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Abstract

Background: Osteoporosis is one of the diseases that requires early screening and detection for its management. Common
clinical tools and machine-learning (ML) models for screening osteoporosis have been developed, but they show limitations such
as low accuracy. Moreover, these methods are confined to limited risk factors and lack individualized explanation.

Objective: The aim of this study was to develop an interpretable deep-learning (DL) model for osteoporosis risk screening with
clinical features. Clinical interpretation with individual explanations of feature contributions is provided using an explainable
artificial intelligence (XAI) technique.

Methods: We used two separate data sets: the National Health and Nutrition Examination Survey data sets from the United
States (NHANES) and South Korea (KNHANES) with 8274 and 8680 respondents, respectively. The study population was
classified according to the T-score of bone mineral density at the femoral neck or total femur. A DL model for osteoporosis
diagnosis was trained on the data sets and significant risk factors were investigated with local interpretable model-agnostic
explanations (LIME). The performance of the DL model was compared with that of ML models and conventional clinical tools.
Additionally, contribution ranking of risk factors and individualized explanation of feature contribution were examined.

Results: Our DL model showed area under the curve (AUC) values of 0.851 (95% CI 0.844-0.858) and 0.922 (95% CI
0.916-0.928) for the femoral neck and total femur bone mineral density, respectively, using the NHANES data set. The
corresponding AUC values for the KNHANES data set were 0.827 (95% CI 0.821-0.833) and 0.912 (95% CI 0.898-0.927),
respectively. Through the LIME method, significant features were induced, and each feature’s integrated contribution and
interpretation for individual risk were determined.

Conclusions: The developed DL model significantly outperforms conventional ML models and clinical tools. Our XAI model
produces high-ranked features along with the integrated contributions of each feature, which facilitates the interpretation of
individual risk. In summary, our interpretable model for osteoporosis risk screening outperformed state-of-the-art methods.
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Introduction

Osteoporosis is a skeletal disorder characterized by the loss of
bone mass, microarchitectural deterioration of the bone tissue,
and decline in bone quality, which lead to increased bone
fragility and risk of fractures [1]. The prevalence of osteoporosis
among adults aged 50 years and over is 12.6% in the United
States and is higher among women (19.6%) than men (4.4%)
[2]. The number of adults aged 50 years and older with
osteoporosis has increased from 10.2 million in 2010 to 12.3
million in 2020 and is expected to reach 13.6 million in 2030
[3], indicating a gradual increase in the societal burden of this
disease. International osteoporosis foundations report that
approximately one-third of women and one-fifth of men aged
50 years or more experience osteoporotic fractures [4,5].
Osteoporotic fractures, particularly hip fractures, are associated
with limited ambulation, chronic pain and disability, loss of
independence, and decreased quality of life. Additionally,
approximately 20% to 30% of patients with osteoporosis die
within 1 year of experiencing osteoporotic fractures. Because
osteoporosis is typically asymptomatic until a fracture occurs,
early screening and detection are crucial strategies for
osteoporosis management.

Dual-energy X-ray absorptiometry (DXA), particularly central
DXA of the hip and lumbar spine, is currently the gold standard
for measuring bone mineral density (BMD) to define
osteoporosis. However, central DXA is not widely used due to
its low availability and high cost [6]. Furthermore, self-demand
based on the absence of symptoms until osteoporotic fracture
has contributed to its limited utilization [6]. The annual DXA
testing rate for elderly women covered by Medicare in the
United States was approximately 14% from 2006 to 2010 [7]
and overall screening rates were only 21.2% and 26.5% in
women aged 50-64 and 65-79 years, respectively [8].

As another approach to screening, clinical assessment tools such
as the Fracture Risk Assessment Tool (FRAX), Simple
Calculated Osteoporosis Risk Estimation (SCORE),
Osteoporosis Risk Assessment Instrument (ORAI), Osteoporosis
Index of Risk (OSIRIS), and Osteoporosis Self-assessment Tool
(OST) have been developed to identify patients at increased
risk of osteoporosis. The pooled area under the curve (AUC)
for these tools ranges from 0.65 to 0.70. FRAX, which is an
extensively studied tool for predicting fracture risk, exhibits
similar performance with an AUC ranging from 0.58 to 0.82
[9]. Despite their usefulness and convenience, these tools are
applied on a limited basis due to their limited accuracy [10].

With an exponential increase in computing power in the big
data era, machine-learning (ML) approaches have been rapidly
adopted in the medical field, including in the diagnosis of bone
diseases. Compared to the existing clinical tools, an artificial
intelligence–based method has the advantage of analyzing
diverse features in intertwined relationships with osteoporosis,
resulting in higher accuracy. Several studies have shed light on
ML approaches to osteoporosis diagnosis and detection, fracture

prediction [11-13], and especially for medical imaging. Various
studies have used ML methods for risk assessment based on
medical databases. However, these early attempts revealed
several limitations, including overfitting, lack of
representativeness of a population, inappropriate validation
using k-fold cross-validation, lack of confidence intervals around
point estimates, and arbitrary variable selections [11,14-17].
Furthermore, insufficient accuracy, which is sometimes lower
than that of conventional clinical assessment tools, hinders the
widespread application of ML for osteoporosis risk prediction.

Therefore, we developed a deep learning (DL) model to screen
osteoporosis risk and utilized explainable artificial intelligence
(XAI) techniques to provide a clinical interpretation of the
results from our model. To demonstrate the performance of our
approach, we compared the results of our DL model to those of
ML models and conventional clinical tools. We also demonstrate
that our model provides individual explanations for feature
contributions. To the best of our knowledge, this is the first
study to use a DL approach for risk screening based on large
population databases. Our model investigates the complex
nonlinear relationships of variables that are not identifiable by
conventional statistics using arbitrary feature engineering.
Additionally, a comprehensive approach for individualized risk
assessment and treatment decisions is proposed by considering
various combinations of risk variables and complex aspects of
diseases.

Methods

Study Design and Participants
This study utilized two cross-sectional data sets, namely the
National Health and Nutrition Examination Survey data sets of
the United States (NHANES) and South Korea (KNHANES).
NHANES is a cross-sectional study conducted by the National
Center for Health Statistics to assess the overall health and
nutritional status of the population in the United States [18].

Four cycles of NHANES from 2005 to 2006, 2007 to 2008,
2009 to 2010, and 2013 to 2014 were used, and we incorporated
only respondents over the age of 50 years or those who had
gone through menopause. Two cycles of NHANES (from 2011
to 2012 and from 2015 to 2016) were excluded because femoral
neck BMD and total femur BMD data were not available for
those two cycles. In NHANES, the total femur BMD and
femoral neck BMD were measured using DXA, which was
performed using a Hologic QDR-4500A fan-beam densitometer
(Hologic, Inc; Bedford, MA, USA).

KNHANES is a cross-sectional survey of South Korean health
and nutrition statuses with a representative population set
derived through sampling that has been conducted by the Korean
Centers for Disease Control and Prevention (KCDC) since 1998
[19]. KNHANES data from 2008 to 2011 were utilized in this
study. The data sets from 2008 to 2009 consisted of 9200
households and the data sets from 2010 to 2011 consisted of
7680 households. In KNHANES, femoral neck BMD and total

J Med Internet Res 2023 | vol. 25 | e40179 | p. 2https://www.jmir.org/2023/1/e40179
(page number not for citation purposes)

Suh et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


femur BMD were investigated in respondents aged over 50
years or among those who had gone through menopause, which
were measured using DXA performed with a Hologic
DISCOVERY QDR-4500W device (Hologic, Inc).

Ethics Approval
The methods were performed in accordance with relevant
guidelines and regulations and approved by the Research Ethics
Review Board of the National Center for Health Statistics
(Protocol #2005-06, Protocol #2011-17). NHANES has obtained
written informed consent from all respondents. KNHANES was
approved by the KCDC Institutional Review Board
(2008-04EXP-01-C, 2009-01CON-03-2C, 2010-02CON-21-C,
2011-02CON-06-C) and written consent was obtained from all
participants.

Assessment of Osteoporosis
For both NHANES and KNHANES, two different criteria based
on the femoral neck BMD and total femur BMD were used to
classify respondents into osteoporosis, osteopenia, and normal
groups. Respondents with a T-score of femoral neck BMD or
total femur BMD under −2.5 were defined as having
osteoporosis. Those with T-scores between −1.0 and −2.5 were
classified into the osteopenia group. The group with T-scores
above −1.0 was defined as normal. For KNHANES, the T-scores
were calculated using a reference group of Japanese individuals
aged over 20 years [20] separately for the femoral neck and
total femur. In the case of NHANES, we calculated the T-scores
of respondents using a reference group consisting of
non-Hispanic white women aged 20 to 29 years from NHANES
III according to World Health Organization recommendations
[21]. Using the calculated T-scores, we classified respondents
into three groups: osteoporosis, osteopenia, and normal.

Data Preprocessing
We only included respondents who had femoral neck and total
femoral BMD records. Additionally, multiple variables with
relevant information were merged into single variables or all
but one variable were deleted. For example, nine variables
indicating signs and symptoms of depression used in the Patient
Health Questionnaire-9 (PHQ-9) [22] in NHANES were
combined into one variable according to the PHQ-9 criteria.
Multiple variables related to smoking, drinking, and blood
pressure were eliminated, and we included only representative
variables, as discussed previously [23,24]. Additionally, several
variables with the same measurements but different units were
removed, leaving only one variable. For KNHANES, several
variables related to smoking, income, education level, drinking,
and diabetes were merged or eliminated, following the data
preprocessing methods described previously [25].

After merging variables, we excluded variables with nonnumeric
values and considered responses of “refused” or “do not know”
as missing values. Respondents who had missing values for
more than 10% of all variables or variables that had missing
values for more than 10% of all respondents were excluded.
Missing values were filled in using k-nearest neighbors (KNN)
imputation. At the end of preprocessing, a total of four types of
data sets were created: two from NHANES and two from
KNHANES, each using femoral neck BMD or total femur BMD
when categorizing respondents into osteoporosis, osteopenia,
or normal groups. The two data sets from NHANES comprised
8274 respondents with 89 variables and those from KNHANES
comprised 8680 respondents with 162 variables. A flow diagram
of the overall data processing is presented in Figure 1.

Figure 1. Flow diagram of overall data preprocessing. BMD: bone mineral density: KNHANES: Korean Health and Nutrition Examination Survey;
NHANES: National Health and Nutrition Examination Survey (United States).

Model Training Details
We implemented a DL algorithm and compared the results to
those of ML algorithms. The DL model we used consisted of
three layers: two dense layers with rectified linear unit activation
functions and a final layer with a softmax activation function.
Batch normalization and dropout layers were included after the
two dense layers. Through five-fold cross-validation, the
hyperparameters of the DL models were optimized based on

five subsets of the created data sets. The optimized models for
NHANES had two dense layers (each with 128 and 16 nodes
for the femoral neck, and 128 and 64 nodes for the total femur)
with a dropout rate of 0.2 using the Adam optimizer with a
0.005 learning rate. The models for KNHANES had two dense
layers (each with 128 and 16 nodes for the femoral neck, and
128 and 32 nodes for the total femur) and used dropout rates of
0.2 (for femoral neck) and 0.4 (for total femur) with the Adam
optimizer and a 0.005 learning rate. The models were trained
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and optimized in Keras using a TensorFlow backend (Google
Inc) [26]. For the ML methods, seven models were considered
for comparison: a nonlinear support vector machine, decision
trees, extra trees, light gradient boosting machine (LGBM)
classifier, logistic regression, KNN, and multilayer perceptron
(MLP). We set the hyperparameters of the ML models to the
default values within the scikit-learn package [27].

Feature Contribution Ranking Analysis
After training the DL and ML models, we applied an algorithm
to explain the DL model’s behavior and rank the features in
order of importance. For the DL models, local interpretable
model-agnostic explanations (LIME) [28] was adopted as an
XAI technique. LIME is an algorithm that explains classifier
predictions by perturbing inputs and performing searches using
local interpretability. The output of LIME represents the relative
importance of the variables for classification. Therefore, we
analyzed the results in two manners. First, we added the
resulting values from LIME for each variable and ranked
contributions according to their values. This rank represents the
order of the variables based on their impact on the DL model’s
classification of osteoporosis. Second, we observed the positive
or negative effects of each feature on the probability of
osteoporosis with respect to the numerical or categorical values
of the features.

For a similar reason, the Boruta [29] and least absolute shrinkage
and selection operator (LASSO) [30] methods were applied to
the ML model with the best performance to calculate the
importance values of features. We utilized the measured relative
feature importance from Boruta and coefficients from the output
of LASSO to rank the contributions of features. Boruta was
used with the 80th percentile of shadow feature importance and

LASSO was used with an α value of 0.001, which is the weight
given to the sum of the squares of coefficients.

Clinical Osteoporosis Assessment Tools
Widely known clinical assessment tools for diagnosing
osteoporosis, such as OST, ORAI, and OSIRIS, were used for
comparisons to evaluate the performance of the DL models. We
compared the performance of our DL model with that of the
clinical osteoporosis assessment tools on both the NHANES
and KNHANES data sets. When classifying osteoporosis, OST
was used for both men and women, whereas ORAI and OSIRIS
were applied only to the female data set.

Statistical Analysis
Comparisons of the continuous variables from the NHANES
and KNHANES data sets were performed using the Student
t-test and are presented as mean (SD) values. Categorical

variables were compared using the χ2 test and are presented as
counts and percentages. A P value less than or equal to .001
was considered statistically significant. CIs were computed
using the Student t-distribution.

Results

Baseline Characteristics
The baseline characteristics of the respondents from the
preprocessed data sets are presented in Table 1. Among the
8274 respondents in NHANES, the average age was
approximately 65 years and 52% were men. The KNHANES
respondents exhibited a similar distribution with a male ratio
of 45% and average age of approximately 64 years. For both
NHANES and KNHANES, more respondents were classified
into the osteoporosis or osteopenia groups when femoral neck
BMD was used instead of total femur BMD.
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Table 1. General characteristics of respondents.

P valuecKNHANESb (N=8680)NHANESa (N=8274)Variable

<.001Sex, n (%)

3899 (44.92)4283 (51.76)Male

4781 (55.08)3991 (48.24)Female

<.00163.83 (8.99)64.89 (9.67)Age (years), mean (SD)

<.001Economic status, mean (SD)

N/Ae2.71 (1.54)Family PIRd

141.07 (134.24)N/AHousehold income

<.001Drinking, n (%)

N/A5705 (68.95)At least 12 drinks/year

682 (7.86)N/AHigh-risk drinker

<.0013475 (40.03)4316 (52.16)Smoked at least 100 cigarettes in lifetime, n (%)

<.0016465 (74.48)7269 (87.85)No physical ability limitation, n (%)

<.00123.94 (3.13)28.46 (5.47)BMI (kg/m2), mean (SD)

.051528 (17.61)1457 (17.61)Diabetes, n (%)

<.0014529 (52.18)4344 (52.50)Hypertension, n (%)

<.001437 (5.03)532 (6.43)Depression, n (%)

<.001Bone mineral density (g/cm2), mean (SD)

0.67 (0.13)0.77 (0.14)Femoral neck

0.84 (0.15)0.93 (0.17)Total femur

<.0011252 (14.42)1031 (12.456)Osteoporosis family history, n (%)

<.001Osteoporosis–femoral neck, n (%)

4204 (48.43)4564 (55.16)Normal

3255 (37.50)3233 (39.07)Osteopenia

1221 (14.07)477 (5.77)Osteoporosis

<.001Osteoporosis–total femur, n (%)

6095 (70.22)6031 (72.89)Normal

2313 (26.65)1965 (23.75)Osteopenia

272 (3.13)278 (3.36)Osteoporosis

aNHANES: US National Health and Nutrition Examination Survey.
bKNHANES: Korean National Health and Nutrition Examination Survey.
cP values for continuous variables are calculated with one-way analysis of variance and those for categorical variables are calculated from the χ2 test.
dPIR: poverty income ratio.
eN/A: not applicable.

Performance Comparisons
The receiver operating characteristic curves and corresponding
AUC values of the optimized DL and ML models are presented
in Figure 2 and Figure 3, respectively. The results were averaged
across five-fold cross-validation. The DL model using NHANES
exhibited a lower microaveraged AUC for the femoral neck
BMD data set than for the total femur BMD data set (Table 2).
Regarding individual classes, the classification of osteoporosis
exhibited a higher AUC compared to the osteopenia and normal
classes in the NHANES data set (Table 2). Similarly, for

KNHANES, we achieved a higher AUC for the total femur data
set than for the femoral neck BMD data set (Table 2).
Additionally, the AUC for classifying osteoporosis was the
highest in the KNHANES data set. Some of the ML models
exhibited slightly lower performance than the DL models
(Figure 3). Logistic regression exhibited the highest AUC values
for all four data sets. The LGBM classifier and MLP exhibited
the second-highest AUC values for the NHANES femoral neck
BMD (Figure 3, Table 2). However, two ML models, namely
decision trees and KNN, exhibited significantly lower
performance than the other ML or DL models. Comparisons
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with conventional clinical risk assessment tools such as OST,
ORAI, and OSIRIS were also performed (Figure 4). OSIRIS
exhibited the highest AUC among the three clinical tools

(0.771). The AUC of OST was 0.759 and that of ORAI was
0.704 for NHANES, indicating that the developed DL models
outperformed the conventional osteoporosis assessment tools.

Figure 2. Performance of deep-learning (DL) models on the NHANES and KNHANES data sets. Receiver operating characteristic (ROC) curves of
the DL models applied to NHANES and KNHANES femoral neck and total femur bone mineral density (BMD). The area under the curve values of
individual classes are noted in the graphs. KNANES: Korean National Health and Nutrition Examination Survey; NHANES: US National Health and
Nutrition Examination Survey.
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Figure 3. Performance of machine-learning (ML) models on the NHANES and KNHANES data sets. Receiver operating characteristic (ROC) curves
of the seven ML models applied to NHANES and KNHANES femoral neck and total femur bone mineral density (BMD). The area under the curve
(AUC) values of individual classes are noted in the graphs. KNANES: Korean National Health and Nutrition Examination Survey; KNN: k-nearest
neighbor; LGBM: light gradient boosting machine; MLP: multilayer perceptron; NHANES: US National Health and Nutrition Examination Survey;
SVM: support vector machine.

Table 2. Performance of deep-learning and machine-learning models.

AUCa (95% CI)Algorithm

KNHANEScNHANESb

Total femurFemoral neckTotal femurFemoral neck

0.912 (0.898-0.927)0.827 (0.821-0.833)0.922 (0.916-0.928)0.851 (0.844-0.858)Deep learning (microaverage)

0.898 (0.884-0.911)0.874 (0.858-0.890)0.915 (0.898-0.931)0.866 (0.842-0.890)Deep learning (osteoporosis)

0.782 (0.751-0.812)0.688 (0.679-0.698)0.784 (0.763-0.805)0.719 (0.707-0.730)Deep learning (osteopenia)

0.822 (0.795-0.849)0.823 (0.815-0.832)0.827 (0.809-0.846)0.783 (0.776-0.789)Deep learning (normal)

0.895 (0.888-0.902)0.785 (0.775-0.795)0.848 (0.791-0.906)0.800 (0.761-0.838)Nonlinear SVMd

0.885 (0.882-0.887)0.769 (0.761-0.777)0.893 (0.883-0.903)0.807 (0.802-0.812)Extra trees

0.905 (0.899-0.910)0.794 (0.781-0.807)0.900 (0.868-0.932)0.827 (0.803-0.850)Logistic regression

0.846 (0.837-0.855)0.717 (0.711-0.724)0.866 (0.855-0.878)0.770 (0.763-0.778)KNNe

0.900 (0.900-0.905)0.750 (0.745-0.759)0.900 (0.899-0.918)0.810 (0.804-0.821)LGBMf classifier

0.869 (0.860-0.879)0.766 (0.754-0.779)0.902 (0.897-0.907)0.819 (0.806-0.831)MLPg

0.755 (0.747-0.762)0.649 (0.642-0.655)0.761 (0.749-0.773)0.668 (0.655-0.681)Decision trees

aAUC: area under the curve.
bNHANES: US National Health and Nutrition Examination Survey.
cKNHANES: Korean National Health and Nutrition Examination Survey.
dSVM: support vector machine.
eKNN: k-nearest neighbor.
fLGBM: light gradient boosting machine.
gMLP: multilayer perceptron.
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Figure 4. Performance of clinical osteoporosis assessment tools. AUC: area under the curve; KNHANES: Korean National Health and Nutrition
Examination Survey; NHANES: US National Health and Nutrition Examination Survey; ORAI: Osteoporosis Risk Assessment Instrument; OSIRIS:
Osteoporosis Index of Risk; OST: Osteoporosis Self-assessment Tool; ROC: receiver operating characteristic.

Risk Factors and Individualized Explanations of
Feature Contributions
The contribution rankings calculated using LIME for NHANES
and KNHANES data are presented in Table 3 and Table 4,
respectively. The results using Boruta and LASSO are presented
in Multimedia Appendices 1-4. Based on the feature contribution
rankings for NHANES and KNHANES, the high-ranked features
were similar between the DL and ML models. These features
include respondent sex, age, BMI, arm circumference, and
prevalence of obesity. Other features also ranked in high
positions, including economic status features such as occupation
and family poverty income ratio (PIR), alkaline phosphatase,
uric acid, depression, arthritis, and several nutrients (vitamin
A, carotene, vitamin C, and vitamin D).

Figure 5 presents a visualization of the impact of the top 10
features according to the integrated contribution rankings of the
femoral neck and total femur BMD. Each dot represents an
individual respondent. Each feature’s values or categories were
normalized and are expressed using different colors. For
example, the smaller the BMI value, the more it contributes to

the diagnosis of osteoporosis. The individual features and their
relationships with the diagnosis of osteoporosis with
nonnormalized values are also presented in Figure 5. For
example, the graphs of BMI, arm circumference, vitamin D,
and family PIR indicate that small values of these features
contribute to osteoporosis diagnosis. In contrast, large values
of alkaline phosphatase and parathyroid hormone increase the
probability of diagnosis in the osteoporosis group.

Figure 6 presents the feature contributions to individual samples
of respondents diagnosed with osteoporosis. The impact of each
feature value on classifying these respondents into the
osteoporosis group is represented in the graph. When comparing
these three respondents, female sex increases the probability of
being classified into the osteoporosis group. Additionally, the
lower the BMI, the more likely an individual is to be diagnosed
with osteoporosis. The explainable DL model for these
individuals indicates that respondents with osteoporosis tend
to have a low BMI and small body size. In terms of prophylactic
use of risk factors, analysis results in younger respondents are
most appropriate. Therefore, we present the analysis results for
the age group of 50-60 years in Multimedia Appendices 5-8.
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Table 3. Ranking of top 20 features from the deep-learning model and local interpretable model-agnostic explanations in the US National Health and
Nutrition Examination Survey (NHANES).

Total femurFemoral neckRank of NHANES

CoefficientDescription of featuresCoefficientDescription of features

188.91Sex234.15Sex1

77.05Age171.67Age2

60.84Arm circumference (cm)115.66BMI (kg/m2)3

59.49BMI (kg/m2)108.35Arm circumference (cm)4

37.31Doctor ever said you were overweight68.07Doctor ever said you had arthritis5

30.45Upper arm length (cm)60.80Upper arm length (cm)6

20.29How healthy is the diet43.30Smoked at least 100 cigarettes in life7

18.92Alkaline phosphatase (U/L)41.69Doctor ever confirmed you had high blood
pressure

8

18.87Depression39.18Doctor confirmed you have diabetes9

17.33Family PIRa37.27Upper leg length (cm)10

14.40Smoked at least 100 cigarettes in life35.47Shortness of breath on stairs/inclines11

13.90General health condition30.09How healthy is the diet12

12.31How often have urinary leakage24.97Family PIR13

12.13Doctor confirmed you have diabetes22.42Doctor ever said you were overweight14

12.00Ever had pain or discomfort in chest22.18Monocyte number15

11.35Age at heaviest weight21.99Alkaline phosphatase (U/L)16

11.12Doctor ever confirmed you had high blood
pressure

21.84Potassium (mmol/L)17

10.47Uric acid (mg/dL)21.82LDLb-cholesterol, Friedewald (mg/dL)18

9.45Shortness of breath on stairs/inclines20.56Uric acid (mg/dL)19

8.68Glucose (mg/dL)16.98Depression20

aPIR: poverty income ratio.
bLDL: low-density lipoprotein.
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Table 4. Ranking of top 20 features using the deep-learning model and local interpretable model-agnostic explanations in the Korean National Health
and Nutrition Examination Survey (KNHANES).

Total femurFemoral neckRank of KNHANES

CoefficientDescription of featuresCoefficientDescription of features

108.62Sex596.16Sex1

106.44Age354.75Age2

79.23Prevalence of obesity227.33Prevalence of obesity3

65.44Marital status188.29Age when diagnosed with osteoarthritis4

55.64Treatment of hepatitis B166.55Diabetes5

52.58BMI (kg/m2)147.76BMI (kg/m2)6

44.56Age when diagnosed with osteoarthritis144.57Age when diagnosed with hypertension7

38.27Motor ability133.87High-risk drinking8

37.48Presence of depression122.13Education level9

34.67Age when diagnosed with hypertension116.04Diagnosis of depression10

33.70Treatment of cerebral stroke112.91Treatment of thyroid disease11

33.68Age when diagnosed with myocardial infarc-
tion

109.09Age when diagnosed with angina12

32.73Presence of breast cancer94.27Alkaline phosphatase (IU/L)13

31.12Diagnosis of dyslipidemia92.46Treatment of cerebral stroke14

28.70Physical activity restriction92.10Menopause15

28.32Marital status88.83Diagnosis of dyslipidemia16

23.72Alkaline phosphatase (IU/L)88.02Occupation17

23.01Diagnosis of colorectal cancer85.92Diagnosis of colorectal cancer18

22.99High-strength physical activity83.92Presence of myocardial infarction or angina19

22.93Middle-strength physical activity81.06Diagnosis of rheumatoid arthritis20
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Figure 5. Impact of the top 10 features and 6 features in particular on the classification of osteoporosis. Visualized feature contribution values for the
classification of osteoporosis using local interpretable model-agnostic explanations and deep-learning models. Each dot corresponds to one individual
respondent, and different colors are used to represent feature magnitudes and categories. The magnitudes of both the numerical and categorical feature
values are normalized in the range of 0 to 1 for comparison. The x-axis represents the impact value in percentage and the dots on the right tend to
increase the probability of being included in the osteoporosis group. Impact graphs of the top 10 features of NHANES and KNHANES with femoral
neck and total femur BMD integrated are shown on the top two graphs. The below six graphs show the impact values of BMI, arm circumference,
vitamin D, alkaline phosphatase, family PIR, and parathyroid hormone presented with their original values on the y-axis. KNHANES: Korean National
Health and Nutrition Examination Survey; NHANES: US National Health and Nutrition Examination Survey; PIR: poverty income ratio.
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Figure 6. Individualized risk assessment for osteoporosis with feature integrated contributions from the explainable artificial intelligence model.
Individualized osteoporosis risk predictions and the contributions of the top 10 features are shown in the graphs. The features in the legend are written
from left to right in order of their absolute contribution values. Three representative respondents were selected and the properties of the top 10 features
and their positive or negative impact on the probability of being diagnosed are presented with color bar graphs. A certain value of a feature with a
positive impact value tends to increase the probability of model prediction for osteoporosis. In contrast, the impact value of a feature with negative
impact tends to reduce the probability of model prediction for osteoporosis. For the first sample, the model predicts a probability of osteoporosis of
62.31% and for the second sample, it predicts a probability of 68.48%. The third sample is predicted as normal with a probability of 82.59%. “Education
level” is classified based on the highest level of school the respondent completed, where class 1 represents elementary school, class 2 represents middle
or high school, and class 3 represents college or above. “How healthy is the diet” is divided into five classes of “Excellent,” “Very good,” “Good,”
“Fair,” and “Poor.” PIR: poverty income ratio.

Discussion

Principal Results
In this study, the XAI technique was applied to a DL model for
osteoporosis risk screening using nationally representative
samples from the NHANES and KNHANES data sets. Our DL
model outperformed existing ML models, regression analysis,
and clinical tools. Subsequently, we performed feature analysis
by applying LIME to our DL model. The feature analysis results
from LIME reconfirmed previously known features associated
with osteoporosis risk, such as sex, age, and factors related to
weight (eg, BMI, diagnosis of overweight and obesity).
However, unexpected features that are easily ignored in clinical
practice were also identified. Furthermore, our model provides

individualized risk assessments for osteoporosis with an
explanation of feature contributions.

To the best of our knowledge, this is the first study to use a DL
model on medical big data to classify osteoporosis and LIME
on the DL classifier and to select the most influential features.
Previous studies have presented an application of DL or ML
models to classify osteoporosis, estimate BMD, and predict
osteoporotic fractures. However, previous studies utilizing DL
have mainly focused on analyzing image data such as computed
tomography [31-34] or X-ray images [35-39]. Most researchers
have attempted to use ML models when analyzing tabular data.
Additionally, some previous studies that examined important
features related to osteoporosis with tabular data attempted to
perform statistical analysis or ML based on statistical methods,
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including a Poisson regression model [40] and multivariate
logistic regression [41] for feature selection. Related ML
methods include correlation-based feature selection [42],
backward elimination [43,44], LASSO applied to logistic
regression models [45], use of Gini impurity on a
gradient-boosting ML model [46], and outputs of interpretable
ML models [47]. Only a few studies have adopted XAI
techniques such as the Shapley additive explanation (SHAP),
which is confined to ML classifiers. For example, Shim et al
[44] used backward elimination to filter out features by
considering their contribution to the outputs of a logistic
regression model, and Chen et al [47] developed a hybrid model
consisting of extreme gradient boosting (XGBoost) and an MLP,
where the output values from XGBoost were used for feature
selection. Another study that applied SHAP to select the most
important features related to osteoporosis was conducted based
on XGBoost, which is an ML model [48]. Similarly,
Tanphiriyakun et al [49] trained seven ML models to predict
the BMD response after the treatment of osteoporosis and
analyzed the variable contribution using SHAP. Another study
applied feature selection for a minority class method to ML
models, KNN and random forest, to select useful information
from the balance data [50].

Apart from these previous studies, we developed a DL classifier
for screening osteoporosis using cross-sectional data and
arranged features in order of importance for classifying
respondents into osteoporosis groups using tabular LIME, which
is an XAI technique. The strong performance of our model, as
evaluated using AUC values, suggests that the DL classifier is
also applicable to cross-sectional data analysis and osteoporosis
diagnosis. Furthermore, concordance between the features
selected through LIME and existing clinical risk factors
indicated that the DL model utilized clinically significant
features to classify respondents with osteoporosis. Despite the
common concern that DL models are black-box models whose
complexity makes it challenging to explain the decision-making
process, our study demonstrates that interpretability can be
achieved even for nonimage data if appropriate explanation
techniques are adopted.

Existing studies support the major contributing features
identified by LIME and their relationship to osteoporosis. Sex
and age are widely known risk factors for osteoporosis, which
coincides with several studies suggesting that female sex and
low body weight are key risk factors for osteoporosis [51].
Reports on sex discrepancy can also be found for NHANES.
For example, in the NHANES 2005-2006 data set, men had a
lower prevalence of 30% in the osteopenia group and 2% in the
osteoporosis group for femoral neck BMD compared to women
with a prevalence of 49% in the osteopenia group and 10% in
the osteoporosis group [52]. Other features worth noting for the
NHANES and KNHANES data sets are economic status
features, including occupation, family PIR, and house
ownership. Some studies have observed that postmenopausal
women in poverty or non-Hispanic white, Black, and Asian
adults with low socioeconomic status have a lower BMD and
higher risk of osteoporosis [53,54]. Measurements of alkaline
phosphatase and uric acid were also included among the
high-ranking features. It is known that patients with osteoporosis

exhibit a high level of alkaline phosphatase [55] and patients
with high uric acid levels tend to have lower BMD levels [56].

Generally, obesity has been considered to be a protective feature
against osteoporosis by providing mechanical stimuli to the
bones [57]. Our model indicates that several obesity-associated
variables, including BMI, low-density lipoprotein cholesterol,
triglycerides, arm circumference, prevalence of obesity, and
dyslipidemia diagnosis, are significant features for osteoporosis
and exhibit unified trends. In particular, for NHANES, arm
circumference emerged as a high-ranking contributing feature.
Research on the population living in the southern region of
Stockholm indicated that among several anthropometric
measurements, a small arm circumference was a stronger risk
factor for osteoporosis than a low body weight [58]. Although
recent mechanical, biochemical, and hormonal evidence has
indicated an association between adipose tissue and deteriorating
effects on the microarchitecture of the bone [59], our model
identified linear trends for obesity and BMD.

Psychosocial behavior is often ignored as a risk factor for
osteoporosis. However, our DL model indicates that
depression-associated variables are significant risk factors. This
may be associated with decreased physical activity, which is
essential for maintaining bone strength, and negative effects of
antidepressant medications on bone metabolism, including
selective serotonin reuptake inhibitors [60]. Both arthritis and
osteoporosis exhibit similar clinical features in terms of
symptoms, treatment, and prognosis. However, they are different
diseases with different etiologies. A potential role of systemic
inflammatory diseases such as rheumatoid arthritis and
ankylosing spondylitis in the development of osteoporosis has
been proposed [61]. Additionally, several nutrients, including
carotene and vitamins A, C, and D, ranked as significant
features. Excluding vitamin D, the other nutrients have mainly
been considered to be associated with deficient states. However,
our model indicates the clinical significance of vitamin D. These
diseases and nutrients should not be overlooked, and further
research and consideration in clinical practice are required.

Limitations
There are several limitations of this study that need to be
addressed. First, the NHANES and KNHANES data sets utilized
in this study were derived from cross-sectional surveys that
collected data from a population at one specific point in time.
Therefore, this study was confined to predicting the risk of
osteoporosis at a specific point in time and we could not generate
predictions for future occurrences. The DL model trained on
cross-sectional data sets is limited to estimating the current
osteoporosis status unless data sets with the label of future
osteoporosis status, such as longitudinal cohort data, are utilized.
Therefore, we plan to investigate training the DL model with
longitudinal cohort data to predict the future risk of osteoporosis
in follow-up work. Second, analysis of the BMD of the lumbar
spine was not performed because the reference BMD for
calculating the T-score for NHANES III did not contain lumbar
spine BMD data. Moreover, both data sets lack information
about the bone itself, such as bone turnover markers, with only
BMD-related information provided. Given the clinical
significance of osteoporosis, further use of data on the bone
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itself, including bone turnover markers, is expected to contribute
to improving the model performance and reliability. Third, there
was a high level of class imbalance in both the NHANES and
KNHANES data sets, which occurred from a small number of
respondents being diagnosed with osteoporosis. This imbalance
may have caused the DL model to become biased toward the
normal group with the highest number of respondents. We
attempted applying techniques such as class weighting and the
synthetic minority oversampling technique [62] to alleviate the
class imbalance problem, but discontinued their use because
they had a negative impact on model performance. Additionally,
evaluation using the FRAX, which is one of the most widely
used osteoporosis clinical assessment tools, was not performed
in this study owing to significant differences between the
formulae used in the FRAX for the United States and Korea,
and the unavailability of an exact formula. Further, there exists
a limitation of statistical analysis on the multicategorical
features. Our DL model was trained using the original data
format for most of the multicategorical features to minimize
artificial factors unless unavoidable. However, some
multicategorical features showed different results when
subgroup analysis was used due to the nature of DL and LIME
along with redundancy in features [63-65]. Finally, LIME is
prone to instability because of randomness in the sampling step

of its process [66]. Although we compared the selected features
from LIME to commonly known clinical risk factors for
osteoporosis and presented supporting references from previous
research, it is still necessary to validate this process. Therefore,
the analysis of the selected features from LIME should be
performed carefully.

Conclusions
In conclusion, we developed a DL model for classifying
osteoporosis using NHANES and KNHANES data, which
outperformed conventional clinical assessment tools and ML
models. Additionally, we discussed important features selected
based on XAI technology. This implies that DL can be fully
applied to medical big data for the risk analysis of certain
diseases. Furthermore, our model enables individualized
osteoporosis risk assessment with an explanation for each
feature’s contribution to model results. Despite the limitations
noted above, the performance of the DL classifier and feature
analysis results are noteworthy and demonstrate the potential
for applying DL and XAI techniques to medical research,
including cross-sectional studies. Utilizing cohort data for
external validation of our DL model and training with the cohort
data to predict the future risk of osteoporosis are considered as
future work.

Acknowledgments
This work was supported by a National Research Foundation of Korea grant funded by the Korean government (MSIT)
(2020R1A2C4001842) and the Korea Institute of Science and Technology intramural grants (2E31570). This work was also
supported by the Institute of Information & Communications Technology Planning & Evaluation grant funded by the Korean
government (MSIT) (RS-2022-00155966, Artificial Intelligence Convergence Innovation Human Resources Development; Ewha
Womans University). This article includes a portion of the materials and results from HK’s PhD thesis at Ewha Womans University.

Authors' Contributions
JK and JC are senior authors with equal contributions. BS, HY, JK, and JC contributed to the conception, design, and data analysis.
All authors contributed to the interpretation of the data, and drafted and critically revised the manuscript. All authors gave their
final approval and agreed to be accountable for all aspects of this work.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Ranking of top 20 features from NHANES using machine-learning models and Boruta.
[DOCX File , 18 KB-Multimedia Appendix 1]

Multimedia Appendix 2
Ranking of top 20 features from KNHANES using machine-learning models and Boruta.
[DOCX File , 18 KB-Multimedia Appendix 2]

Multimedia Appendix 3
Ranking of top 20 features from NHANES using machine-learning models and LASSO.
[DOCX File , 50 KB-Multimedia Appendix 3]

Multimedia Appendix 4
Ranking of top 20 features from KNHANES using machine-learning models and LASSO.
[DOCX File , 51 KB-Multimedia Appendix 4]

J Med Internet Res 2023 | vol. 25 | e40179 | p. 14https://www.jmir.org/2023/1/e40179
(page number not for citation purposes)

Suh et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=jmir_v25i1e40179_app1.docx&filename=cef03ab6b37a2bb7d4c0ccbcff899f07.docx
https://jmir.org/api/download?alt_name=jmir_v25i1e40179_app1.docx&filename=cef03ab6b37a2bb7d4c0ccbcff899f07.docx
https://jmir.org/api/download?alt_name=jmir_v25i1e40179_app2.docx&filename=6231ca408d22c2a660bf9f203d0ca83b.docx
https://jmir.org/api/download?alt_name=jmir_v25i1e40179_app2.docx&filename=6231ca408d22c2a660bf9f203d0ca83b.docx
https://jmir.org/api/download?alt_name=jmir_v25i1e40179_app3.docx&filename=59f97fa91425f2214cbb3e7447e1c85e.docx
https://jmir.org/api/download?alt_name=jmir_v25i1e40179_app3.docx&filename=59f97fa91425f2214cbb3e7447e1c85e.docx
https://jmir.org/api/download?alt_name=jmir_v25i1e40179_app4.docx&filename=ba9d059299dc4bd8d6a1f51452aef568.docx
https://jmir.org/api/download?alt_name=jmir_v25i1e40179_app4.docx&filename=ba9d059299dc4bd8d6a1f51452aef568.docx
http://www.w3.org/Style/XSL
http://www.renderx.com/


Multimedia Appendix 5
Descriptive statistics: Data distribution (number of respondents) in each osteoporosis class of the age group 50-60 years.
[DOCX File , 47 KB-Multimedia Appendix 5]

Multimedia Appendix 6
Receiver operating characteristic (ROC) curves of deep-learning models on NHANES and KNHANES respondents in the age
group of 50-60 years.
[PNG File , 405 KB-Multimedia Appendix 6]

Multimedia Appendix 7
Ranking of top 20 features from NHANES respondents in the age group of 50-60 years using the deep-learning model.
[DOCX File , 51 KB-Multimedia Appendix 7]

Multimedia Appendix 8
Ranking of top 20 features from KNHANES respondents in the age group of 50-60 years using the deep-learning model.
[DOCX File , 51 KB-Multimedia Appendix 8]

References

1. Nelson HD, Haney EM, Dana T, Bougatsos C, Chou R. Screening for osteoporosis: an update for the U.S. Preventive
Services Task Force. Ann Intern Med 2010 Jul 20;153(2):99-111 [FREE Full text] [doi:
10.7326/0003-4819-153-2-201007200-00262] [Medline: 20621892]

2. Sarafrazi N, Wambogo E, Shepherd J. Osteoporosis or low bone mass in older adults: United States, 2017-2018. NCHS
Data Brief No. 405. Centers for Disease Control and Prevention. 2021 Mar. URL: https://tinyurl.com/ct938j9p [accessed
2022-12-14]

3. Wright NC, Looker AC, Saag KG, Curtis JR, Delzell ES, Randall S, et al. The recent prevalence of osteoporosis and low
bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J Bone Miner Res 2014
Nov;29(11):2520-2526 [FREE Full text] [doi: 10.1002/jbmr.2269] [Medline: 24771492]

4. Curtis EM, van der Velde R, Moon RJ, van den Bergh JP, Geusens P, de Vries F, et al. Epidemiology of fractures in the
United Kingdom 1988-2012: Variation with age, sex, geography, ethnicity and socioeconomic status. Bone 2016 Jun;87:19-26
[FREE Full text] [doi: 10.1016/j.bone.2016.03.006] [Medline: 26968752]

5. Epidemiology of osteoporosis and fragility fractures. International Osteoporosis Foundation. 2022. URL: https://www.
osteoporosis.foundation/facts-statistics/epidemiology-of-osteoporosis-and-fragility-fractures [accessed 2022-01-29]

6. Mithal A, Bansal B, Kyer C, Ebeling P. The Asia-Pacific Regional Audit-Epidemiology, costs, and burden of osteoporosis
in India 2013: a report of International Osteoporosis Foundation. Indian J Endocrinol Metab 2014 Jul;18(4):449-454 [FREE
Full text] [doi: 10.4103/2230-8210.137485] [Medline: 25143898]

7. King AB, Fiorentino DM. Medicare payment cuts for osteoporosis testing reduced use despite tests' benefit in reducing
fractures. Health Aff 2011 Dec;30(12):2362-2370. [doi: 10.1377/hlthaff.2011.0233] [Medline: 22147865]

8. Gillespie CW, Morin PE. Trends and disparities in osteoporosis screening among women in the United States, 2008-2014.
Am J Med 2017 Mar;130(3):306-316 [FREE Full text] [doi: 10.1016/j.amjmed.2016.10.018] [Medline: 27884649]

9. Viswanathan M, Reddy S, Berkman N, Cullen K, Middleton JC, Nicholson WK, et al. Screening to prevent osteoporotic
fractures: updated evidence report and systematic review for the US Preventive Services Task Force. JAMA 2018 Jun
26;319(24):2532-2551. [doi: 10.1001/jama.2018.6537] [Medline: 29946734]

10. US Preventive Services Task Force, Curry SJ, Krist AH, Owens DK, Barry MJ, Caughey AB, et al. Screening for osteoporosis
to prevent fractures: US Preventive Services Task Force Recommendation Statement. JAMA 2018 Jun 26;319(24):2521-2531.
[doi: 10.1001/jama.2018.7498] [Medline: 29946735]

11. Smets J, Shevroja E, Hügle T, Leslie WD, Hans D. Machine learning solutions for osteoporosis-a review. J Bone Miner
Res 2021 May 04;36(5):833-851. [doi: 10.1002/jbmr.4292] [Medline: 33751686]

12. Almog YA, Rai A, Zhang P, Moulaison A, Powell R, Mishra A, et al. Deep learning with electronic health records for
short-term fracture risk identification: crystal bone algorithm development and validation. J Med Internet Res 2020 Oct
16;22(10):e22550 [FREE Full text] [doi: 10.2196/22550] [Medline: 32956069]

13. Tarekegn A, Ricceri F, Costa G, Ferracin E, Giacobini M. Predictive modeling for frailty conditions in elderly people:
machine learning approaches. JMIR Med Inform 2020 Jun 04;8(6):e16678 [FREE Full text] [doi: 10.2196/16678] [Medline:
32442149]

14. Kong SH, Ahn D, Kim BR, Srinivasan K, Ram S, Kim H, et al. A novel fracture prediction model using machine learning
in a community-based cohort. JBMR Plus 2020 Mar;4(3):e10337 [FREE Full text] [doi: 10.1002/jbm4.10337] [Medline:
32161842]

J Med Internet Res 2023 | vol. 25 | e40179 | p. 15https://www.jmir.org/2023/1/e40179
(page number not for citation purposes)

Suh et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=jmir_v25i1e40179_app5.docx&filename=7393a545e63cde568321f68a775f9642.docx
https://jmir.org/api/download?alt_name=jmir_v25i1e40179_app5.docx&filename=7393a545e63cde568321f68a775f9642.docx
https://jmir.org/api/download?alt_name=jmir_v25i1e40179_app6.png&filename=ac7a599617b7a9df205626d71a796d7c.png
https://jmir.org/api/download?alt_name=jmir_v25i1e40179_app6.png&filename=ac7a599617b7a9df205626d71a796d7c.png
https://jmir.org/api/download?alt_name=jmir_v25i1e40179_app7.docx&filename=475d9aac2e229b8a5feef3cf406f984b.docx
https://jmir.org/api/download?alt_name=jmir_v25i1e40179_app7.docx&filename=475d9aac2e229b8a5feef3cf406f984b.docx
https://jmir.org/api/download?alt_name=jmir_v25i1e40179_app8.docx&filename=4d00f5b471f13a9b884da2af057723c8.docx
https://jmir.org/api/download?alt_name=jmir_v25i1e40179_app8.docx&filename=4d00f5b471f13a9b884da2af057723c8.docx
https://www.acpjournals.org/doi/abs/10.7326/0003-4819-153-2-201007200-00262?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub  0pubmed
http://dx.doi.org/10.7326/0003-4819-153-2-201007200-00262
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20621892&dopt=Abstract
https://www.cdc.gov/nchs/products/databriefs/db405.htm#:~:text=through%202017%E2%80%932018.-,Summary,either%20skeletal%20site%20was%2043.1%25
https://europepmc.org/abstract/MED/24771492
http://dx.doi.org/10.1002/jbmr.2269
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24771492&dopt=Abstract
https://europepmc.org/abstract/MED/26968752
http://dx.doi.org/10.1016/j.bone.2016.03.006
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26968752&dopt=Abstract
https://www.osteoporosis.foundation/facts-statistics/epidemiology-of-osteoporosis-and-fragility-fractures
https://www.osteoporosis.foundation/facts-statistics/epidemiology-of-osteoporosis-and-fragility-fractures
http://www.ijem.in/article.asp?issn=2230-8210;year=2014;volume=18;issue=4;spage=449;epage=454;aulast=Mithal
http://www.ijem.in/article.asp?issn=2230-8210;year=2014;volume=18;issue=4;spage=449;epage=454;aulast=Mithal
http://dx.doi.org/10.4103/2230-8210.137485
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25143898&dopt=Abstract
http://dx.doi.org/10.1377/hlthaff.2011.0233
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22147865&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S0002-9343(16)31191-3
http://dx.doi.org/10.1016/j.amjmed.2016.10.018
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27884649&dopt=Abstract
http://dx.doi.org/10.1001/jama.2018.6537
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29946734&dopt=Abstract
http://dx.doi.org/10.1001/jama.2018.7498
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29946735&dopt=Abstract
http://dx.doi.org/10.1002/jbmr.4292
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33751686&dopt=Abstract
https://www.jmir.org/2020/10/e22550/
http://dx.doi.org/10.2196/22550
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32956069&dopt=Abstract
https://medinform.jmir.org/2020/6/e16678/
http://dx.doi.org/10.2196/16678
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32442149&dopt=Abstract
https://europepmc.org/abstract/MED/32161842
http://dx.doi.org/10.1002/jbm4.10337
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32161842&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


15. de Vries BCS, Hegeman JH, Nijmeijer W, Geerdink J, Seifert C, Groothuis-Oudshoorn CGM. Comparing three machine
learning approaches to design a risk assessment tool for future fractures: predicting a subsequent major osteoporotic fracture
in fracture patients with osteopenia and osteoporosis. Osteoporos Int 2021 Mar;32(3):437-449. [doi:
10.1007/s00198-020-05735-z] [Medline: 33415373]

16. Shim J, Kim DW, Ryu K, Cho E, Ahn J, Kim J, et al. Application of machine learning approaches for osteoporosis risk
prediction in postmenopausal women. Arch Osteoporos 2020 Oct 23;15(1):169. [doi: 10.1007/s11657-020-00802-8]
[Medline: 33097976]

17. Engels A, Reber KC, Lindlbauer I, Rapp K, Büchele G, Klenk J, et al. Osteoporotic hip fracture prediction from risk factors
available in administrative claims data - a machine learning approach. PLoS One 2020;15(5):e0232969 [FREE Full text]
[doi: 10.1371/journal.pone.0232969] [Medline: 32428007]

18. National Health and Nutrition Examination Survey. National Center for Health Statistics. Centers for Disease Control and
Prevention. 2022. URL: https://www.cdc.gov/nchs/nhanes/index.htm [accessed 2022-08-04]

19. Korean Centers for Disease Control and Prevention. 2022. URL: https://knhanes.kdca.go.kr/knhanes/main.do [accessed
2022-08-04]

20. Soen S, Fukunaga M, Sugimoto T, Sone T, Fujiwara S, Endo N, Japanese Society for Bone Mineral Research Japan
Osteoporosis Society Joint Review Committee for the Revision of the Diagnostic Criteria for Primary Osteoporosis.
Diagnostic criteria for primary osteoporosis: year 2012 revision. J Bone Miner Metab 2013 May 4;31(3):247-257. [doi:
10.1007/s00774-013-0447-8] [Medline: 23553500]

21. Looker AC, Wahner HW, Dunn WL, Calvo MS, Harris TB, Heyse SP, et al. Updated data on proximal femur bone mineral
levels of US adults. Osteoporos Int 1998 Aug 1;8(5):468-489. [doi: 10.1007/s001980050093] [Medline: 9850356]

22. Kroenke K, Spitzer RL, Williams JBW. The PHQ-9: validity of a brief depression severity measure. J Gen Intern Med
2001 Sep;16(9):606-613 [FREE Full text] [doi: 10.1046/j.1525-1497.2001.016009606.x] [Medline: 11556941]

23. López-Martínez F, Núñez-Valdez ER, Crespo RG, García-Díaz V. An artificial neural network approach for predicting
hypertension using NHANES data. Sci Rep 2020 Jun 30;10(1):10620. [doi: 10.1038/s41598-020-67640-z] [Medline:
32606434]

24. Oh J, Yun K, Maoz U, Kim T, Chae J. Identifying depression in the National Health and Nutrition Examination Survey
data using a deep learning algorithm. J Affect Disord 2019 Oct 01;257:623-631 [FREE Full text] [doi:
10.1016/j.jad.2019.06.034] [Medline: 31357159]

25. Kim J, Kong K, Kim H, Lee H, Kim S, Lee S, et al. The association between bone mineral density and periodontitis in
Korean adults (KNHANES 2008-2010). Oral Dis 2014 Sep 01;20(6):609-615. [doi: 10.1111/odi.12179] [Medline: 24118189]

26. Chollet F. Keras. GitHub. 2015. URL: https://github.com/keras-team/keras [accessed 2022-12-14]
27. Abraham A, Pedregosa F, Eickenberg M, Gervais P, Mueller A, Kossaifi J, et al. Machine learning for neuroimaging with

scikit-learn. Front Neuroinform 2014;8:14 [FREE Full text] [doi: 10.3389/fninf.2014.00014] [Medline: 24600388]
28. Ribeiro M, Singh S, Guestrin C. "Why should i trust you??" Explaining the predictions of any classifier. 2016 Presented

at: 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; June 2016; San Diego, CA
p. 1135-1144. [doi: 10.1145/2939672.2939778]

29. Kursa MB, Jankowski A, Rudnicki WR. Boruta – a system for feature selection. Fundam Inform 2010;101(4):271-285.
[doi: 10.3233/FI-2010-288]

30. Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc B 2018 Dec 05;58(1):267-288. [doi:
10.1111/j.2517-6161.1996.tb02080.x]

31. Yasaka K, Akai H, Kunimatsu A, Kiryu S, Abe O. Prediction of bone mineral density from computed tomography: application
of deep learning with a convolutional neural network. Eur Radiol 2020 Jun 14;30(6):3549-3557. [doi:
10.1007/s00330-020-06677-0] [Medline: 32060712]

32. Fang Y, Li W, Chen X, Chen K, Kang H, Yu P, et al. Opportunistic osteoporosis screening in multi-detector CT images
using deep convolutional neural networks. Eur Radiol 2021 Apr 01;31(4):1831-1842. [doi: 10.1007/s00330-020-07312-8]
[Medline: 33001308]

33. Pan Y, Shi D, Wang H, Chen T, Cui D, Cheng X, et al. Automatic opportunistic osteoporosis screening using low-dose
chest computed tomography scans obtained for lung cancer screening. Eur Radiol 2020 Jul 19;30(7):4107-4116 [FREE
Full text] [doi: 10.1007/s00330-020-06679-y] [Medline: 32072260]

34. Yilmaz E, Buerger C, Fricke T, Sagar M, Peña J, Lorenz C. Automated deep learning-based detection of osteoporotic
fractures in CT images. In: Lian C, Cao X, Rekik I, Xu X, Yan P, editors. Machine Learning in Medical Imaging. MLMI
2021. Lecture Notes in Computer Science, vol 12966. Cham: Springer; 2021:376-385.

35. Jang M, Kim M, Bae SJ, Lee SH, Koh J, Kim N. Opportunistic osteoporosis screening using chest radiographs with deep
learning: development and external validation with a cohort dataset. J Bone Miner Res 2022 Feb 13;37(2):369-377. [doi:
10.1002/jbmr.4477] [Medline: 34812546]

36. Lee S, Choe EK, Kang HY, Yoon JW, Kim HS. The exploration of feature extraction and machine learning for predicting
bone density from simple spine X-ray images in a Korean population. Skeletal Radiol 2020 Apr 23;49(4):613-618. [doi:
10.1007/s00256-019-03342-6] [Medline: 31760458]

J Med Internet Res 2023 | vol. 25 | e40179 | p. 16https://www.jmir.org/2023/1/e40179
(page number not for citation purposes)

Suh et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.1007/s00198-020-05735-z
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33415373&dopt=Abstract
http://dx.doi.org/10.1007/s11657-020-00802-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33097976&dopt=Abstract
https://dx.plos.org/10.1371/journal.pone.0232969
http://dx.doi.org/10.1371/journal.pone.0232969
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32428007&dopt=Abstract
https://www.cdc.gov/nchs/nhanes/index.htm
https://knhanes.kdca.go.kr/knhanes/main.do
http://dx.doi.org/10.1007/s00774-013-0447-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23553500&dopt=Abstract
http://dx.doi.org/10.1007/s001980050093
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9850356&dopt=Abstract
https://europepmc.org/abstract/MED/11556941
http://dx.doi.org/10.1046/j.1525-1497.2001.016009606.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11556941&dopt=Abstract
http://dx.doi.org/10.1038/s41598-020-67640-z
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32606434&dopt=Abstract
https://digitalcommons.chapman.edu/psychology_articles/190/
http://dx.doi.org/10.1016/j.jad.2019.06.034
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31357159&dopt=Abstract
http://dx.doi.org/10.1111/odi.12179
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24118189&dopt=Abstract
https://github.com/keras-team/keras
https://europepmc.org/abstract/MED/24600388
http://dx.doi.org/10.3389/fninf.2014.00014
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24600388&dopt=Abstract
http://dx.doi.org/10.1145/2939672.2939778
http://dx.doi.org/10.3233/FI-2010-288
http://dx.doi.org/10.1111/j.2517-6161.1996.tb02080.x
http://dx.doi.org/10.1007/s00330-020-06677-0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32060712&dopt=Abstract
http://dx.doi.org/10.1007/s00330-020-07312-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33001308&dopt=Abstract
https://europepmc.org/abstract/MED/32072260
https://europepmc.org/abstract/MED/32072260
http://dx.doi.org/10.1007/s00330-020-06679-y
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32072260&dopt=Abstract
http://dx.doi.org/10.1002/jbmr.4477
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34812546&dopt=Abstract
http://dx.doi.org/10.1007/s00256-019-03342-6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31760458&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


37. Liu J, Wang J, Ruan W, Lin C, Chen D. Diagnostic and gradation model of osteoporosis based on improved deep U-net
network. J Med Syst 2019 Dec 07;44(1):15. [doi: 10.1007/s10916-019-1502-3] [Medline: 31811448]

38. Yamamoto N, Sukegawa S, Kitamura A, Goto R, Noda T, Nakano K, et al. Deep learning for osteoporosis classification
using hip radiographs and patient clinical covariates. Biomolecules 2020 Nov 10;10(11):1534 [FREE Full text] [doi:
10.3390/biom10111534] [Medline: 33182778]

39. Zhang B, Yu K, Ning Z, Wang K, Dong Y, Liu X, et al. Deep learning of lumbar spine X-ray for osteopenia and osteoporosis
screening: a multicenter retrospective cohort study. Bone 2020 Nov;140:115561. [doi: 10.1016/j.bone.2020.115561]
[Medline: 32730939]

40. Kanis JA, Oden A, Johnell O, Johansson H, De Laet C, Brown J, et al. The use of clinical risk factors enhances the
performance of BMD in the prediction of hip and osteoporotic fractures in men and women. Osteoporos Int 2007
Aug;18(8):1033-1046. [doi: 10.1007/s00198-007-0343-y] [Medline: 17323110]

41. Rozental T, Shah J, Chacko A, Zurakowski D. Prevalence and predictors of osteoporosis risk in orthopaedic patients. Clin
Orthop Relat Res 2010 Jul;468(7):1765-1772 [FREE Full text] [doi: 10.1007/s11999-009-1162-6] [Medline: 19911243]

42. Iliou T, Anagnostopoulos C, Anastassopoulos G. Osteoporosis detection using machine learning techniques and feature
selection. Int J Artif Intell Tools 2014 Oct 27;23(05):1450014. [doi: 10.1142/s0218213014500146]

43. Kim S, Yoo T, Kim D. Osteoporosis risk prediction using machine learning and conventional methods. 2013 Presented at:
35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); July 3-7, 2013;
Osaka, Japan p. 188-191. [doi: 10.1109/embc.2013.6609469]

44. Shim J, Kim DW, Ryu K, Cho E, Ahn J, Kim J, et al. Application of machine learning approaches for osteoporosis risk
prediction in postmenopausal women. Arch Osteoporos 2020 Oct 23;15(1):169. [doi: 10.1007/s11657-020-00802-8]
[Medline: 33097976]

45. Fachada S, Bonatto D, Lafruit G. High-quality holographic stereogram generation using four RGBD images. Appl Opt
2021 Feb 01;60(4):A250-A259. [doi: 10.1364/AO.403787] [Medline: 33690376]

46. Wu Q, Nasoz F, Jung J, Bhattarai B, Han MV. Machine learning approaches for fracture risk assessment: a comparative
analysis of genomic and phenotypic data in 5130 older men. Calcif Tissue Int 2020 Oct 29;107(4):353-361 [FREE Full
text] [doi: 10.1007/s00223-020-00734-y] [Medline: 32728911]

47. Chen Y, Yang T, Gao X, Xu A. Hybrid deep learning model for risk prediction of fracture in patients with diabetes and
osteoporosis. Front Med 2022 Jun 26;16(3):496-506. [doi: 10.1007/s11684-021-0828-7] [Medline: 34448125]

48. Park HW, Jung H, Back KY, Choi HJ, Ryu KS, Cha HS, et al. Application of machine learning to identify clinically
meaningful risk group for osteoporosis in individuals under the recommended age for dual-energy X-ray absorptiometry.
Calcif Tissue Int 2021 Dec 30;109(6):645-655. [doi: 10.1007/s00223-021-00880-x] [Medline: 34195852]

49. Tanphiriyakun T, Rojanasthien S, Khumrin P. Bone mineral density response prediction following osteoporosis treatment
using machine learning to aid personalized therapy. Sci Rep 2021 Jul 05;11(1):13811. [doi: 10.1038/s41598-021-93152-5]
[Medline: 34226589]

50. Cuaya-Simbro G, Perez-Sanpablo A, Morales E, Quiñones Uriostegui I, Nuñez-Carrera L. Comparing machine learning
methods to improve fall risk detection in elderly with osteoporosis from balance data. J Healthc Eng 2021 Sep
9;2021:8697805-8697811. [doi: 10.1155/2021/8697805] [Medline: 34540190]

51. Kanis JA. Diagnosis of osteoporosis and assessment of fracture risk. Lancet 2002 Jun 01;359(9321):1929-1936. [doi:
10.1016/S0140-6736(02)08761-5] [Medline: 12057569]

52. Looker AC, Melton LJ, Harris TB, Borrud LG, Shepherd JA. Prevalence and trends in low femur bone density among older
US adults: NHANES 2005-2006 compared with NHANES III. J Bone Miner Res 2010 Jan 14;25(1):64-71 [FREE Full
text] [doi: 10.1359/jbmr.090706] [Medline: 19580459]

53. Du Y, Zhao L, Xu Q, Wu K, Deng H. Socioeconomic status and bone mineral density in adults by race/ethnicity and gender:
the Louisiana osteoporosis study. Osteoporos Int 2017 May;28(5):1699-1709. [doi: 10.1007/s00198-017-3951-1] [Medline:
28236128]

54. Navarro MC, Sosa M, Saavedra P, Lainez P, Marrero M, Torres M, et al. Poverty is a risk factor for osteoporotic fractures.
Osteoporos Int 2009 Mar 5;20(3):393-398. [doi: 10.1007/s00198-008-0697-9] [Medline: 18773136]

55. Iba K, Takada J, Yamashita T. The serum level of bone-specific alkaline phosphatase activity is associated with aortic
calcification in osteoporosis patients. J Bone Miner Metab 2004 Nov;22(6):594-596. [doi: 10.1007/s00774-004-0528-9]
[Medline: 15490270]

56. Yan D, Wang J, Hou X, Bao Y, Zhang Z, Hu C, et al. Association of serum uric acid levels with osteoporosis and bone
turnover markers in a Chinese population. Acta Pharmacol Sin 2018 Apr 14;39(4):626-632 [FREE Full text] [doi:
10.1038/aps.2017.165] [Medline: 29239351]

57. Cao JJ. Effects of obesity on bone metabolism. J Orthop Surg Res 2011;6(1):30. [doi: 10.1186/1749-799x-6-30]
58. Salminen H, Sääf M, Johansson S, Ringertz H, Strender L. Nutritional status, as determined by the Mini-Nutritional

Assessment, and osteoporosis: a cross-sectional study of an elderly female population. Eur J Clin Nutr 2006 Apr
14;60(4):486-493. [doi: 10.1038/sj.ejcn.1602341] [Medline: 16391579]

59. Gkastaris K, Goulis DG, Potoupnis M, Anastasilakis AD, Kapetanos G. Obesity, osteoporosis and bone metabolism. J
Musculoskelet Neuronal Interact 2020 Sep 01;20(3):372-381 [FREE Full text] [Medline: 32877973]

J Med Internet Res 2023 | vol. 25 | e40179 | p. 17https://www.jmir.org/2023/1/e40179
(page number not for citation purposes)

Suh et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.1007/s10916-019-1502-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31811448&dopt=Abstract
https://www.mdpi.com/resolver?pii=biom10111534
http://dx.doi.org/10.3390/biom10111534
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33182778&dopt=Abstract
http://dx.doi.org/10.1016/j.bone.2020.115561
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32730939&dopt=Abstract
http://dx.doi.org/10.1007/s00198-007-0343-y
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17323110&dopt=Abstract
https://europepmc.org/abstract/MED/19911243
http://dx.doi.org/10.1007/s11999-009-1162-6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19911243&dopt=Abstract
http://dx.doi.org/10.1142/s0218213014500146
http://dx.doi.org/10.1109/embc.2013.6609469
http://dx.doi.org/10.1007/s11657-020-00802-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33097976&dopt=Abstract
http://dx.doi.org/10.1364/AO.403787
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33690376&dopt=Abstract
https://europepmc.org/abstract/MED/32728911
https://europepmc.org/abstract/MED/32728911
http://dx.doi.org/10.1007/s00223-020-00734-y
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32728911&dopt=Abstract
http://dx.doi.org/10.1007/s11684-021-0828-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34448125&dopt=Abstract
http://dx.doi.org/10.1007/s00223-021-00880-x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34195852&dopt=Abstract
http://dx.doi.org/10.1038/s41598-021-93152-5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34226589&dopt=Abstract
http://dx.doi.org/10.1155/2021/8697805
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34540190&dopt=Abstract
http://dx.doi.org/10.1016/S0140-6736(02)08761-5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12057569&dopt=Abstract
https://europepmc.org/abstract/MED/19580459
https://europepmc.org/abstract/MED/19580459
http://dx.doi.org/10.1359/jbmr.090706
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19580459&dopt=Abstract
http://dx.doi.org/10.1007/s00198-017-3951-1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28236128&dopt=Abstract
http://dx.doi.org/10.1007/s00198-008-0697-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18773136&dopt=Abstract
http://dx.doi.org/10.1007/s00774-004-0528-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15490270&dopt=Abstract
https://europepmc.org/abstract/MED/29239351
http://dx.doi.org/10.1038/aps.2017.165
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29239351&dopt=Abstract
http://dx.doi.org/10.1186/1749-799x-6-30
http://dx.doi.org/10.1038/sj.ejcn.1602341
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16391579&dopt=Abstract
https://europepmc.org/abstract/MED/32877973
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32877973&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


60. Rizzoli R, Cooper C, Reginster J, Abrahamsen B, Adachi JD, Brandi ML, et al. Antidepressant medications and osteoporosis.
Bone 2012 Sep;51(3):606-613. [doi: 10.1016/j.bone.2012.05.018] [Medline: 22659406]

61. Roux C. Osteoporosis in inflammatory joint diseases. Osteoporos Int 2011 Feb;22(2):421-433. [doi:
10.1007/s00198-010-1319-x] [Medline: 20552328]

62. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: Synthetic Minority Over-sampling Technique. J Artif Intell
Res 2002 Jun 01;16:321-357. [doi: 10.1613/jair.953]

63. Yoon K, You H, Wu W, Lim CY, Choi J, Boss C, et al. Regularized nonlinear regression for simultaneously selecting and
estimating key model parameters: application to head-neck position tracking. Eng Appl Artif Intell 2022 Aug;113:104974.
[doi: 10.1016/j.engappai.2022.104974]

64. Ramadan A, Choi J, Cholewicki J, Reeves NP, Popovich JM, Radcliffe CJ. Feasibility of incorporating test-retest reliability
and model diversity in identification of key neuromuscular pathways during head position tracking. IEEE Trans Neural
Syst Rehabil Eng 2019 Feb;27(2):275-282. [doi: 10.1109/tnsre.2019.2891525]

65. Ramadan A, Boss C, Choi J, Peter Reeves N, Cholewicki J, Popovich JM, et al. Selecting sensitive parameter subsets in
dynamical models with application to biomechanical system identification. J Biomech Eng 2018 Jul 01;140(7):0745031
[FREE Full text] [doi: 10.1115/1.4039677] [Medline: 29570752]

66. Visani G, Bagli E, Chesani F. OptiLIME: Optimized LIME explanations for diagnostic computer algorithms. arXiv. 2020.
URL: https://arxiv.org/pdf/2006.05714.pdf [accessed 2022-12-14]

Abbreviations
AUC: area under the curve
BMD: bone mineral density
DL: deep learning
DXA: dual-energy X-ray absorptiometry
FRAX: fracture risk assessment tool
KCDC: Korea Centers for Disease Control and Prevention
KNHANES: Korea National Health and Nutrition Examination Survey
KNN: k-nearest neighbors
LASSO: least absolute shrinkage and selection operator
LGBM: light gradient boosting machine
LIME: local interpretable model-agnostic explanations
ML: machine learning
MLP: multilayer perceptron
NHANES: National Health and Nutrition Examination Survey
ORAI: osteoporosis risk assessment instrument
OSIRIS: osteoporosis index of risk
OST: osteoporosis self-assessment tool
PHQ-9: Patient Health Questionnaire-9
PIR: poverty income ratio
SCORE: Simple Calculated Osteoporosis Risk Estimation
SHAP: Shapley additive explanation
XAI: explainable artificial intelligence
XGBoost: extreme gradient boosting

Edited by R Kukafka, G Eysenbach; submitted 09.06.22; peer-reviewed by J Kim, Y Xie; comments to author 26.07.22; revised version
received 16.08.22; accepted 30.11.22; published 13.01.23

Please cite as:
Suh B, Yu H, Kim H, Lee S, Kong S, Kim JW, Choi J
Interpretable Deep-Learning Approaches for Osteoporosis Risk Screening and Individualized Feature Analysis Using Large
Population-Based Data: Model Development and Performance Evaluation
J Med Internet Res 2023;25:e40179
URL: https://www.jmir.org/2023/1/e40179
doi: 10.2196/40179
PMID: 36482780

J Med Internet Res 2023 | vol. 25 | e40179 | p. 18https://www.jmir.org/2023/1/e40179
(page number not for citation purposes)

Suh et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.1016/j.bone.2012.05.018
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22659406&dopt=Abstract
http://dx.doi.org/10.1007/s00198-010-1319-x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20552328&dopt=Abstract
http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.1016/j.engappai.2022.104974
http://dx.doi.org/10.1109/tnsre.2019.2891525
https://europepmc.org/abstract/MED/29570752
http://dx.doi.org/10.1115/1.4039677
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29570752&dopt=Abstract
https://arxiv.org/pdf/2006.05714.pdf
https://www.jmir.org/2023/1/e40179
http://dx.doi.org/10.2196/40179
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36482780&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


©Bogyeong Suh, Heejin Yu, Hyeyeon Kim, Sanghwa Lee, Sunghye Kong, Jin-Woo Kim, Jongeun Choi. Originally published
in the Journal of Medical Internet Research (https://www.jmir.org), 13.01.2023. This is an open-access article distributed under
the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet
Research, is properly cited. The complete bibliographic information, a link to the original publication on https://www.jmir.org/,
as well as this copyright and license information must be included.

J Med Internet Res 2023 | vol. 25 | e40179 | p. 19https://www.jmir.org/2023/1/e40179
(page number not for citation purposes)

Suh et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

