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Introduction

Data on potential risk factors in pregnancy are limited.
Meanwhile, in the United States, 17% of pregnancies end in
fetal loss [1], and birth defects and preterm births are the leading
causes of infant mortality [2]. In previous work [3], we
developed an automated natural language processing pipeline
that identifies users who announced their pregnancy on Twitter
and collects all of their tweets on an ongoing basis. We have
also demonstrated that their tweets can be used for observational
studies [4-6]. However, selecting users for such studies involves
additional processing to address a limitation of our
pipeline—namely, that many of the users refer to a pregnancy
either that occurred prior to the availability of their tweets or
for which we could not determine the prenatal period. To
streamline the use of Twitter as a source of data, the objective
of this study was to advance a downstream system developed
in our previous work [7] and evaluate its upstream use for
identifying tweets that indicate the availability of Twitter data
during pregnancy and can be used to extract dates marking the
beginning and end of the 40-week prenatal period.

Methods

Ethical Considerations
The data used in this study were collected in accordance with
the Twitter Terms of Service. The institutional review board of

the University of Pennsylvania reviewed this study and deemed
it exempt human subjects research under 45 CFR §46.101(b)(4)
for publicly available data sources.

Natural Language Processing System
Our system, Pregex [8], uses more than 100 handwritten regular
expressions to search for tweets in which users indicate their
gestational age or due date, including as units of time, days of
the week, numeric and spelled-out dates, and linguistic markers.
We took an iterative approach [9] to develop the regular
expressions, allowing us to actively reduce noise and account
for ways that this information may be presented on Twitter,
including in hashtags and with lexical variants [10]. Table 1
presents sample matching tweets.

Pregex uses the dateutil Python package to apply an arithmetic
operation to the tweets’ timestamp, based on the regular
expression that the tweets match. For tweet 1, after replacing 5
1/2 mos with 5 months and 2 weeks in preprocessing, Pregex
assigns the first digit group (5) to the months parameter of the
relativedelta function and the second digit group (2) to the weeks
parameter, subtracts this relativedelta from the timestamp to
calculate the start date of the 40-week prenatal period, and then
adds 40 weeks to the start date to calculate the due date. For
tweet 2, Pregex assigns Saturday to the weekday parameter to
calculate the due date and then subtracts 40 weeks from the due
date to calculate the start date.
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Table 1. Sample tweets detected by Pregex (matching pattern in italics).

Pregnancy endPregnancy startTimestampTweet

March 16, 2021June 9, 2020November 11, 2020I am 5 1/2 mos pregnant & severely anemic. I had hypermesis in my
first trimester.

January 25, 2020April 20, 2019January 23, 2020My due date is Saturday and I hope my baby boy is ready to come on
out lol

February 8, 2021May 4, 2020July 23, 2020Is October too early to have a baby shower when I’m due Feb 8th? I
want a Halloween themed baby shower

August 29, 2020November 23, 2019April 18, 2020I can’t wait until my pregnancy pillow comes, having the worst nights
sleep #21weekspregnant

November 6, 2021January 30, 2021June 19, 2021i can’t believe i’m already half way through my pregnancy, this heat
is really starting to get to me now

Results

We deployed Pregex on the Twitter timelines of more than
550,000 users—mostly users identified by our original pipeline
[3]—and detected approximately 235,000 tweets that were
posted by more than 100,000 users. For validation, 3 annotators
labeled a random sample of 4017 matching tweets—1 tweet per
user and up to 100 tweets per regular expression—to identify
whether they self-report an ongoing pregnancy, and the correct
beginning and end dates were extracted (Multimedia Appendix
1). Among these 4017 tweets, 3716 (90%) were dual annotated
and 400 (10%) were annotated by all 3 annotators. For 381
(95%) of these 400 tweets, the 3 annotators agreed on whether
the tweet self-reports an ongoing pregnancy, agreeing that 378
(99%) of these 381 tweets do. For 376 (99%) of these 378
tweets, the 3 annotators agreed on whether the correct beginning
and end dates were extracted. After resolving disagreements
among all 4017 tweets, we established that Pregex had a
precision of 0.96 for identifying ongoing pregnancies, where

precision = true positives / (true positives + false positives).
Among the 3875 true positives, Pregex had a precision of 0.99
for extracting dates marking the beginning and end of the
40-week prenatal period.

Discussion

Because pregnancy is a common event, our rule-based approach
can identify tweets during pregnancy with high precision and
on a large scale, facilitating the use of Twitter as a
complementary source of data for observational studies. In real
time, Pregex is detecting approximately 50 new users daily,
taking as input approximately 15,000 tweets returned from the
Twitter streaming application programming interface that
matches pregnancy-related keywords derived from the regular
expressions (Multimedia Appendix 2). Among the 142
false-positive tweets in our evaluation that did not self-report
an ongoing pregnancy, 42 (29%) mention a due date that refers
to a deadline (eg, payments), which we will address in future
work.
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