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Abstract

Background: Enhanced management of multimorbidity constitutes a major clinical challenge. Multimorbidity shows
well-established causal relationships with the high use of health care resources and, specifically, with unplanned hospital admissions.
Enhanced patient stratification is vital for achieving effectiveness through personalized postdischarge service selection.

Objective: The study has a 2-fold aim: (1) generation and assessment of predictive models of mortality and readmission at 90
days after discharge; and (2) characterization of patients’ profiles for personalized service selection purposes.

Methods: Gradient boosting techniques were used to generate predictive models based on multisource data (registries,
clinical/functional and social support) from 761 nonsurgical patients admitted in a tertiary hospital over 12 months (October 2017
to November 2018). K-means clustering was used to characterize patient profiles.

Results: Performance (area under the receiver operating characteristic curve, sensitivity, and specificity) of the predictive models
was 0.82, 0.78, and 0.70 and 0.72, 0.70, and 0.63 for mortality and readmissions, respectively. A total of 4 patients’ profiles were
identified. In brief, the reference patients (cluster 1; 281/761, 36.9%), 53.7% (151/281) men and mean age of 71 (SD 16) years,
showed 3.6% (10/281) mortality and 15.7% (44/281) readmissions at 90 days following discharge. The unhealthy lifestyle habit
profile (cluster 2; 179/761, 23.5%) predominantly comprised males (137/179, 76.5%) with similar age, mean 70 (SD 13) years,
but showed slightly higher mortality (10/179, 5.6%) and markedly higher readmission rate (49/179, 27.4%). Patients in the frailty
profile (cluster 3; 152/761, 19.9%) were older (mean 81 years, SD 13 years) and predominantly female (63/152, 41.4%, males).
They showed medical complexity with a high level of social vulnerability and the highest mortality rate (23/152, 15.1%), but
with a similar hospitalization rate (39/152, 25.7%) compared with cluster 2. Finally, the medical complexity profile (cluster 4;
149/761, 19.6%), mean age 83 (SD 9) years, 55.7% (83/149) males, showed the highest clinical complexity resulting in 12.8%
(19/149) mortality and the highest readmission rate (56/149, 37.6%).
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Conclusions: The results indicated the potential to predict mortality and morbidity-related adverse events leading to unplanned
hospital readmissions. The resulting patient profiles fostered recommendations for personalized service selection with the capacity
for value generation.

(J Med Internet Res 2023;25:e40846) doi: 10.2196/40846
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Introduction

Enhanced management of multimorbidity constitutes a major
clinical challenge because the number and complexity of morbid
conditions show well-established causal relationships with
mortality and high use of health care resources [1], with
unplanned hospital admissions being a key determinant of the
multimorbidity-induced high burden on health care systems
worldwide [2,3].

Evidence-based efficacy of integrated care interventions to
prevent hospitalizations in high-risk patients has been
demonstrated [4,5]. Likewise, comprehensive programs to
enhance care during transitions after hospital discharge can
reduce all-cause early hospital readmissions in chronically ill
patients, which is particularly effective in mid/long-term
evaluations [6,7]. However, the scalability and adoption of such
preventive interventions in real-life scenarios are often limited
by an efficacy-effectiveness gap. Poor patient risk stratification
and insufficient workforce preparation for the care continuum
have been identified as critical limiting factors for effective
clinical practice [8].

In this regard, multisource clinical predictive modeling
approaches, considering various determinants of health (eg,
clinical, social, populational, lifestyle), have become an effective
strategy for subject-specific risk assessment to prevent
morbidity-related adverse events leading to hospital
readmissions [9-13].

This research work aimed to enhance chronic patients’
stratification at hospital discharge, characterize patients’ risk
profiles for generating recommendations on postdischarge care
transitions [14,15], and improve personalized preventive care
pathways within a care continuum scenario [16]. To this end,
multiple data sources (ie, primary care, social care,
hospital-based data, and registry information) from distinct

domains (ie, medical complexity, disability scoring, unhealthy
lifestyle factors, and social frailty) have been considered.

Methods

Study Design, Population, Potential Predictors, and
Data Sources
This is an observational retrospective cohort study of patients
discharged from the Hospital Clínic of Barcelona (HCB) from
October 2017 to November 2018. The study population included
nonsurgical patients admitted to the hospital avoidance program
(n=441) and the corresponding controls undergoing conventional
hospitalization (n=441), as reported in detail in Herranz et al
[17].

Key determinants of health from the clinical and social domains
were considered (Table 1): (1) sociodemographic information;
(2) population-based registry indicators on morbidity and
complexity; (3) patients’ functional characteristics; (4) frailty
and social risk indicators; (5) unhealthy lifestyle habits; (6)
utilization of health care resources; (7) clinical and biological
data collected during the acute episode; and (8) immunization
records. It is of note that multimorbidity and complexity were
characterized by the Catalan population–based health risk
assessment scoring, known as Adjusted Morbidity Groups
(AMG) [18-21], an aggregative index that indicates the burden
of an individual’s morbid conditions through a disease-specific
weighting deduced from statistical analysis based on mortality
and the utilization of health services; by contrast, the acute
episode complexity was characterized by the Queralt Indices
[22,23] that combine information on (1) preexisting
comorbidities; (2) in-hospital complications; (3) principal
discharge diagnoses; (4) main procedure; and (5) secondary
procedures performed during hospitalization. For predictive
modeling purposes, the different Queralt Indices have been
aggregated into a single score, referred to as the composite
Queralt Index.
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Table 1. List of variables considered for predictive modeling and clustering analysis.a

DescriptionVariables

Sociodemographic data

Patient’s age (numerical)1: Age (100%)

Patient’s sex (binary, male/female)1: Gender (100%)

Health Basic Area (categorical, 105 levels)1: HBA (100%)

Medical complexity

Adjusted Morbidity Groups score (numerical)3: AMG score [18-21] (100%)

Shared Individual Intervention Plan (binary, yes/no)2: SIIP Plan [24] (90.45%)

Complex chronic patient (binary, yes/no)2: CCP [24] (90.45%)

Advanced chronic patient (binary, yes/no)2: ACP [24] (90.45%)

Patient’s functional capacity

Barthel Index (numerical, 0-100)2: Barthel [25] (90.45%)

Lawton Brody Index (numerical, 0-8)2: Lawton Brody [26] (82.97%)

Pfeiffer Index (numerical, 0-10)2: Pfeiffer [27] (90.58%)

Braden Index (numerical, 0-23)2: Braden [28] (78.71%)

Geriatric syndrome label (binary, yes/no)2: Geriatric syndrome [29] (100%)

Social frailty indicators

Mini Nutritional Assessment Index (numerical, 0-30)2: MNA [30] (71.87%)

Table of Social Risk Indicators (numerical, 0-6)2: TSRI [31] (100%)

Barber Index (numerical, 0-9)2: Barber [32] (81.9%)

Dependence label (binary, yes/no)2: Dependence (100%)

Unhealthy lifestyle habits

BMI (numerical)2: BMI (74.19%)

Patient’s physical activity (categorical, 3 levels)2: Physical activity (75.61%)

Patient’s alcohol intake (categorical, 3 levels)2: Alcohol intake (73.94%)

Patient’s smoking habits (categorical, 3 levels)2: Smoking (73.03%)

Use of health care resources

Number of admissions during the previous 12 months (numerical)3: Hospital admissions (100%)

Number of emergency room visits during the previous 12 months (numerical)3: Emergency room visits (100%)

Number of encounters with primary care professionals during the previous 12 months (numerical)3: Primary care encounters (100%)

Number of specialized care outpatient visits during the previous 12 months (numerical)3: Outpatient visits (100%)

Number of drugs prescribed during the previous 12 months (numerical)3: Medication (100%)

Total health care expenses of the previous 12 months in euros (numerical)3: Health care expenditure (100%)

Acute episode complexity

Composite Queralt Index (numerical)1: Composite Queralt Index [22,23] (100%)

Type of hospitalization (binary, hospital avoidance/usual care)1: Type of hospitalization (100%)

Total hospitalization days (numerical)1: Length of stay (100%)

Number of active diagnoses at admission (numerical)1: Number of active diagnoses (100%)

Leukocyte count (numerical)1: Leukocytea (87.33%)

Percentage of lymphocytes (numerical)1: Lymphocytesa (87.33%)

Hemoglobin concentration (numerical)1: Hemoglobina (87.33%)

Red blood cell distribution width (numerical)1: RDWa (87.33%)
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DescriptionVariables

Glucose concentration (numerical)1: Glucosea (87.33%)

Creatinine concentration (numerical)1: Creatininea (87.33%)

Sodium concentration (numerical)1: Sodiuma (87.33%)

Potassium concentration (numerical)1: Potassiuma (87.33%)

Immunization records

Flu vaccine administration (binary, yes/no)2: Vaccination, flua (100%)

Pneumococcal 13 vaccine administration (binary, yes/no)2: Vaccination, pneumococcal 13a (100%)

Pneumococcal 23 vaccine administration (binary, yes/no)2: Vaccination, pneumococcal 23a (100%)

aVariables used only for predictive modeling purposes. The number before the variable’s name indicates the database from which the information was
retrieved: (1) HCB’s electronic medical records; (2) primary care’s electronic medical records; and (3) the Catalan Health Surveillance System. The
percentages of data availability are displayed after variable’s name.

Potential predictors (Table 1) were retrieved from 3 different
data sources: (1) HCB’s electronic medical records (EMRs);
(2) primary care’s EMR; and (3) the Catalan Health Surveillance
System (CHSS) [33]. The latter contains information on clinical
diagnoses, medication, and resource utilization from the hospital
and primary care. The CHSS is regularly fed from EMR data
of all public health care providers in Catalonia paid by CatSalut,
the single public payer in Catalonia (ES), which uses it for
billing purposes, population-health risk assessment, and
allocation of resources. Databases are linked through a unique
identification number used for public assurance purposes.

Ethical Approval
The study was conducted in compliance with the Declaration
of Helsinki and was approved by the Ethical Committee for
Human Research at the Hospital Clínic of Barcelona
(26/04/2017, 2017-0451 and 2017-0452). All data were handled
according to the General Data Protection Regulation 2016/679
on data protection and privacy for all individuals within the
European Union and the local regulatory framework regarding
data protection. Study investigators only had access to a fully
anonymized database. Data from other health administrative
databases were linked and deidentified by a team not involved
in the study analysis.

Outcomes
The predictive modeling for enhanced patient stratification
assessed 2 primary outcomes occurring up to 90 days after
discharge: mortality and all-cause hospital readmissions. The
clustering analysis allowed the identification and
characterization of patients with different risk profiles for
personalized service selection purposes. Moreover, the 90-day
postdischarge service-utilization trajectories of the identified
patients’ risk profiles were analyzed.

Data Analytics Workflow
From the initial set of 882 patients, 107 were eliminated due to
the absence of unrecoverable indispensable data. An additional
14 patients were rejected for subsequent analyses because they
died during the hospitalization, resulting in a cohort of 761
patients.

It is to be noted that we observed elevated patterns of
missingness in most of the variables recorded in the primary
care databases. This was due, in part, to the fact that a vast
majority of questionnaires used to assess patient functional
characteristics, frailty, and social risks are systematically
administered only in elders or patients with explicit evidence
of vulnerability or functional decline. Therefore, we imputed
baseline levels for Barthel [25], Lawton-Brody [26], Pfeiffer
[27], Braden [28], Mini Nutritional Assessment [30], Table of
Social Risk Indicators [31], Barber [32] questionnaires in all
patients younger than 70 years with no formal diagnosis
involving significant levels of dependence, vulnerability, or
functional decline. Appendix S1 in Multimedia Appendix 1
presents the diagnostic codes considered for imputation in this
initial round (see also [25-32,34]). After that, all variables with
percentages of missingness higher than 30% were excluded
from the study database. The remaining incomplete registers
were imputed using the MissForest [35] algorithm, a robust
method for mixed-type data imputation. Furthermore, the
categorical features used to encode smoking and alcohol abuse
habits were rediscretized to avoid underrepresented categories.

To avoid overfitting, we removed from the study data set all
highly correlated features using a Pearson coefficient of 0.75
as a threshold value. In addition, we applied a low variance
filtering to remove the features with very few unique values.
For this issue, we set the threshold for the ratio between the
frequency of the most common value and the frequency of the
second most common value to 95:5. The final set of predictors
is displayed in Table 1.

According to the results of previous predictive modeling
experiences in similar settings, reported in Calvo et al [11], we
used gradient boosting machines [36] to forecast 2 binary
deleterious events occurring up to 90 days after hospital
discharge: (1) mortality and (2) all-cause hospital readmissions.
We used a grid search to fine-tune the gradient boosting machine
parameters (number of trees=1500, maximum number of nodes
per tree=5, shrinkage=0.01, and minimum number of
observations in terminal nodes=7). The models were trained
and tested using a Monte Carlo cross-validation approach with
10 replicates, using 75% of the data for training and the
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remaining 25% for testing. In addition, every training data
partition was 4-fold cross-validated to determine the training
and validation splits, accounting for 75% and 25% of the training
data partition, respectively. To minimize the effect of class
imbalance on the target outcomes caused by the scarcity of
unsuccessful cases, we used a random stratified sampling
technique [37] to generate the train/test data splits. In addition,
to estimate the relative importance of the variables within the
predictive models, we performed a mean decrease in accuracy
(MDA) analysis. Finally, both predictive models were evaluated,
according to the average results of all the independent
validations, using the following metrics: area under the receiver
operating characteristic curve (AUROC), sensitivity (SE), and
specificity (SP). We also calculated the 95% CI for the AUROC
using 2000 bootstrapped stratified replicates.

For personalized service selection purposes, we used the
K-means clustering algorithm [38,39] to generate groups of
patients with similar clinical and social risk profiles. We used
the average silhouette method [40] to determine the optimal
number of clusters. Finally, the baseline characteristics and
patient service utilization trajectories up to 90 days after hospital
discharge for all risk profiles identified in this process were
assessed.

Categorical variables were summarized as absolute values and
frequencies, whereas continuous variables were represented by
the mean and the SD or the median and interquartile range.
ANOVA, together with post hoc pairwise t test (unpaired,
2-tailed), and Kruskal-Wallis, together with post hoc pairwise
Wilcoxon tests, were used to assess changes in numeric
outcomes, as needed. The Fisher exact test was used to assess
changes in categorical variables. Bonferroni adjustments were
used in multiple pairwise comparisons. The threshold for
statistical significance was set at .05. In addition, to enable
multidimensional data combination and to enhance risk profiles
(ie, clusters) comparison and visualization, all features were
rescaled into a 0-1 range using a minimum-maximum
normalization approach. Afterward, all features were aggregated,
averaged, and displayed in radar plots in 7 categories that mimic
the groups of aforesaid variables, specifically (1) age, (2)
medical complexity, (3) functional capacity, (4) social frailty,
(5) unhealthy lifestyle habits, (6) use of health care resources,
and (7) acute episode complexity.

All the statistical analyses were conducted using R version 4.1.1
[41] (The R Foundation)

Results

Characteristics of the Study Population
The average age of the study population was 75.9 (SD 14.51)
years. Of the 761 patients overall, 434 (57%) were men and the
remaining (n=327, 42.9%) were women. Besides, 63/761 (8.3%)
patients died during the following 90 days after hospital
discharge, 188/761 (24.7%) had to be readmitted within the
study period, and 308/761 (40.5%) had unplanned emergency
room (ER) visits. Table 2 presents selected characteristics of
the study population, as well as pairwise comparisons between
successful and unsuccessful groups: (1) survivors and deceased
patients; and (2) patients not requiring hospital readmission and
readmitted patients.

In brief, mortality and hospital readmission rates were higher
in elders (age: P<.001), in highly comorbid and complex patients
(AMG: P<.001), and in individuals with higher composite
Queralt Index (P<.001) when combining the severity of the
acute episode with the preexisting comorbidity burden. In the
entire study group, 77.4% (589/761) of the patients were
allocated above the P95 of the AMG scoring distribution in
Catalonia, the tip of the population-based risk stratification
pyramid. The survivors presented a similar distribution (533/698,
76.4%, ≥P95), but patients that died after discharge showed a
significantly higher (P<.001) AMG scoring (56/63, 88.9%,
≥P95). Likewise, AMG scoring was markedly lower (P<.001)
in patients not requiring readmissions (424/573, 74.0%, ≥P95)
than in those rehospitalized within the 90-day study period
(165/188, 87.8%, ≥P95). A similar pattern was seen in the
composite Queralt Index, reflecting both patient’s complexity
and severity of the acute episode (P<.001). As expected, total
health expenditure at the health system level during the 12
months before the acute episode was also significantly higher
in the unsuccessful subgroups than in the entire study group or
the successful subsets of patients.

Functional capacity loss (Barthel: P<.001) and social frailty
and dependence (Barber: P<.001; Table S1 in Multimedia
Appendix 1) were also identified as potential risk factors for
both mortality and hospital readmission. A gender bias was
observed in readmitted patients, with men showing a higher
hospitalization rate (P=.02). A detailed description of all
variables included in the analyses is depicted in Table S1 in
Multimedia Appendix 1, wherein characteristics of those patients
requiring unplanned ER visits during the study period are also
displayed.
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Table 2. Selected traits of the study group depending on mortality and all-cause hospital readmissions.

ReadmissionMortalityAll patients
(n=761)

Variables

P valueaUnsuccessful
(n=188)

Successful
(n=573)

P valueaUnsuccessful
(n=63)

Successful
(n=698)

Demographics

.02121 (64.36)313 (54.62)—30 (47.62)404 (57.88)434 (57.03)Male, n (%)

.0267 (35.64)260 (45.38)—33 (52.38)294 (42.12)327 (42.97)Female, n (%)

.00177.77 (13.14)74.18 (14.87)<.00183.87 (10.92)74.27 (14.53)75.06 (14.51)Age, mean (SD)

Medical complexity

<.00132.89 (16.47)24.21 (12.95)<.00134.27 (16.53)25.64 (13.97)26.35 (14.39)AMGb score, mean (SD)

<.001<.001AMG category, n (%)

—0 (0)2 (0.35)—0 (0)2 (0.29)2 (0.26)Very low risk <P50

.0032 (1.06)28 (4.89)—0 (0)30 (4.3)30 (3.94)Low risk [P50-P80)

.00521 (11.17)119 (20.77)—7 (11.11)133 (19.05)140 (18.4)Moderate risk [P80-P95)

—35 (18.62)147 (25.65)—10 (15.87)172 (24.64)182 (23.92)High risk [P95-P99)

<.001130 (69.15)277 (48.34)<.00146 (73.02)361 (51.72)407 (53.48)Very high risk ≥P99

Use of health care resources; 12 months before admission

<.0015495 (3448-
11,235)

3772 (2260-
6343)

<.0015979 (2930-
11,072)

4033 (2418-
6930)

4164 (2466-
7198)

Health care expenditure in eurosc,
median (IQR)

Acute episode complexity

—8.11 (6.16)7.51 (4.84).00610.46 (8.49)7.42 (4.72)7.67 (5.20)Length of stay; mean (SD)

<.00184.33 (29.52)68.92 (29.75)<.00195.31 (25.27)70.69 (30.02)72.73 (30.41)Composite Queralt Index, mean (SD)

aOnly P values ≤.05 have been presented.
bAMG: Adjusted Morbidity Group.
c€1=US $1.08.

Predictive Modeling
Figure 1 depicts the average performance of the predictive
models over the cross-validation process. The mean performance
of the models expressed as AUROC (CI; SE/SP) was 0.82
(0.74-0.90; 0.78/0.70) and 0.72 (0.64-0.80; 0.70/0.63) for
mortality and all-cause hospital readmission risk, respectively.

Table 3 displays the variable importance weights, according to
the MDA analysis, of the 15 most meaningful predictors for
both predictive models developed within this study. It is of note
that the top 5 predictors for mortality, responsible for 49%
accuracy prediction in the MDA analysis, were age (16.7%),
composite Queralt Index (12.3%), length of stay (7.7%),
Pressure Sore Risk assessed by the Braden scale (6.4%), and
heterogeneity of red cell volume/size (6.1%). Overall, variables
expressing (1) aging, (2) severity of the acute episode
(composite Queralt Index, length of stay, and biological blood
markers measured during admission); (3) multimorbidity
(number of prescriptions, AMG score, BMI); and (4) frailty

(Pfeiffer index) were at the top of the list of the most influential
traits modulating mortality after discharge.

Likewise, the top 5 predictors for readmissions during the 90
days after discharge explained 48% accuracy prediction in the
MDA analysis. These were the composite Queralt Index
(14.8%), blood lymphocytes cell count (10.8%), total health
expenditure in the previous year (9.0%), age (8.4%), and AMG
score (5.4%). Again, variables associated with the severity of
the acute episode (composite Queralt index, peripheral blood
biological markers, length of stay), age, multimorbidity (AMG
score, health expenditure before the acute episode, BMI, number
of specialist outpatient visits), and social frailty (Barber Index)
were the main determinants of risk of readmission during the
study period.

It should be noted that the predictive role of each of the
individual components of the Queralt Index were assessed
separately; however, the optimal models’ performance was
achieved using Queralt as a composite index.
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Figure 1. Pooled average receiver operating characteristic curves for both predictive models: risk of mortality is indicated in blue, whereas risk of
hospital readmission is indicated in red. The performance of the models is expressed according to the average area under the receiver operating
characteristic curves (AUROC), sensitivity, and specificity.
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Table 3. The 15 most meaningful predictors for mortality and readmission.

Variable importance, %Variable

Predictors for mortality

16.67Age

12.31Composite Queralt Index

7.68Length of stay

6.43Braden Index

6.08Red cell distribution width

4.13Hemoglobin concentration

3.42Number of prescriptions

3.31Lymphocytes count

3.29Sodium concentration

3.06Adjusted Morbidity Group score

2.97BMI

2.95Potassium concentration

2.75Total health care expenditure

2.40Glucose concentration

2.25Pfeiffer Index

Predictors for readmission

14.77Composite Queralt Index

10.81Lymphocytes count

8.96Total health care expenditure

8.42Age

5.35Adjusted Morbidity Group score

5.33Creatinine concentration

4.30BMI

4.05Number of primary care visits

3.92Hemoglobin concentration

3.50Glucose concentration

3.24Leukocyte count

3.04Number of specialized care visits

2.70Red cell distribution width

2.53Length of stay

2.11Barber Index

Patient’s Clustering and Postdischarge Trajectories
We identified 4 relevant clusters of patients whose hallmark
characteristics are depicted in Figure 2. The information
displayed in the clustering infographics (Figure 2) was
normalized and aggregated into scores of 0 to 1 for each of the
7 main dimensions considered in the clustering analysis. The
figure also displays mortality rates, hospital admissions, and

unplanned ER visits for each cluster during the study period.
Each cluster was named according to the most relevant
characteristic of the subset of patients: cluster 1 (reference),
cluster 2 (unhealthy lifestyle habits), cluster 3 (social frailty),
and cluster 4 (medical complexity). An extensive comparison
among the 4 clinical groups is displayed in Table S2 in
Multimedia Appendix 1.
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Figure 2. Radar plots of the main characteristics of the 4 clusters. All the features are normalized and grouped into 7 categories: (1) age; (2) medical
complexity; (3) functional capacity; (4) social frailty; (5) unhealthy lifestyle habits; (6) use of health care resources; and (7) acute episode complexity.
The mortality rates, hospital admissions, and unplanned emergency room visits are displayed in red. ER: emergency room.

Figure 3 displays the postdischarge trajectories of patients up
to 90 days. Figure 3A depicts rates of patient encounters with
health care professionals in each cluster at different levels,
namely: (1) primary care (physicians/nurses visits, home-based
programs, and social workers visits); (2) intermediate care
centers; and (3) specialized care (outpatient clinics and day
hospitals visits). Figure 3B displays the postdischarge
trajectories for each cluster of patients considering 3 consecutive
phases: (1) the first week after discharge (panel i); (2) the 3
subsequent weeks (panel ii); and (3) the last 2 months of the
study period (panel iii). For each panel, the ordinate (y-axis)
indicates the relative frequencies of each cluster for the variables
shown in the abscissa (x-axis), namely: (1) use of health care
resources (primary care visits, intermediate care admissions,
and specialized care visits), and (2) main outcomes (ER visits,
postdischarge hospitalizations, and mortality). Patients’
characteristics of each cluster and the associated postdischarge
trajectories are briefly described below. A vast assessment of
the health care resources used by the 4 clinical groups up to 90
days after hospital discharge is displayed as follows: (1) rates

of patient encounters with health care professionals by cluster
(Table S3 in Multimedia Appendix 1); and (2) the total number
of contacts with health care professionals by cluster (Table S4
in Multimedia Appendix 1).

The so-called reference patients (cluster 1; 281/761, 36.9%)
showed a mean age of 71.0 (SD 15.6) years, with 151/281
(53.7%) being male. The mean AMG scoring was 19.4 (SD
11.0), which corresponds to an elevated morbidity burden, close
to the P95 of the population-based risk stratification pyramid.
Of these, 63/281 (22.4%) patients were included in home care
programs targeting complex chronic patients. The average health
care expenditure during the previous 12 months of the acute
episode was €5491 (US $5952).

Cluster 1 showed the lowest rates of mortality (10/281, 3.6%),
readmissions (44/281, 15.7%), and ER visits (91/281, 32.4%)
during the 90 days after discharge with no substantial differences
among the 3 periods depicted in Figure 3B: (1) the first week,
(2) the subsequent 3 weeks, and (3) the last 2 months.
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Figure 3. Patients’ trajectories by cluster during the 90-day postdischarge follow-up. (A) Itemized health care contact rates in each cluster. (B) Itemized
relative frequencies of the total health care contacts (white) and health outcomes (red) in each cluster assessed in 3 time intervals: (i) days 1-7; (ii) days
8-30; and (iii) days 31-90. PC: primary care.

Patients with an unhealthy lifestyle habit profile (cluster 2;
179/179, 23.5%) had a similar age to cluster 1, with a mean of
69.9 (SD 13.4) years; interestingly, 137/179 (76.5%) patients
in this cluster were male. The most relevant features in terms
of lifestyle were sedentarism, tobacco smoking, and alcohol
abuse (Table S2 in Multimedia Appendix 1). The mean AMG
scoring was 23.7 (SD 11.7), close to P97 of the risk stratification
pyramid. The number of patients included in home-based care
programs due to complex chronic conditions was 41/179
(22.9%), a figure close to that seen in cluster 1. The average
baseline health care expenditure was €6037 (US $6544).

Patients in cluster 2 patients presented a slightly higher mortality
rate (10/179, 5.6%), but remarkably higher rates of readmissions
(49/179, 27.4%) and ER consultations (80/179, 44.7%) than the
reference subset. It is of note, however, that their age, level of
functional and social frailty, as well as medical complexity did

not show differences with cluster 1. Most importantly, this
subset of patients showed a high rate of early mortality during
the first week (Figure 3B), corresponding to the 4/10 (40%)
deceased patients in this cluster (Table S3 in Multimedia
Appendix 1). In addition, the rate of readmissions during the
follow-up period was slightly higher than that observed in cluster
3 (39/152, 25.7%).

Patients in the social frailty profile (cluster 3; 152/761, 20%)
were older than those in the previous clusters, mean age 81.10
(SD 12.67) years, and only 63/152 (41.4%) were male. Their
mean AMG score was high, 30.0 (SD 12.7), corresponding to
P98. A high percentage of the group (78/152, 51.3%) was
included in home-based care programs, and their average
baseline health care expenditure was €6232 (US $6755). They
presented high levels of medical complexity and functional
frailty, but the most characteristic feature was the presence of
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social frailty. Predominant traits of the group were elderly
females with medical complexity and high social vulnerability.

The social frailty group showed the highest rate of mortality
(23/152, 15.1%), but similar rates of readmissions (39/152,
25.7%) and ER consultations (68/152, 44.7%) than cluster 2.
As displayed in Figure 3B, the mortality rate in the group was
higher during the first month after discharge as compared with
the last 2-month study period.

Finally, the medical complexity profile (cluster 4; 149/761,
19.6%) integrates a higher proportion of elderly patients, mean
age of 82.8 (SD 8.7) years, like in cluster 3, but the patients
were predominantly male, 83/149 (55.7%). Their mean AMG
was higher than that in the other clusters, mean 39.0 (SD 15.6).
This group showed the highest percentage of patients undergoing
home-based care programs, 96/149 (64.4%). These patients
presented marked functional impairment, as well as medical
complexity, with poor outcomes in terms of mortality (19/149,
12.8%), readmissions (56/149, 37.6%), and unplanned ER visits
(87/149, 58.4%). Both mortality and readmission rates increased
after the first week (Figure 3B) and remained constant
throughout the study. The group showed the highest health care
expenditure during the previous year: €8510 (US $9224).

As depicted in Figure 3A, the 4 clusters presented high rates of
primary care visits with minor differences among them. Clusters
3 and 4 clearly showed the highest use of community-based
resources (ie, home-based care programs and visits to social
workers and intermediate care), whereas clusters 1 and 2
presented a higher use of specialized care resources, outpatient
visits, and day hospital visits than the two other clusters.

Discussion

Principal Findings
This study had a 2-fold aim: (1) to assess the risk of mortality
and readmission during 90 days after discharge from a tertiary
hospital, and (2) to characterize patients’ profiles and their
postdischarge trajectories during the study period. The primary
purpose of the research was to enhance transitional care after
discharge, considering both patients’ risk level and the
specificities of their profiles by assessing different dimensions.
A careful analysis discarded any impact on the study results
associated with patients’ entry point, hospital avoidance
program, or conventional hospitalization [17]. Notably, 77.4%
(589/761) of the overall study group fell into the top 5% of the
regional population-based risk stratification pyramid built-up
using the AMG scoring distribution.

Predictive Modeling
According to the state-of-the-art results [9-12], the proposed
machine learning strategy used for computational modeling was
adequate to achieve acceptable performance of the predictive
models assessing mortality and readmission risks during the
study period. The study offers a promising scenario for the
future use of computational modeling to feed clinical decision
support systems. In addition, the results of this research may
guide health professionals in refining personalized transitional
care strategies with an integrated care approach, fostering

vertical integration between specialized and community-based
care, and health and social care.

The results indicate that the most relevant predictors fell into
the following 5 categories: (1) age, (2) severity of the acute
episode, (3) multimorbidity and complexity, (4) functional, and
(5) social frailty. Such a pattern of predictors is fully aligned
with a previous report [11] on the predictive modeling of
patients undergoing the Hospital at Home (HaH) program at
HCB between 2011 and 2015. The statistical analysis in this
study suggested synergies between the complexity of the
baseline patient’s condition (ie, AMG score) and the severity
of the acute episode (ie, composite Queralt Index) leading to
increased risk of postdischarge deleterious events. Accordingly,
the 2 indices, AMG and Queralt Index, should be included as
covariates in the predictions. Moreover, the MDA analysis of
the predictive models indicated that different individual variables
might play a significant predictive role in the modeling despite
having possible weak collinearities.

Cluster Analysis
The purpose of the cluster analysis was to contribute to defining
transitional care pathways fitting the requirements of the
identified subsets of patients. In this regard, it seems reasonable
to assume that cluster 1, the reference profile, includes
candidates for standard patient-centered transitional care.
Moreover, this study allowed identifying 2 different care
scenarios that are described below.

Patients included in cluster 2, unhealthy lifestyle habits, appear
as candidates for preventive strategies that promote healthy
lifestyles, including target-oriented cognitive behavioral
therapies. Such interventions should be initiated or intensified
during the acute episode and continued at the community level
with an appropriate follow-up. It is of note that patients within
this cluster were predominantly men, with no significant
differences in terms of age and medical/social baseline
conditions, or severity of the acute episode, as compared with
the reference profile. The major distinctive traits were actionable
factors, predominantly tobacco smoking and sedentarism but
sometimes also alcohol addiction. It should be highlighted that
these patients show potentially avoidable high mortality rates
during the first week after discharge and potentially avoidable
high rates of ER consultations and readmissions across the entire
study period.

Clusters 3 (social frailty) and 4 (medical complexity) define a
different scenario with common requirements and
cluster-specific needs. The 2 subsets include elderly patients,
on average 11 years older than clusters 1 and 2, with higher
AMG scoring (≥P98). Typical recommendations for these 2
clusters are to focus on care-oriented interventions rather than
cure and optimizing home-based services to prevent unplanned
ER visits and readmissions. To our understanding, clusters 3
and 4 define an ideal scenario for productive interactions among
HaH resources, intermediate care, home-based primary care
programs, and social support resources. While patients in cluster
3 deserve specific actions to solve social requirements,
interventions in cluster 4 should combine addressing complex
medical needs, attention to the social context, and providing
care based on people’s multidimensional needs.
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Strengths and Limitations
This study shows strengths that provide some uniqueness to the
analysis. The articulation of the different data sets described in
the “Methods” section represented a significant logistic effort
to generate multilevel predictive modeling encompassing
different key dimensions that ensured a comprehensive patient
characterization. Moreover, the study design used all patients’
information across the health system during 3 successive
periods, namely, (1) the entire year before the admission; (2)
the acute episode triggering hospitalization; and (3) the 90 days
after discharge, which provided the basis for the 2-step protocol
using robust statistical tools that were used in this study. Overall,
the predictive modeling approach adopted in this study has an
exploratory nature while reinforcing conclusions regarding the
main determinants of patient outcomes after hospitalization
from our prior studies [11].

However, we also acknowledge 2 main study limitations. First,
by design, the research was performed on a relatively narrow
segment of patients close to the tip of the population-based risk
stratification pyramid. Second, the size of the entire study group
and the 4 clusters contained a limited number of patients, which
may weaken some of the conclusions.

While accepting that the research represents a valuable
contribution toward risk stratification of transitional care, we
acknowledge that additional studies will be needed to validate
the predictive modeling in larger independent populations.
Future implementation research should be planned to transform
computational modeling into decision support tools to be
sustainably adopted, and dynamically updated, into clinical
workstations for routine use across health care tiers.

Value-Generating Strategies for the Management of
Multimorbidity

Overview
Despite the aforementioned limitations, our report provides
highly valuable information and messages that support
well-defined strategies leading to enhanced management of
multimorbidity in an integrated care scenario showing a clear
potential for value generation. We have identified, however,
some challenges, at least at 3 different layers.

Enhanced Transitional Care After Hospital Discharge
As mentioned earlier, this study has an exploratory nature. The
results obtained should require further testing and validation
using a large independent study group. Such a study is currently
ongoing using a large data set from Catalonia (ES) that includes
more than 100,000 patients discharged from different providers
following a similar study design. The primary aim of the
initiative [42] is to assess the impact and site transferability of

HaH. Still, it will also allow validation of the lessons learnt in
this study, and it should be the basis for future initiatives that
aim to test the recommendations for the different clusters of
patients identified in this report.

Generating Decision Support Tools for Clinicians
This study aimed to generate decision support tools for clinicians
that foster vertical and horizontal integration with a collaborative
adaptive case management approach [43]. However, the transfer
of the potential of predictive computational modeling
approaches, such as the one reported in this research, into
decision support tools integrated into clinicians’ workstations
constitutes a major challenge involving several levels of
complexity, namely, (1) use of appropriate predictors ensuring
their availability; (2) testing and continuously assessing clinical
decision support systems; and (3) design of user-friendly and
properly profiled user interfaces. However, we note that recent
digitalization initiatives suited for integrated care scenarios [44]
may provide relevant novel contributions to the field.

The Generalization of the Approach to Other Use Cases
The current strategy for enhanced transitional care after
discharge can be reasonably transferred to the prevention of
acute episodes of exacerbation leading to unplanned
hospitalizations in high-risk chronic patients. Previous reports
have shown the efficacy of preventive interventions [45], as
well as proven the need for proper stratification and workforce
preparation to generate effectiveness in real-life settings [8].
Our results clearly cover some of the identified needs. However,
the most promising scenario is the use of multilevel
computational modeling [11,18] for early prediction of target
clusters of comorbid conditions (ie, cardiovascular, chronic
obstructive pulmonary disease, type 2 diabetes) in susceptible
patients. This approach should contribute to the deployment
and sustainable adoption of preventive strategies for the
management of chronic patients aiming at delaying, or even
stopping, their progress toward the tip of the risk stratification
pyramid [46,47].

Conclusions
This study combines multilevel predictive modeling and cluster
analysis in a population of comprehensively characterized
complex chronic patients discharged from a university hospital.
The results indicated the potential to predict mortality and
morbidity-related adverse events leading to unplanned hospital
readmissions. The resulting patient profiles fostered
recommendations for personalized service selection with the
capacity for value generation. The lessons learnt show a
promising scenario for generating clinical decision support tools
for clinicians, enabling value generation within an integrated
care scenario involving vertical and horizontal integration.
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