
ILI burden for each sensor feature are shown for individual participants (cloud plots) and overall (density distributions) for health care–seeking and
non–health care–seeking cohorts. For TTRB (first 2 columns), box plots (center line, median; box limits, upper and lower quartiles; points, outliers)
are overlaid and annotated with the median value for the corresponding population. For cumulative ILI burden (third column), mean and 95% CI (point
with error bars) are overlaid and annotated with the mean value. bpm: beats per minute; RHR: resting heart rate; RHR δ: the change in RHR from the
previous day; spm: steps per minute.

Cohort Comparison: Wearable Measures of ILI
Burden and TTRB in Participants With Confirmed
Influenza Infection Compared With Those Reporting
ILI Symptoms Only
Demographics and baseline characteristics were similar between
participants with confirmed influenza infection during the study
(influenza-positive cohort) and those with ILI symptoms only

(symptoms-only cohort; Table S4 in Multimedia Appendix 1).
Day-by-day ILI burden for the influenza-positive and
symptoms-only cohorts is shown for each wearable sensor
feature in Figure 5A. On days 0 to +6, the influenza-positive
cohort lost significantly more steps than the symptoms-only
cohort (Figure 5A; Table S5 in Multimedia Appendix 1). The
difference in the overall ILI burden on total daily steps between
the influenza-positive and symptoms-only cohorts was
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significant (Δ −12,764, 95% CI −16,235 to −9292; P<.001;
Figure 5B). The influenza-positive cohort also lost significantly
more active time on days 0 to +3 and +5 and experienced a
significantly greater ILI burden on sleep duration on days 0 to
+2 and +8 than the symptoms-only cohort (Figure 5A). Across
the course of the ILI event, the change in sleep duration from
baseline was 239 minutes more for the influenza-positive cohort

than for the symptoms-only cohort (Δ 239, 95% CI 175.7-301.6;
P<.001; Figure 5B). The influenza-positive cohort experienced
significantly greater changes from baseline RHR on days 0 to
+4 and days +7 to +9 than the symptoms-only cohort (Figure
5A). On days +1 and +2, the RHR of the influenza-positive
cohort was 1.6 bpm higher than that of the symptoms-only
cohort (Figure 5A).

Figure 5. Daily influenza-like illness (ILI) burden and time to return to baseline (TTRB) in the participants with confirmed influenza infection versus
those with ILI symptoms only. Colored data (plot points, lines, and boxes) represent the participants who were influenza positive (influenza+); gray
lines indicate those with ILI symptoms only. (A) Results of regression analyses of day-by-day ILI burdens of influenza+ and ILI symptoms–only cohorts
are shown; separate regression analyses were conducted for each wearable sensor feature. Plotted points are model-fitted estimates (95% CI error bars)
for each cohort, on each day of the ILI window and for the baseline period (computed as the mean across all healthy days; represented by b on the
x-axis). Diamonds above the x-axis indicate contrasts reaching statistical significance after Bonferroni correction for 14 tests; contrasts were the difference
in ILI burden between day n and baseline for the influenza+ cohort compared with the ILI symptoms–only cohort. (B) TTRB and cumulative ILI burden
for each sensor feature are shown for individual participants (cloud plots) and overall (density distributions) for influenza+ and ILI symptoms–only
cohorts. For TTRB (first 2 columns), box plots (center line, median; box limits, upper and lower quartiles; points, outliers) are overlaid and annotated
with the median value for the corresponding population. For cumulative ILI burden (third column), the mean and 95% CI (point with error bars) are
overlaid and annotated with the mean value. bpm: beats per minute; influenza+: influenza-positive; RHR: resting heart rate; RHR δ: the change in RHR
from the previous day; spm: steps per minute.
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Participants who tested positive for influenza also exhibited a
longer TTRB for wearable sensor features compared with the
ILI symptoms–only cohort; the TTRB was 3 days longer for
total daily steps (U=224,057.5; P<.001), 1 day longer for sleep
duration (U=224,057.5; P<.001), and 3 days longer for RHR δ
(U=256,776; P<.001; Figure 5B).

Discussion

Principal Findings and Comparison With Prior Work
Our results provide evidence of the potential for wearable
sensors to discriminate between individuals with and without
influenza. We characterized the wearable sensor “phenotype”
of participants with laboratory-confirmed influenza. Across all
wearable sensor measures, the participants who tested positive
for influenza exhibited greater deviations from baseline values
and longer TTRB than those who reported ILI symptoms only.
Changes in wearable sensor data generally emerged from the
day before symptom onset and peaked on the day of or day after
symptom onset. Similar observations were made using
commercial wearable sensors for the detection of COVID-19,
suggesting that wearable sensors may provide an objective early
warning signal for the onset of ILI before individuals become
aware of their symptoms [14,19,20]. Influenza is associated
with greater clinical severity than other common causes of viral
upper respiratory tract infections (excluding SARS-CoV-2)
[30,31]. This difference in the individual experience of influenza
compared with other ILIs appears to be detectable with wearable
sensors. In this study, the baseline characteristics of the
symptoms-only cohort did not differ meaningfully from those
of the influenza-positive cohort. However, the symptoms-only
cohort should not necessarily be interpreted as influenza
negative because some participants with influenza infection not
identified by diagnostic testing may be included in this cohort,
potentially diluting the observed differences. The seasonal
incidence of ILI is often estimated as 5% to 20%, although a
recent study suggests that the true incidence is lower [32]. The
ILI rates observed in both FluStudy2020 (1738/10,004, 17.4%
of participants) and HTRI (1130/5221, 21.6% of participants)
were broadly consistent with seasonal estimates.

A retrospective study of 200,000 Fitbit users suggested that
wearable sensor data can predict ILI at individual and population
levels [33]. Modeled ILI rates closely correlated with the Centers
for Disease Control and Prevention–reported ILI rates when
Fitbit data were incorporated, specifically elevated RHR (0.5
SD above user average) combined with reduced sleep efficiency
(>0.5 SD below user average). Similarly, a study quantifying
the population burden of ILI based on changes in activity
showed that wearable sensors can be used to estimate the burden
of ILI at individual and national levels in terms of the total daily
step count [12]. Other studies have suggested that wearable
sensors can potentially capture subtle within-person changes
that could signal SARS-CoV-2 infection [14,15,18,19,21,23].
A study demonstrated differences in RHR elevations in
individuals before and during COVID-19 illness compared with
those with non–COVID-19 ILI [20], although another study
cautioned about the potential impact of changes in wearer
behavior after receiving a positive COVID-19 test result [18].

In addition, a small cohort influenza challenge study showed
that when coupled with machine learning methodology,
wearable sensor data can be used to predict infection status and
severity [34]. Machine learning approaches coupled with
wearable sensor and syndromic data have also been explored
for the prediction of COVID-19 [16,21,22,35]. Our results
confirm these reported changes in wearable sensor measures
during an ILI event, detailing their correlation with symptom
severity and duration using a large, real-world population.
Moreover, our findings further underscore the potential of
commercial wearable sensors to serve as a tool for the passive
monitoring of well-being and infection surveillance, not just at
the population level but also at the individual level.

Visual inspection of the group-level time series (Figure 2)
showed ostensibly slightly more variation in day-to-day
wearable sensor measures during the baseline period than during
the ILI event. This may be explained by 2 factors. First, although
participants’ daily lives may vary substantially during periods
of health, there is a more typical trajectory of events during
illness. This becomes visually apparent when participants’ data
streams are aligned to their ILI onsets. Second, because the data
density criteria were optimized for dense data coverage during
the ILI event (ie, days −4 to +9), this period contains the greatest
number of participants at each point in the time series. The
larger sample size during this period results in a smaller SE of
the mean (smaller error bands in Figure 2) and, in many cases,
a smoother time series. In addition, there was an intriguing
pattern of changes in RHR during the ILI event (Figure 2).
Specifically, RHR increased just before symptom onset and
remained elevated throughout the first several days of the illness
before dipping below baseline levels, returning to elevated
levels, and finally leveling off. Similar patterns in HR data have
been reported in previous studies on influenza and COVID-19
[15,20,33,36]. At present, we do not have an evidenced clinical
explanation for this phenomenon, but its persistence across
studies and ILI populations suggests that it has a physiological
basis rather than merely an artifactual basis.

We have previously reported that individuals (from the same
data set, FluStudy2020) who sought care for their ILI
experienced more severe symptoms than those who did not [37].
Here, using wearable sensor data, we show that the burden and
duration of ILI were greater in participants who sought care
than in those who did not. This may reflect the wearable sensor’s
ability to detect a more severe disease phenotype (as with the
participants who tested positive for influenza versus those who
reported ILI symptoms only) rather than an independent
relationship between wearable sensors and care-seeking
behavior. Nonetheless, these findings suggest that wearable
sensors may serve as a useful passive and noninvasive proxy
for ILI severity and could, in turn, have utility in predicting
care-seeking behaviors for ILI, which may help inform health
care resource planning and allocation.

We also found a consistent, statistically significant though weak
correlation between patient-reported severity and duration of
key ILI symptoms and data from commercial wearable sensors,
including the magnitude of change from baseline, cumulative
burden, and TTRB of multiple wearable sensor measures. This
study was conducted in a fully remote setting, using data from
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commercially available wearable sensors and participants’
self-reported symptoms; these data are inherently more variable
than clinical measures, such as implanted medical devices,
physician- or expert-reported assessments, and medical records.
Although the observed correlations are not “strong” by
conventional standards, they are statistically significant,
coherent, and directionally meaningful.

Limitations
This study has some limitations. First, the sample is not
representative of the general population. The participants were
predominantly White, female, and aged <50 years. The study
design may also have had some biases owing to the inclusion
criteria. For example, the participants were required to own a
Fitbit device; those who own a Fitbit device may be more health
conscious and physically active than the general population.
Indeed, the population examined in this study had a mean daily
step count (approximately 8000) that was somewhat higher than
the estimates for the US adult population (approximately 6500)
[33]. Although this may represent a true difference,
measurement errors from the use of different sensors in different
studies (eg, pedometers read fewer steps than accelerometers
[33]) may provide an alternative explanation. Furthermore, the
participants who lacked sufficient wearable sensor data on ILI
days were excluded from the analysis; thus, the data set only
included participants with strong adherence to their wearable
sensor. As an exploratory observational study, we did not
explicitly select a representative population; future studies may
seek to improve representation. Interpersonal variation in the
time of day at which the participants responded to surveys and
how they interpreted the questions may have influenced the
data set. As the participants reported their symptoms daily for
a portion of this study, hypervigilance of their current well-being
may have influenced their physical activity patterns and
care-seeking behaviors (eg, observer bias).

It is noteworthy that a portion of the study period coincided
with the COVID-19 pandemic, which may have also influenced
care-seeking behaviors. The participants may have been more
likely to delay or avoid seeking treatment owing to the
overwhelmed health care services and to minimize their risk of
COVID-19 infection. Moreover, COVID-19 mitigation measures

may have reduced circulating influenza during the portion of
the study period coinciding with the pandemic. In addition,
logistical challenges were posed by the remote collection of
influenza diagnostic tests, which may have resulted in
miscataloging influenza-positive cases as “symptoms-only”
cases. Logistical complications resulted in some influenza
diagnostic kits not being delivered to the participants in a timely
manner, and some testing materials became unavailable during
the COVID-19 pandemic. Participants may have erroneously
tested negative because of delays or errors in collecting and
returning their samples to the laboratory. The timing discrepancy
of influenza test kit delivery between the 2 studies also suggests
that the FluStudy2020 participants may have collected their
influenza test samples slightly later than the HTRI study
participants, whose diagnostic kits were kept on hand rather
than shipped on demand. It is not possible to estimate the impact
of these factors, but their net effect is likely to be an
underestimation of the magnitude of the observed differences
in wearable sensor data features between participants who tested
positive for influenza and those who reported symptoms only,
as the population that reported symptoms only may have
included individuals who were influenza positive but could not
be diagnosed. Finally, nonlinear models or other machine
learning techniques may be better suited for these investigations.

Conclusions
In conclusion, using wearable sensor data, we characterized 2
cohorts of patients with ILI based on their diagnostic status and
care-seeking behavior. We show distinct wearable “phenotypes”
for patients who were influenza positive compared with those
who reported ILI symptoms only and for care seekers compared
with non–care seekers. Although our findings alone cannot be
used in lieu of formal laboratory diagnostics, our results provide
further supportive evidence of the potential for commercial
wearable sensors to serve as an early detection system for
influenza infections, whereby device users may receive a digital
suggestion to seek care, to undergo diagnostic testing, or to even
quarantine. Wearable sensors also have the potential to
discriminate care-seeking from non–care-seeking populations,
which could help inform health care resource planning in the
future. Future studies validating early detection and care-seeking
prediction algorithms are needed.
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Multimedia Appendix 1
Supplementary tables showing: the daily influenza-like illness (ILI) burden for the overall study population (Table S1); baseline
characteristics (Table S2) and the difference in daily ILI burden (Table S3) for participants who attended a healthcare visit
compared with those who did not; baseline characteristics (Table S4) and the difference in daily ILI burden (Table S5) for
participants with confirmed influenza infection compared with those who had ILI symptoms only. The overall ILI burden for
total steps and sleep duration for the wearable analysis population is shown in Figure S1.
[PDF File (Adobe PDF File), 370 KB-Multimedia Appendix 1]
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