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Abstract

Emergency medicine and its services have reached a breaking point during the COVID-19 pandemic. This pandemic has highlighted
the failures of a system that needs to be reconsidered, and novel approaches need to be considered. Artificial intelligence (AI)
has matured to the point where it is poised to fundamentally transform health care, and applications within the emergency field
are particularly promising. In this viewpoint, we first attempt to depict the landscape of AI-based applications currently in use in
the daily emergency field. We review the existing AI systems; their algorithms; and their derivation, validation, and impact
studies. We also propose future directions and perspectives. Second, we examine the ethics and risk specificities of the use of AI
in the emergency field.
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Introduction

Emergency Services Crowding Effects
Emergency departments (EDs) and related services such as
intensive care units and emergency medical dispatch (EMD)
have recently been in the spotlight owing to the COVID-19
pandemic. The fragility of the emergency system has been
exposed by overcrowded services, extensive waiting times, and
exhausted staff struggling to respond to exceptional situations.
Even during times of regular activity, the national efforts to
improve waiting times and optimize the health care pathway
for patients have underscored the necessity of reconsidering the
emergency system. Indeed, the number of ED visits worldwide
has increased faster than the rate of population growth in the
past decades [1-3]. The identified causes of increasing ED
attendance include nonurgent visits, frequent visitors, extended
boarding times, staff shortages, and repeated reductions of
downstream beds [4]. The negative effects of ED crowding
include impact on several patient-oriented outcomes such as

mortality [5-7], complication rates [1], walkouts [8], time to
treatment [1,9], satisfaction [10], and length of stay [11].
Furthermore, ED crowding has been identified as a major stress
factor for health care professionals, leading to burnout [12] and
medical errors [13]. So far, solutions and efforts have mainly
focused on improving patient workflow within the ED; however,
a more comprehensive approach appears more effective [14].
Solutions provided by artificial intelligence (AI) could be one
of the building blocks of a system-wide improvement for
emergency medicine and services.

Novel Approaches for Reshaping Emergency Medicine
The field of emergency medicine has received considerable
interest in the application of AI to health care owing to the
unique nature of this medical practice. With challenges related
to organization and coordination as well as the need for rapid
and accurate decision-making for patients categorized as high
acuity, novel approaches provided by AI are promising in
emergency medicine and services. AI techniques have already
been shown to be promising for improving diagnosis, imaging
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interpretation, triage, and medical decision-making within an
ED setting [15]. However, most research on AI in emergency
medicine is retrospective and has not led to applications beyond
the proof of concept. Therefore, the potential for AI applications
in routine clinical care settings is yet to be achieved. Critical
appraisal of evidence supporting whether a clinical digital
solution involving AI has an impact on patient outcomes should
be mandatory [16]. Specifically, an independent evaluation by
an objective independent entity (or authorized entities), both
during development and use, should be performed. The
independent evaluation would address verification, validation,
and impact on patient outcomes and safety. To date, few system

suppliers have challenged their products and services in terms
of key health metrics [17]. However, some applications have
already been deployed for prehospital, EMD, and ED (Figure
1). In this contribution, we attempt to depict the landscape of
AI-based applications currently used in the daily emergency
field. For each section, we will provide a context based on recent
reviews, the AI applications’ algorithms or models used (if
available), how they were validated, and whether the desired
impact on patients’ outcomes was assessed. We also propose
future directions and perspectives. Our second objective is to
examine the legal and ethical specificities of AI use in the
emergency field.

Figure 1. Artificial intelligence’s business landscape in emergency medicine in 2022. AI: artificial intelligence; ED: emergency department; EMD:
emergency medical dispatch.

Actual and Possible Applications of AI for Emergency
Services
The journey of a patient who requires care in the ED includes
several steps that can or could be impacted by AI (Figure 2).

Before coming to an ED, several steps can be carried out such
as checking symptoms on the internet and contacting the
emergency call center or their general practitioner.
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Figure 2. The emergency patient journey and where artificial intelligence is making or can make an impact. AI: artificial intelligence; ED: emergency
department; EMD: emergency medical dispatch.

Prehospital

Self-triage
The use of patient-facing clinical decision support systems
(CDSSs) has continuously increased in recent years [18]. Tools
assisting laypersons in their self-assessment of whether and
where to seek urgent professional medical care and for what
diagnoses based on the users’ input of symptoms and medical
history are termed symptom checkers. To date, symptom
checkers provided by free websites or mobile apps have proven
to be inconsistent, supplying generally risk-averse advice and
often recommending more urgent care than necessary [19,20].
Digital tools that impact care delivery and behaviors should
undergo rigorous evaluation that enables evidence-based
determination of their efficacy. However, evaluations of the
effectiveness of self-sorting apps often provide limited evidence
as they rely heavily on observational studies [21]. Schmieding
et al [22] recently assessed the triage accuracy of 22 symptom
checkers and showed that their performance did not improve
between 2015 and 2020. For 2 cases of use, the triage
performance decreased (advice on when emergency care is
needed and when no health care is required for the moment).

The apps sample of 2020 less frequently mistook self-care cases
and nonemergency cases for emergencies; at the same time, it
more often misclassified emergencies as nonemergencies [22].
Regarding the algorithms or models used by these proprietary
websites or apps, information about their architecture,
development, and validation is sparse. When the information
is available, most symptom checkers and their decision support
systems rely on probabilistic or graphical algorithms (Bayesian
decision trees or Bayesian-directed graphs [23-28]). Some apps,
such as Babylon Health [29], use a chatbot that presents the
user with unique or multiple-choice questions for symptom
assessment [30]. Although there is no clear explanation of the
algorithm used by Babylon, the team has released open-sourced
Neural Temporal Point Processed models [31], which are
integrated into an encoder-decoder framework based on deep
learning. This indicates that the app likely uses this type of
model [32]. To ensure the safety of symptom checker users,
transparency about the algorithms used should be maintained.
Further research and development also seem necessary for
improving these self-sorting tools. The use of deep learning
models for these apps should be considered to attempt improving
their limited efficacy (Textbox 1).
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Textbox 1. Highlights of actual self-sorting and symptom checker apps and websites.

• Multiple proprietary self-sorting apps

• Lack of validation studies

• Weak evidence for their efficacy

• Algorithms often undisclosed

Improving EMD

Overview

Prehospital emergency care and ambulance demands have
substantially increased over the past decade [33-35]. EMD
involves the receipt and management of demands for urgent
medical assistance. It encompasses 2 main dimensions: call
answering, where emergency medical calls are received and
events are classified according to their priority (triaged), and
coordinating, where the best available resources are dispatched
to manage the event.

EMD Data Entry

Emergency medical dispatchers at EMD centers play a pivotal
role in coordinating prehospital care. The interaction between
the dispatcher and patient results in documentation that can be
guided (structured form), semiguided (semistructured), or free
(unstructured). Although effective in narrow and predictable
domains, structured data entry can be quite slow when events
are wide ranging and heterogeneous. To address this issue, the
already-in-use Corti [36] system assists emergency dispatchers
by analyzing the caller’s speech and description. This system
provides advice on which questions to ask next, indicating when
a patient may have a particular presentation, such as myocardial
infarction or stroke. It also helps in data extraction, where the
system can extract and pull information on the caller’s address
and location to reduce the time needed to complete the call and
dispatch emergency medical services. The framework of Corti
contains 2 models: an automatic speech recognition (ASR)
model that transcribes speech to text and an out of hospital
cardiac arrest (OHCA) detection model that predicts OHCA
events from transcribed speech in real time. The ASR is a deep
neural network using a model based on Connectionist Temporal
Classification [37]. This end-to-end (E2E) deep learning
framework is based on a recurrent neural network, and the
network outputs are transformed into a conditional probability
distribution over label sequences (letters, words, or sentences
of the caller). The network can then be used as a classifier by
selecting the most probable label for a given input sequence
[38]. For each second of raw audio, the classifier predicts
whether there is an OHCA based on the accumulated audio
sequence [36]. The efficacy of the AI-guided system provided
by Corti was assessed for OHCA by Byrsell et al [36], and it
was shown that the E2E model recognized OHCA faster than
dispatchers. Despite the promising results for OHCA, the study
assessing the system was retrospective, and other critical
conditions were not tested.

Semistructured or free-structured text observations are the most
frequently used input format for EMD, according to Miller et
al [39]. If dispatchers require this format to be continued in the

future, solutions to facilitate, speed up, and optimize this type
of input should be considered. Computed free text involves
natural language processing (NLP), and a recent breakthrough
revolutionized this area in 2018 when the Transformer
architecture was introduced by Vaswani et al [40] in “Attention
is all you need.” The Transformer aims to solve
sequence-to-sequence tasks while easily handling long-range
dependencies (problems for which the desired output depends
on inputs presented at times far in the past). It relies entirely on
self-attention to compute its input and output representations
without using sequence-aligned recurrent neural networks or
convolutions. The Transformer architecture has evolved, and
some models such as the Bidirectional Encoder Representations
from Transformers [41] and the Generative Pretrained
Transformer 2 [42] have achieved unprecedented performances
on various NLP tasks such as classification, question answering,
named entity-recognition, relation-extraction, or
sentence-similarity tasks [43,44]. A major efficient feature of
Transformers that dispatchers could benefit from is text
generation through autocompletion [45,46]. By proposing a text
complement fitting the string of characters that the dispatcher
would have started to type, the autocomplete would allow to
speed up the typing process and thus save time for the
dispatcher. The autocomplete would also limit typing errors by
entering the characters that remain to be typed without human
intervention. Finally, the autocomplete would avoid the
dispatcher having to correct their typing errors if necessary.

EMD Call Waiting Time

EMD calls can increase drastically under exceptional
circumstances such as mass shooting, wildfires, or when it is
recommended to call the center before seeking care (eg,
COVID-19) [47,48]. To reduce the waiting time before reaching
a dispatcher for very acute patients in ordinary and exceptional
situations, some solutions such as prioritized queue with the
help of an ASR model and a classifier are starting to be
considered and designed [49]. To the best of our knowledge,
such solutions have not been tested or even developed yet.

EMD Triage and Ambulance Dispatch

A large proportion of prehospital deaths when emergency
medical services are involved are preventable, with 4.9% to
11.3% potentially preventable deaths and 25.8% to 42.7%
definitely preventable deaths, as shown by Pfeifer et al [50].
The most frequent reasons evoked in this systematic review
were delayed treatment of patients with trauma (27%-58%),
management errors (40%-60%), and treatment errors
(50%-76.6%) [50]. Treatment delays and caller management
are often the result of dispatch algorithms that provide triage
of patients categorized as high acuity for critical care and
patients categorized as low acuity for diversion or nonurgent
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transport. Most of the current dispatch algorithms are rule based
or encompass a human review of rule-based algorithms [39].
To date, 2 retrospective studies have shown that statistical
machine learning and deep learning can improve or outperform
rule-based algorithms [51,52]. Further validation and impact
studies are needed to improve the current dysfunctional EMD
triage, and AI should be considered for enhancing the dispatch
algorithms. Start-up companies are making proposals to help
reduce response times and ensure data transmission from
connected devices before or during calls. For example, the
RapidSOS system is an emergency response data platform that
securely links data from connected devices and sensors directly
to first responders during emergencies. Another promising
system provided by the Israeli start-up MDGo is the use of
advanced AI technology to help dispatchers know if a car
accident requires an ambulance. When a car crash occurs, the
system creates a medical report in real time with data regarding
the forces applied on the passenger (eg, duration, moment, and
vector). These data are sent automatically to the Israeli
emergency medical services.

Improving EDs

ED Registration and Redirection
Whether generated from a symptom checker with a self-triage
step, from a call to an EMD center, or a connected device, all
collected data concerning patients could benefit EDs. Linking
emergency medical services to ED data allows a continuum of
care assessment and improvement in patient outcomes [53].
Concerns regarding interoperability, security, accurate patient
match algorithms, and the reliability of wireless networks as
potential barriers to adoption were identified in a review
conducted by Martin et al [54]. Several studies have
demonstrated the feasibility of various statistical models for
electronic health record (EHR) linking with EMD systems [54].
For example, Redfield et al [55] used logistic regression to link
Boston’s EMD electronic patient care reports with their hospital
EHR and achieved an unprecedented success rate of linkage
without manual review (99.4% sensitivity). The next few years
will likely reveal an expansion in the use of these techniques
in new ways. For patients arriving at the ED by their own means,
an initial medical screening could be performed by asking a
small number of questions using a smartphone or a digital kiosk
set up at the ED entrance. To date, all trials entailing the
redirection of patients categorized as low acuity within EDs
involved human intervention and were unsuccessful or
discontinued owing to adverse public relations incidents [14,56].
In a fully digitalized world, the acceptance of such solutions
accompanied by awareness campaigns should be more
substantial.

ED Triage
The check-in desk at the entrance of the ED is the first point of
contact for a patient requiring emergency care where
administrative agents open a specific section of the EHR. The
patient then becomes a future occupant of the ED room or
cubicle after being assessed by the triage nurse. Triage is a
sorting process in which the “triage nurse” is required to quickly
assess a large number of patients to decide the urgency of their
condition and the location in the ED in which they will be

evaluated and treated. Triage includes the attribution of a triage
score to each patient, and several scales have been developed
worldwide, with no evidence of superiority for one of them
[57,58]. Even with the adoption of 5-level triage scales, the
assessment still relies heavily on the subjective judgment of the
triage nurse, which is subject to significant variation [59].
Furthermore, Hinson et al [60], in their systematic review, found
several studies reporting low sensitivity (<80%) in identifying
patients who had critical illness outcomes or died during the
hospitalization. To address the lack of accuracy in the triage
process, several AI-based solutions have been tested, and the
authors found that there was an improvement in the health care
professionals’decision-making, thereby leading to better clinical
management and patient outcomes [61,62]. However, these
solutions were not dedicated to triage but outcomes such as
hospital admissions, mortality, or ED length of stay. An example
of a real-time AI application that is already used in 16 US
hospitals is provided by KATE [63,64]. Unlike most proprietary
software, a validation study has been published that showed
that KATE’s accuracy using an extreme gradient boosting model
[64] (Figure 3) was 27% (P<.001) higher than the average nurse
accuracy. However, no impact study has yet been published.

Similar to dispatchers, the documentation workload of triage
nurses can benefit from AI applications. Health care
professionals currently spend up to 50% of their time
documenting information in EHR [65-67]. The time spent
performing documentation tasks induces both poor and
inconsistent data, which may impact the quality of care [68,69].
Physicians prefer using free text over restrictive structured
forms, but clinical notes often lack readability owing to an
overload of acronyms and jargon [70,71], which leads to noisy,
ambiguous, and incomplete data.

A first improvement lever could be autocompletion, which
combines automatic annotation with labels of clinical concepts.
Greenbaum et al [72] and Gopinath et al [46] set up the
foundations of such technologies. The Massachusetts Institute
of Technology clinical machine learning group, led by Gopinath
et al [46], developed a tool called Medknowts that aims to
autocomplete clinical terms in the EHR while note-taking. This
tool was assessed in a real ED environment and showed a 67%
reduction in the keystroke burden of clinical concepts [46]. The
model used is fully disclosed and is based on a shallow dual
branch neural network for a minimal latency (time taken to
process 1 unit of data) of approximately 0.2 milliseconds. In
addition, MedKnowts allows the retrieval and display of
context-specific information from a patient’s EHR while
unifying the documentation and search process [73]. However,
the language aimed to be autocompleted with these systems is
strictly medical and does not reflect the reality of clinical notes
containing both nonmedical and medical concepts. Using new
NLP deep learning models such as Transformers, as mentioned
previously, can help handle the complexity of these type of data.
Transformers have reached a state-of-the-art status for ASR by
reducing the word error rate to <5 (the lower the better) on
several libraries and languages [74]. Nonetheless, some
challenges remain to be addressed such as latency, streaming,
and adaptation capabilities for implementing E2E models. The
growing progression in the technological capabilities of hospitals
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(servers and graphics cards) will allow for real-time efficiency
without affecting the workflow. Another solution is to retrieve
relevant information from real-time dialogues between health
care professionals and patients. Ideally, the system would write
down information in free-text form but would also extract
entities such as symptoms or medications and predict scores,

risk factors, and diagnosis. Vocal AI assistants such as Suki
[75] and Dragon Medical One [76] are already available for
health care practitioners, claiming a documentation time
reduction of 72%. So far, no peer-reviewed derivation or
validation studies have been found to support the legitimacy of
these solutions’ commercial claims.

Figure 3. Gradient boosting explanation.

The Digital Hospital Concept
A digital hospital concept in the image of the digital twin [77]
(Figure 4) would allow real-time bed availability. The admission
and discharge data, currently collected by the admissions
departments, could be transferred to the digital hospital, and
the estimation of the projected bed availability rate could be
made available in each department. Traditional models
estimating length of stay are mostly statistical [78] or based on
machine learning [79] using the previous length of stay as input.
The digital hospital model would be based on the same
foundation and would also be adjusted regularly owing to a
trend toward shorter lengths of stay and a shift to ambulatory

medicine. The model would also be able to adjust to external
data such as environmental and epidemiological factors (eg,
epidemics) in real time. Thus, if visibility on downstream beds
is guaranteed, not only can waiting time in the ED be reduced
when hospitalization is needed, but transfers to downstream
services can also be facilitated in the event of congestion.
Creating a network of all digital hospitals at the regional or state
level could ensure the availability and visibility of beds and
facilitate transfers between health care facilities. On a
comprehensive scale, these data can provide real-time visibility
of foreseeable ED arrivals and allow resources to be adapted
accordingly.

Figure 4. The human digital twin.

Improving the Patient’s Waiting Time Experience
Patient experience or satisfaction with ED care is a growing
area of research, and the literature has demonstrated a correlation
between high overall patient experience and improved patient
outcomes, cost-effectiveness, and other health care system goals
[80-82]. Several factors lead to better patient satisfaction in
emergency medicine such as actual waiting times [83], perceived
waiting times [84], staff-patient communication, and staff
empathy and compassion [85].

Waiting time to care in ED is the cumulative result of the time
from registration assessment and the time from assessment to
the initiation of medical care. This waiting time is modulated
by triage in EDs when dedicated triage staff are available.
Inadequate staffing has been identified as a major throughput
factor associated with longer waiting times [4]. Apart from
alleviating documentation tasks and facilitating flow
management in ED, AI cannot propose solutions when political

decisions or executives regulate staff quotas. In contrast,
perceived waiting time could benefit from innovation. Waiting
without information provided about delays can be a tedious and
frustrating experience among people seeking urgent care, and
lack of information magnifies patients’ sense of uncertainty and
increases their psychological distress sometimes, leading to
violent behaviors [86,87]. Transparency is a major determinant
of patient satisfaction related to waiting time [12,52]. Patients
provided with written or gamified ED processes tend to have a
higher level of satisfaction [88,89]. Information about the
estimated waiting time is provided by triage nurses or signboards
at the admission desk in some hospitals. However, it has been
shown that this information is not given for most patients [90].
Accurate waiting time for patients can be derived from the
digital hospital with a dashboard of available places and beds.
A screen indicating the waiting time in real time can be installed
in the waiting room [91]. Additional information such as major
events impacting the waiting time could be displayed on the
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screen (eg, a pileup on the highway), and mobilizing the
patient’s empathy could reduce self-centered perception of care
[92]. Patient-specific information on personalized waiting time
estimates can also be provided via a mobile app. A positive
environment can also improve a patient’s perception of waiting
time [93]. Distracting activities such as the use of personal cell
phones can be difficult for some patients in ED rooms. The
benefits of virtual reality glasses have already been demonstrated
in pain management [94] and in the reduction of preoperative
anxiety [95]. Hence, virtual reality glasses can also be proposed
for distraction and counseling.

ED and EMD Data Processing Enhanced by AI for
Public Health Surveillance
EDs and EMD centers generate a large volume of diverse
health-related data. For public health surveillance aims, these
data are most often used retrospectively and by sampling
hospitals [96]. Some near–real-time surveillance systems use
information extracted from EHR in addition to manual
implementation provided by health care professionals [97].
These nonexhaustive procedures are time and resource
consuming and are mostly based on voluntary work. Automatic
signal extraction from EHR would allow real-time monitoring
and ensure the responsiveness sought in any surveillance system
[98,99]. The use of new state-of-the-art NLP models such as
Transformers would bypass the difficulties in extracting
fine-grained and standardized data from the most frequently
used entries (free text) in ED and EMD.

Furthermore, with the appropriate network infrastructure, data
should be collected and analyzed in real time, enabling early,

accurate, and reliable signals of health anomalies and disease
outbreaks. In addition, AI provides an opportunity to use various
new or underexploited data sources for public health surveillance
purposes, particularly those not originally or intentionally
designed to answer epidemiological questions. A large amount
of nontraditional data are self-generated by the public through
their ubiquitous use of smart devices and social media. Public
health has the potential to use real-time longitudinal data
collected for health surveillance [100].

Ethical and Legal Challenges Posed by the
Implementation of AI in Emergency Medicine

Overview
Despite the potential of AI to improve emergency clinical care,
numerous ethical and legal challenges prevail. An ethical
principle is a statement of a duty or a responsibility, and when
applied to AI technologies for health, it covers their life cycle
(Figure 5).

A trustworthy AI is safe and fair with managed biases,
transparent and accountable, explainable and interpretable. AI
protects human autonomy, and is privacy-enhanced [101,102].
A sense of common responsibility among all the actors involved
in an AI life cycle should prevail, and health care providers
have a special duty to adhere to these requirements because of
patients’ dependence on their care, should AI systems be used
to assist health care practitioners in clinical decision-making
[103]. To lay the foundations for trustworthy AI in emergency
medicine, the ethical considerations cannot be dissociated from
the legal answers that are or will be provided.

Figure 5. Life cycle and key dimensions of an artificial intelligence (AI) system. Extracted from National Institute of Standards and Technology [101].
TEVV: test, evaluation, verification, and validation.

Safety, Fairness, and Bias Management
AI systems “should not, under defined conditions, cause physical
or psychological harm or lead to a state in which human life,
health, property, or the environment is endangered” [104].
Identifying, mitigating, and minimizing risks and potential

harms associated with AI applications, especially in emergency
medicine, are essential steps toward the development of safe
AI systems and their appropriate and responsible use [101].
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Addressing AI risks and bias prospectively and continuously
throughout the AI life cycle aims at preventing misalignment
(Figure 6) [105,106].

Current attempts to address the harmful effects of AI bias remain
focused on computational factors. However, systemic, human,

institutional, and societal factors are also important sources of
AI bias and are currently overlooked. We hereby propose to
initiate the discussion and lay the groundwork for managing
the risks associated with the use of AI in emergency medicine
by identifying the biases that can be anticipated.

Figure 6. Misaligned goals in artificial intelligence (AI).

Bias in Data and Design
Once end users (eg, health care professionals) start interacting
with an AI system or application, any early design and
development decisions that were poorly specified and based on
narrow perspectives can be exposed, leaving the process
vulnerable to additive statistical or human biases [107].

Data Set Bias Challenge

Several categories of biases are held by health data sets used
for training AI.

First, the choice of the data set for either pretraining or training
can produce a sampling bias leading to a distributional shift
[108], which is a mismatch between the data or environment in
which the system is trained and that used in operation. Would
training an AI application on EHRs of a local ED in a given
region or state with given protocols and EHR architecture lead
to the same results in the neighboring state’s university hospital?
When considering a physician-patient vocal assistant, how can
language variety (regional or social dialects), linguistic
variations (pronunciation, prosody, word choice, and grammar),
and foreign speakers be considered?

Large-scale data sets are increasingly deployed for decision
support applications, often in high-risk settings such as
emergency medicine, and off-label uses result in representation
bias harms. Low-represented populations or conditions should
be carefully handled with rebalancing techniques such as data
augmentation, oversampling, or weighting systems. Causal
models and graphs can also be used to detect direct
discrimination in the data [109,110].

Aggregation bias (or ecological fallacy) arises when false
conclusions are drawn about individuals from observing the
entire population. An example of this type of bias in an
emergency setting would be patients calling or presenting
themselves with heart failure. Symptoms of heart failure differ
in complex ways across genders [111,112]. Therefore, a model
that ignores individual differences will likely not be well suited
for gender groups in the population. This is true despite an equal
representation in the training data. Any general assumptions
regarding subgroups within the population can result in
aggregation bias [113].

The Simpson paradox should also be considered at the designing
step. The Simpson paradox is a type of aggregation bias that
arises in the analysis of heterogeneous data [114]. The paradox
arises when an association observed in aggregated data
disappears or reverses when the same data are disaggregated
into their underlying subgroups. For example, if an AI-guided
CDSS was to be built for naloxone administration, when testing
the model, if the clinical presentation severity or opioid type is
unequally distributed among groups, the Simpson paradox will
likely contribute to different rates of naloxone administration
[115].

Modifiable areal unit problem is a statistical bias in geospatial
analysis that arises when modeling data at different levels of
spatial aggregation [116]. This bias results in different trends
learned when the data are aggregated at different spatial scales.
For example, when designing an AI system for ambulance
demand, only estimates based on minimal-resolution data should
be relied upon, as ambulance demand using areal data is
potentially misleading owing to the modifiable areal unit
problem [117].

Omitted variable bias can also arise from variable selection for
an emergency AI application. For example, when considering
a triage application in which care protocols and treatment
guidelines vary based on the patient’s insurance status, omitting
this variable could lead to errors in the triage score. However,
considering this variable for better accuracy will lead to
unfairness, which is already present in a real-world setting.

High-quality input data are essential for constructing realistic
AI systems. Missing data bias is common in EHR data input
quality management, and its gestion should be considered during
the design step [118]. Several authors suggest that explicitly
representing the presence or absence of data in the underlying
logic of a CDSS can improve prediction performance [119].

Owing to the specificity of ED activities, data entry also comes
with several biases such as recall bias (as health care
practitioners often enter data several minutes or hours after the
emergency has occurred) or confirmation bias (as health care
practitioners often rely on heuristic-based decisions [120]). It
has recently been shown that serious games can improve
physicians’ heuristic judgment by providing them with a

J Med Internet Res 2023 | vol. 25 | e40031 | p. 8https://www.jmir.org/2023/1/e40031
(page number not for citation purposes)

Chenais et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


simulated experience. Additional experiments could lead to
better data capture for less biased data sets [121].

Human biases, whether conditioned socially or cognitive, may
influence data selection, preprocessing, annotation (attributing
labels to an unlabeled data set), and analysis process. Annotator
biases could lead to biases in the training or test data set. Hence,
proper training on the annotation task, sufficient incentives,
facilitating background and expertise diversity among annotators
(eg, nurses, physicians, researchers, and students), and the
inclusion of a follow-up procedure with agreement evaluation
could help in reducing these label biases [122].

Systemic institutional biases are also expected in the health data
sets used to model the underlying AI applications. The issue of
“flattening” the societal and behavioral factors within the data
sets themselves is problematic but often overlooked [123]. If
these biases are left unattended, AI applications are likely to
reproduce human bias such as triage errors for women, older
adults, and minor ethnicities [124,125].

Bias in AI Model Choice and Validation

The choice of models and their training process is a crucial step
in the AI life cycle, and multiple biases can result from this.
Most AI applications presented in the Actual and Possible
Applications of AI for Emergency Services section are based on
NLP, and concerns regarding the biases introduced by the
growing use of large language models (ie, Bidirectional Encoder
Representations from Transformers, Generative Pretrained
Transformer 2, and XLNET) are relevant [126].

Semantic Biases

Embeddings are the most common text inputs represented in
NLP systems, and they have been shown to detect racial and
gender biases in training data [127]. As large language models
are pretrained on almost the entire text corpus available from
the internet, they are prone to the same societal biases as those
that prevail on the internet. Semantic biases hold not only for
word embeddings but also for contextual representations.
Debiasing sentence representation is at the heart of the efforts
of some research teams. However, the impact and applicability
of debiased embeddings are unclear for a wide range of
downstream tasks [128].

Algorithmic Effect

The algorithmic complexity can vary greatly from one AI model
to another. The number of parameters that mathematically
encode the training data can range from 1 to 1 trillion. Simple
models with fewer parameters are often used because they tend
to be cheaper to build, have better latency and better
generalizability, are more explainable and transparent, and are
easier to implement. However, these models can exacerbate
statistical biases because restrictive assumptions about the
training data often do not hold with nuanced demographic data.
Complex models are often used for nonlinear and multimodal
data such as text and images. These models can capture latent
systemic biases in ways that are difficult to recognize and
predict. Expert systems, another AI paradigm, can encode
cognitive and perceptual biases in the accumulated knowledge
of practitioners from which the system is designed to draw.

The Objective Function Bias

The choice of the model’s objective function, upon which the
model’s definition of accuracy is based, can reflect bias. In an
emergency context, decisions must often be taken rapidly,
meaning that AI should not increase the time required to reach
a decision that would divert the patient to appropriate care. Not
taking the vital and time context into consideration during model
selection could harm patients. In addition to task-specific
metrics, streaming and adaptation must be considered.

Validation Bias

Performing tests on an AI system involved in health care under
optimal conditions is challenging. Rigorous simulation and
in-domain testing of time-specific windows or given locations
should be performed before generalization. Randomized
controlled trials and prospective studies in compliance with
guidelines specific to AI interventions such as CONSORT-AI
(Consolidated Standards of Reporting Trials–AI) [129] or
SPIRIT-AI (Standard Protocol Items: Recommendations for
Interventional Trials–AI) [130] should be conducted to ensure
the transparency and validation of the application. The
CONSORT-AI extension recommends that investigators provide
clear descriptions of the AI intervention, including instructions
and skills required for use, the setting in which the AI
intervention is integrated, the handling of inputs and outputs of
the AI intervention, the human-AI interaction, and the analysis
of error cases.

Bias in Deployment

Inclusiveness Bias

AI should encourage equitable use in emergency and primary
care independent of age, gender, ethnicity, income, language
spoken, or ability to comprehend. When considering a
smartphone app or a digital lock at the entrance of an ED,
different languages should be proposed. Accessibility devices
for disabilities (visual, hearing, moving, and reading
impairments) should also be made available. Access to these
technologies is particularly challenging for older adults, and
alternative solutions should be proposed for this population.

Automation Complacency

Health care practitioners may have a propensity to trust
suggestions from AI decision support systems, which summarize
large numbers of inputs into automated real-time predictions,
while inadvertently discounting relevant information from
nonautomated systems. Some information about the visual,
behavioral, and intuitive analysis of a patient does not
necessarily lead to rigorous documentation in EHR, yet this
information contributes to clinical decision-making. Moreover,
can this type of information can be captured by an AI model?
Fully relying on a triage score prediction provided by an AI
application without the necessary hindsight toward the added
value of one’s experience, common sense, and observation skills
could lead to inaccurate resource allocation or priority levels
for patients during triage.

Selective Adherence

In contrast, health care practitioners can selectively adopt the
AI advice when it matches their preexisting beliefs and
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stereotypes, leading to biases in the overall performance of the
system.

Monitoring

Continuous measurement and monitoring of an algorithm’s
performance is necessary to assess whether it has a detrimental
impact on patients or groups of patients. Tests and evaluations
should cover the potential differential performance of the model
according to age, gender, and relevant characteristics. As health
care facilities benefit from quality and safety certification by
public health and governmental agencies, AI technologies in
health care should be audited periodically and externally. The
report of these evaluations should be made public and intelligible
to ensure transparency. In addition, assessing algorithm errors
or deviations from human decisions can lead to reinforcement
learning and an improvement in the model. Safe AI refers to
the ability to modify misaligned systems. For this purpose,
adversarial training procedures should be developed both as
part of the training phase and the implementation.

Fairness and Inclusiveness
Fairness in AI includes concerns for equality and equity by
addressing issues such as bias and discrimination. Fairness
standards can be complex and difficult to define in emergency
medicine because of disparities across health care systems (eg,
in the United States, where hospital care protocols and treatment
guidelines vary depending on the patient’s insurance status),
policies, and geographic areas.

Inclusiveness requires that AI used in health care be tailored to
support the broadest possible appropriate and equitable use and
access, regardless of age, gender, income, ability, ethnicity,
language spoken, or ability to comprehend. AI should be
developed, deployed, and monitored by people from diverse
disciplines, expertise, backgrounds, and cultures. AI technology
should be designed and evaluated by those required to use the
system including patients (who are themselves diverse).

Transparency, Accountability, and Liability
In the interest of patient safety and trust, a certain amount of
transparency must be ensured. Transparency reflects the extent
to which information about an AI system or application is
available to individuals. Its scope ranges from design decisions
to training data, the structure of the model, its intended use case,
and how and when deployment or end-user decisions were made
and by whom. Transparency and participation can be increased
by the use of open-source software for the underlying design

of an AI technology or by making the source code of the
software publicly available (eg, Babylon Health). However,
there may be some legitime issues related to intellectual property
protection [131].

The use of AI technologies in health care requires the
assignment of responsibility within complex systems in which
responsibility is distributed among different actors. When
medical decisions made by AI technologies harm individuals,
the responsibility and accountability processes must clearly
identify the relative roles of manufacturers and clinical users in
that harm. This is an evolving challenge that remains unsolved
in the laws of most countries [132]. Institutions have not only
a legal responsibility but also a duty to take responsibility for
the decisions made by the algorithms they use. To avoid the
diffusion of liability, a seamless liability model (“collective
responsibility”), in which all stakeholders involved in the
development and deployment of an AI technology are held
accountable, can encourage all actors to act responsibly and
minimize harm. Another proposition made by Maliha et al [133]
is the creation of a compensation program that does not consider
liability but instead assesses fees on stakeholders.

Health care practitioners and health systems may be liable for
malpractice or negligence. Imagine a dispatcher fully relying
on an AI application that did not correctly classify the patient
as high risk of having an OHCA, inducing delay in assistance
and eventually death. To what extent would the dispatcher be
liable for malpractice? So far, tort law protects health
practitioners from liability as long as they follow the standards
of care, regardless of its effectiveness in a particular case. AI
involvement in emergency medicine has induced a previously
unregulated paradigm shift. Possible legal outcomes depend on
whether the AI application’s recommendation follows the
standard of care and on the AI accuracy, practitioner action,
and patient outcome, as proposed by Price et al [134] (Table
1).

Clinical malpractice, whether involving AI or not, leading to
injury often induces compensation, as mentioned in Table 1.
ED physicians already have higher rates of malpractice
insurance owing to the higher risk of lawsuits. Does the
malpractice insurer encompass the use of AI in high-risk fields
such as emergency medicine? If so, how do we ensure that
health care professionals receive the necessary insurance
coverage? How can health care professionals be defended in
court when they are threatened by claims involving AI? These
questions remain to be answered by the legal community.

J Med Internet Res 2023 | vol. 25 | e40031 | p. 10https://www.jmir.org/2023/1/e40031
(page number not for citation purposes)

Chenais et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 1. Examples of potential legal outcomes related to artificial intelligence (AI) use in clinical practice [134].

Legal outcome (probable)Patient outcomePractitioner actionAI recommendation and accuracy

Standard of care

No injury and no liabilityGoodFollowsCorrect

Injury and liabilityBadRejectsCorrect

Injury but no liabilityBadFollowsIncorrect (standard of care is incorrect)

No injury and no liabilityGoodRejectsIncorrect (standard of care is incorrect)

Non–standard of care

No injury and no liabilityGoodFollowsCorrect (standard of care is incorrect)

Injury but no liabilityBadRejectsCorrect (standard of care is incorrect)

Injury and liabilityBadFollowsIncorrect

No injury and no liabilityGoodRejectsIncorrect

Explainability and Interpretability
Explainability refers to a representation of the mechanisms
underlying the operation of an algorithm or model, whereas
interpretability refers to the meaning of an AI system’s output.
Laws and regulations such as the European General Data
Protection Regulation (GDPR) state that automated (or guided)
decision-making should come along with the logic involved, as
well as the significance and the envisaged consequences of such
processing for the data subject (Article 13{2}). When
considering the possible application of emotion detection in
voice during emergency calls to detect urgent conditions, the
transparency and explainability of an AI solution is challenging.
In emergency situations, the time requirements and explanation
details collide. Thus, information regarding the outputs of an
AI application should be meaningful and straightforward.
Traditional machine learning models are mostly based on
techniques that are inherently explainable. In contrast, deep
learning models are considered as “black boxes” and have a
higher computational cost (memory requirements and inference
time). Explainable AI (XAI) is a recent field of research that
attempts to provide solutions to confer trust in AI for
practitioners [135]. XAI has additional features that enable
better interpretability for end users. These features or
explanations are provided for the model’s process as a whole
(global) or for an individual prediction (local). This explanation
emerges directly from the prediction process (self-explaining)
versus processing post hoc [136]. Depending on the
stakeholder’s expectations, the explanations and the way they
are provided differ. There is a lack of consensus about which
explanations can be used in different health care settings and
how to measure them. Most studies have focused on subjective
measurements, such as user satisfaction, goodness of
explanation, acceptance, and trust in the system [137]. Further
studies are required to evaluate the performance of XAI in health
care settings.

Autonomy

For Emergency Health Care Providers

The adoption of AI in health care will lead to situations in which
decision-making power can be, or is at least partially, transferred
to machines. Protecting autonomy implies that humans remain

in control of medical and health care system decisions. The
opacity and “black-box” problem of an AI system [138] can
make it difficult for health care professionals to ascertain how
the system arrived at a decision and how an error may occur.
How can health care providers be expected to remain in full
control of their AI-assisted decisions when interpreting AI
decisions is opaque even for developers? To what extent should
health care providers inform patients that they do not fully
interpret the recommendation provided by the AI system? AI
systems should be designed to assist health care providers in
making informed decisions. Moreover, to account for an AI
application, ranking decisions and providing confidence score
should be mandatory. For example, in the case of an emergency
triage score, for each score proposed by an AI system, the
predictions with highest accuracy should be given along with
their associated probabilities.

For Patients

AI technology should not be used without the patient’s valid
informed consent. Owing to the patient’s sometimes
life-threatening condition, consent based on clear and intelligible
information is not always feasible. Therefore, the responsibility
for making an AI-assisted decision is shifted to health care
professionals. Informed consent and its exceptions, without the
use of AI, are equally regulated in the United States and Europe,
with a tendency to not render practitioners liable for decisions
taken in critical situations [139]. However, these statutory
exceptions do not protect against litigation for malpractice and
lack of informed consent [140]. Should health care practitioners
use the AI-guided CDSS when obtaining informed consent is
not possible? European Union has taken several steps to address
the issue of liability when AI is involved in clinical
decision-making. GDPR Article 13 (2): “[...] the controller shall,
at the time when personal data are obtained, provide the data
subject with the following further information necessary to
ensure fair and transparent processing: (f) the existence of
automated decision-making, including profiling, referred to in
Article 22 (1) and (4) and, at least in those cases, meaningful
information about the logic involved, as well as the significance
and the envisaged consequences of such processing for the data
subject.”
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Under Article 22 (1) and (3), “The data subject (ie, the patient)
shall have the right not to be subject to a decision based solely
on automated processing, including profiling, which produces
legal effects concerning him or her or similarly significantly
affects him or her” unless the decision is “based on the data
subject’s explicit consent.” However, the GDPR does not
provide regulations for specific situations such as those
mentioned in Transparency, Accountability, and Liability
section, but the European Commission is currently working on
a liability directive to address and regulate liability for AI use
[141,142].

Privacy
Privacy generally refers to norms and practices that help to
preserve individual autonomy, identity, and dignity.
Privacy-related values, such as anonymity, confidentiality, and
control, should generally guide choices in the design,
development, and deployment of AI systems. For example, the
characteristics of AI and the novel risks associated with privacy
protection are addressed in the European GDPR. Developing a
compatible international framework to protect personal
information would benefit stakeholders, and particularly
patients, involved in AI for health care [143]. Clear information
regarding the use of patient data for AI development purposes
should be made available at any point of the emergency care
trajectory. The right to erasure (right to be forgotten) as stated
by GDPR Article 17 (“the data subject shall have the right to
obtain from the controller the erasure of personal data
concerning him or her without undue delay and the controller
shall have the obligation to erase personal data without undue
delay under given conditions”) should be made possible,
although it is problematic for AI developers.

Conclusions
AI has gained increasing attention owing to its potential
advantages in health care and especially in emergency medicine

for which several applications are currently used. Most ED and
EMD AI applications are based on NLP and ASR because of
the privileged documentation medium of free or semistructured
text or the practitioner-patient interaction. There are limited
studies on the types of models used and their validation methods.
We noted a lack of evidence for symptom checkers with
decreasing performance over time. Overall, AI-based
applications in emergency medicine lack proper derivation,
validation, or impact evaluations that are performed rigorously
and independently.

Building a trustworthy, safe, and XAI requires a holistic
approach that encompasses all sociotechnical aspects involved.
Human factors such as participatory design and multistakeholder
approaches are important for building such AI systems.
Inclusiveness begins at the very beginning of the design step,
with the inclusion of stakeholders (including end users) from
diverse disciplines, expertise, backgrounds, and culture. All
possible biases and risks should be identified and documented
before any initiation, and they should be monitored
continuously.

However, when emergency medicine is concerned with the
development of AI applications, several principles mentioned
above collide, and trade-offs must be determined. How can we
determine the trade-off among interpretability and performance,
time, and explainability? How can transparency be ensured
when intellectual property is involved? How can liability be
determined when AI harms?

AI should alleviate the high burden placed on health care
professionals, but despite the ethical foundations laid, the actors
gravitating around health care systems such as legislators,
regulatory agencies, and insurers are not federated to ensure the
safety of stakeholders.

Acknowledgments
The activities of AHeaD team as part of Bordeaux Public Health Center are supported by the Institut National de la Santé et de
la Recherche Médicale (INSERM), University of Bordeaux, and Bordeaux University Hospital. This project was supported by
the Region Nouvelle-Aquitaine (project AAPR2020I-2019-8140810).

Authors' Contributions
GC, EL, and CGJ designed the review. GC drafted the paper. The paper was revised by all the authors.

Conflicts of Interest
None declared.

References

1. Pines J, Pollack CV, Diercks DB, Chang AM, Shofer FS, Hollander JE. The association between emergency department
crowding and adverse cardiovascular outcomes in patients with chest pain. Acad Emerg Med 2009 Jul;16(7):617-625 [FREE
Full text] [doi: 10.1111/j.1553-2712.2009.00456.x] [Medline: 19549010]

2. Richardson D, Kelly A, Kerr D. Prevalence of access block in Australia 2004-2008. Emerg Med Australas 2009
Dec;21(6):472-478. [doi: 10.1111/j.1742-6723.2009.01241.x] [Medline: 20002717]

3. Hooker EA, Mallow PJ, Oglesby MM. Characteristics and trends of emergency department visits in the United States
(2010-2014). J Emerg Med 2019 Mar;56(3):344-351. [doi: 10.1016/j.jemermed.2018.12.025] [Medline: 30704822]

4. Hoot NR, Aronsky D. Systematic review of emergency department crowding: causes, effects, and solutions. Ann Emerg
Med 2008 Aug;52(2):126-136 [FREE Full text] [doi: 10.1016/j.annemergmed.2008.03.014] [Medline: 18433933]

J Med Internet Res 2023 | vol. 25 | e40031 | p. 12https://www.jmir.org/2023/1/e40031
(page number not for citation purposes)

Chenais et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://onlinelibrary.wiley.com/doi/10.1111/j.1553-2712.2009.00456.x
https://onlinelibrary.wiley.com/doi/10.1111/j.1553-2712.2009.00456.x
http://dx.doi.org/10.1111/j.1553-2712.2009.00456.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19549010&dopt=Abstract
http://dx.doi.org/10.1111/j.1742-6723.2009.01241.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20002717&dopt=Abstract
http://dx.doi.org/10.1016/j.jemermed.2018.12.025
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30704822&dopt=Abstract
https://europepmc.org/abstract/MED/18433933
http://dx.doi.org/10.1016/j.annemergmed.2008.03.014
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18433933&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


5. Chalfin DB, Trzeciak S, Likourezos A, Baumann BM, Dellinger RP. Impact of delayed transfer of critically ill patients
from the emergency department to the intensive care unit*. Critical Care Med 2007;35(6):1477-1483. [doi:
10.1097/01.ccm.0000266585.74905.5a]

6. Richardson DB. Increase in patient mortality at 10 days associated with emergency department overcrowding. Med J Aust
2006 Mar 06;184(5):213-216. [doi: 10.5694/j.1326-5377.2006.tb00204.x] [Medline: 16515430]

7. Sprivulis PC, Da Silva J, Jacobs IG, Jelinek GA, Frazer AR. The association between hospital overcrowding and mortality
among patients admitted via Western Australian emergency departments. Medical J Aus 2006 Mar 06;184(5):208-212.
[doi: 10.5694/j.1326-5377.2006.tb00203.x]

8. Stock L, Bradley G, Lewis J, Baker D, Sipsey J, Stevens C. Patients who leave emergency departments without being seen
by a physician: magnitude of the problem in Los Angeles County. Ann Emerg Med 1994 Feb;23(2):294-298 [FREE Full
text] [doi: 10.1016/s0196-0644(94)70043-5] [Medline: 8304611]

9. Pines J, Hollander J, Localio A, Metlay J. The association between emergency department crowding and hospital performance
on antibiotic timing for pneumonia and percutaneous intervention for myocardial infarction. Acad Emerg Med 2006
Aug;13(8):873-878 [FREE Full text] [doi: 10.1197/j.aem.2006.03.568] [Medline: 16766743]

10. Sun BC, Adams J, Orav E, Rucker DW, Brennan TA, Burstin HR. Determinants of patient satisfaction and willingness to
return with emergency care. Annals Emergency Med 2000 May;35(5):426-434. [doi: 10.1067/mem.2000.104195]

11. Krochmal P, Riley TA. Increased health care costs associated with ED overcrowding. Am J Emerg Med 1994
May;12(3):265-266. [doi: 10.1016/0735-6757(94)90135-x] [Medline: 8179727]

12. Adriaenssens J, De Gucht V, Maes S. Determinants and prevalence of burnout in emergency nurses: a systematic review
of 25 years of research. Int J Nurs Stud 2015 Feb;52(2):649-661. [doi: 10.1016/j.ijnurstu.2014.11.004] [Medline: 25468279]

13. Kulstad EB, Sikka R, Sweis RT, Kelley KM, Rzechula KH. ED overcrowding is associated with an increased frequency
of medication errors. Am J Emerg Med 2010 Mar;28(3):304-309. [doi: 10.1016/j.ajem.2008.12.014] [Medline: 20223387]

14. Morley C, Unwin M, Peterson GM, Stankovich J, Kinsman L. Emergency department crowding: a systematic review of
causes, consequences and solutions. PLoS One 2018;13(8):e0203316 [FREE Full text] [doi: 10.1371/journal.pone.0203316]
[Medline: 30161242]

15. Kirubarajan A, Taher A, Khan S, Masood S. Artificial intelligence in emergency medicine: a scoping review. J Am Coll
Emerg Physicians Open 2020 Dec 07;1(6):1691-1702 [FREE Full text] [doi: 10.1002/emp2.12277] [Medline: 33392578]

16. Mathews SC, McShea MJ, Hanley CL, Ravitz A, Labrique AB, Cohen AB. Digital health: a path to validation. NPJ Digit
Med 2019 Oct 17;2(1):38 [FREE Full text] [doi: 10.1038/s41746-019-0111-3] [Medline: 31304384]

17. Lewis TL, Wyatt JC. mHealth and mobile medical Apps: a framework to assess risk and promote safer use. J Med Internet
Res 2014 Sep 15;16(9):e210 [FREE Full text] [doi: 10.2196/jmir.3133] [Medline: 25223398]

18. Boulos MN, Brewer AC, Karimkhani C, Buller DB, Dellavalle RP. Mobile medical and health apps: state of the art, concerns,
regulatory control and certification. Online J Public Health Inform 2014;5(3):229 [FREE Full text] [doi:
10.5210/ojphi.v5i3.4814] [Medline: 24683442]

19. Hill MG, Sim M, Mills B. The quality of diagnosis and triage advice provided by free online symptom checkers and apps
in Australia. Med J Aust 2020 Jun 11;212(11):514-519. [doi: 10.5694/mja2.50600] [Medline: 32391611]

20. Semigran H, Linder J, Gidengil C, Mehrotra A. Evaluation of symptom checkers for self diagnosis and triage: audit study.
BMJ 2015 Jul 08;351:h3480 [FREE Full text] [doi: 10.1136/bmj.h3480] [Medline: 26157077]

21. Chambers D, Cantrell AJ, Johnson M, Preston L, Baxter SK, Booth A, et al. Digital and online symptom checkers and
health assessment/triage services for urgent health problems: systematic review. BMJ Open 2019 Aug 01;9(8):e027743
[FREE Full text] [doi: 10.1136/bmjopen-2018-027743] [Medline: 31375610]

22. Schmieding ML, Kopka M, Schmidt K, Schulz-Niethammer S, Balzer F, Feufel MA. Triage accuracy of symptom checker
apps: 5-year follow-up evaluation. J Med Internet Res 2022 May 10;24(5):e31810 [FREE Full text] [doi: 10.2196/31810]
[Medline: 35536633]

23. Baker A, Perov Y, Middleton K, Baxter J, Mullarkey D, Sangar D, et al. A comparison of artificial intelligence and human
doctors for the purpose of triage and diagnosis. Front Artif Intell 2020 Nov 30;3:543405 [FREE Full text] [doi:
10.3389/frai.2020.543405] [Medline: 33733203]

24. Middleton K, Butt M, Hammerla N, Hamblin S, Mehta K, Parsa A. Sorting out symptoms: design and evaluation of the
'babylon check' automated triage system. ArXiv Preprint posted online June 7, 2016. [doi: 10.48550/arXiv.1606.02041]

25. Bellika J, Marco L, Wynn R. A communicable disease query engine. In: Digital Healthcare Empowering Europeans.
Amsterdam: IOS Press; 2015.

26. Arnold RJ, Layton A. Cost analysis and clinical outcomes of ambulatory care monitoring in medicare patients: describing
the diagnostic odyssey. J Health Econ Outcomes Res 2015 Feb 11;2(2):161-169. [doi: 10.36469/9897]

27. Miller S, Gilbert S, Virani V, Wicks P. Patients' utilization and perception of an artificial intelligence-based symptom
assessment and advice technology in a British primary care waiting room: exploratory pilot study. JMIR Hum Factors 2020
Jul 10;7(3):e19713 [FREE Full text] [doi: 10.2196/19713] [Medline: 32540836]

28. Armstrong S. The apps attempting to transfer NHS 111 online. BMJ 2018 Jan 15;360:k156. [doi: 10.1136/bmj.k156]
[Medline: 29335297]

29. Babylon Health homepage. Babylon Health. URL: https://www.babylonhealth.com/ [accessed 2022-09-05]

J Med Internet Res 2023 | vol. 25 | e40031 | p. 13https://www.jmir.org/2023/1/e40031
(page number not for citation purposes)

Chenais et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.1097/01.ccm.0000266585.74905.5a
http://dx.doi.org/10.5694/j.1326-5377.2006.tb00204.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16515430&dopt=Abstract
http://dx.doi.org/10.5694/j.1326-5377.2006.tb00203.x
https://doi.org/10.1016/S0196-0644(94)70043-5
https://doi.org/10.1016/S0196-0644(94)70043-5
http://dx.doi.org/10.1016/s0196-0644(94)70043-5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8304611&dopt=Abstract
https://onlinelibrary.wiley.com/resolve/openurl?genre=article&sid=nlm:pubmed&issn=1069-6563&date=2006&volume=13&issue=8&spage=873
http://dx.doi.org/10.1197/j.aem.2006.03.568
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16766743&dopt=Abstract
http://dx.doi.org/10.1067/mem.2000.104195
http://dx.doi.org/10.1016/0735-6757(94)90135-x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8179727&dopt=Abstract
http://dx.doi.org/10.1016/j.ijnurstu.2014.11.004
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25468279&dopt=Abstract
http://dx.doi.org/10.1016/j.ajem.2008.12.014
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20223387&dopt=Abstract
https://dx.plos.org/10.1371/journal.pone.0203316
http://dx.doi.org/10.1371/journal.pone.0203316
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30161242&dopt=Abstract
https://europepmc.org/abstract/MED/33392578
http://dx.doi.org/10.1002/emp2.12277
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33392578&dopt=Abstract
https://doi.org/10.1038/s41746-019-0111-3
http://dx.doi.org/10.1038/s41746-019-0111-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31304384&dopt=Abstract
https://www.jmir.org/2014/9/e210/
http://dx.doi.org/10.2196/jmir.3133
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25223398&dopt=Abstract
https://europepmc.org/abstract/MED/24683442
http://dx.doi.org/10.5210/ojphi.v5i3.4814
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24683442&dopt=Abstract
http://dx.doi.org/10.5694/mja2.50600
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32391611&dopt=Abstract
http://www.bmj.com/lookup/pmidlookup?view=long&pmid=26157077
http://dx.doi.org/10.1136/bmj.h3480
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26157077&dopt=Abstract
https://bmjopen.bmj.com/lookup/pmidlookup?view=long&pmid=31375610
http://dx.doi.org/10.1136/bmjopen-2018-027743
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31375610&dopt=Abstract
https://www.jmir.org/2022/5/e31810/
http://dx.doi.org/10.2196/31810
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35536633&dopt=Abstract
https://europepmc.org/abstract/MED/33733203
http://dx.doi.org/10.3389/frai.2020.543405
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33733203&dopt=Abstract
http://dx.doi.org/10.48550/arXiv.1606.02041
http://dx.doi.org/10.36469/9897
https://humanfactors.jmir.org/2020/3/e19713/
http://dx.doi.org/10.2196/19713
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32540836&dopt=Abstract
http://dx.doi.org/10.1136/bmj.k156
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29335297&dopt=Abstract
https://www.babylonhealth.com/
http://www.w3.org/Style/XSL
http://www.renderx.com/


30. Ayanouz S, Abdelhakim B, Benhmed M. A smart chatbot architecture based NLP and machine learning for health care
assistance. In: Proceedings of the 3rd International Conference on Networking, Information Systems & Security. 2020
Presented at: NISS2020: The 3rd International Conference on Networking, Information Systems & Security; Mar 31-Apr
2, 2020; Marrakech Morocco. [doi: 10.1145/3386723.3387897]

31. babylonhealth / neuralTPPs. GitHub. URL: https://github.com/babylonhealth/neuralTPPs [accessed 2022-09-21]
32. Enguehard J, Busbridge D, Bozson A, Woodcock C, Hammerla NY. Neural temporal point processes for modelling electronic

health records. ArXiv Preprint posted online July 27, 2020. [doi: 10.48550/arXiv.2007.13794]
33. Pittet V, Burnand B, Yersin B, Carron P. Trends of pre-hospital emergency medical services activity over 10 years: a

population-based registry analysis. BMC Health Serv Res 2014 Sep 10;14(1):380 [FREE Full text] [doi:
10.1186/1472-6963-14-380] [Medline: 25209450]

34. Cabral EL, Castro WR, Florentino DR, Viana DD, Costa Junior JF, Souza RP, et al. Response time in the emergency
services. Systematic review. Acta Cir Bras 2018 Dec;33(12):1110-1121 [FREE Full text] [doi:
10.1590/s0102-865020180120000009] [Medline: 30624517]

35. Lowthian JA, Cameron PA, Stoelwinder JU, Curtis A, Currell A, Cooke MW, et al. Increasing utilisation of emergency
ambulances. Aust Health Rev 2011;35(1):63. [doi: 10.1071/ah09866]

36. Byrsell F, Claesson A, Ringh M, Svensson L, Jonsson M, Nordberg P, et al. Machine learning can support dispatchers to
better and faster recognize out-of-hospital cardiac arrest during emergency calls: a retrospective study. Resuscitation 2021
May;162:218-226 [FREE Full text] [doi: 10.1016/j.resuscitation.2021.02.041] [Medline: 33689794]

37. Borgholt L, Havtorn J, Agić Ž, Søgaard A, Maaløe L, Igel C. Do end-to-end speech recognition models care about context?
In: Proceedings of the Interspeech 2020. 2020 Presented at: Interspeech 2020; Oct 25-29, 2020; Online. [doi:
10.21437/interspeech.2020-1750]

38. Graves A, Fernández S, Gomez F, Schmidhuber J. Connectionist temporal classification: labelling unsegmented sequence
data with recurrent neural networks. In: Proceedings of the 23rd international conference on Machine learning. 2006
Presented at: ICML '06: Proceedings of the 23rd international conference on Machine learning; Jun 25 - 29, 2006; Pittsburgh
Pennsylvania USA. [doi: 10.1145/1143844.1143891]

39. Miller M, Bootland D, Jorm L, Gallego B. Improving ambulance dispatch triage to trauma: a scoping review using the
framework of development and evaluation of clinical prediction rules. Injury 2022 Jun;53(6):1746-1755. [doi:
10.1016/j.injury.2022.03.020] [Medline: 35321793]

40. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention is all you need. arXiv Preprint posted
online June 12, 2017 [FREE Full text]

41. Devlin J, Chang MW, Lee K, Toutanova K. BERT: pre-training of deep bidirectional transformers for language understanding.
arXiv Preprint posted online October 11, 2018 [FREE Full text]

42. Radford A, Wu J, Child R, Luan D, Amodei D, Sutskever I. Language models are unsupervised multitask learners. OpenAI
blog 2019;1(8):9 [FREE Full text]

43. Rasmy L, Xiang Y, Xie Z, Tao C, Zhi D. Med-BERT: pretrained contextualized embeddings on large-scale structured
electronic health records for disease prediction. NPJ Digit Med 2021 May 20;4(1):86 [FREE Full text] [doi:
10.1038/s41746-021-00455-y] [Medline: 34017034]

44. Naseem U, Dunn AG, Khushi M, Kim J. Benchmarking for biomedical natural language processing tasks with a domain
specific ALBERT. BMC Bioinformatics 2022 Apr 21;23(1):144 [FREE Full text] [doi: 10.1186/s12859-022-04688-w]
[Medline: 35448946]

45. Amin-Nejad A, Ive J, Velupillai S. Exploring transformer text generation for medical dataset augmentation. In: Proceedings
of the Twelfth Language Resources and Evaluation Conference. 2020 Presented at: Twelfth Language Resources and
Evaluation Conference; May, 2020; Marseille, France URL: https://github.com/tensorflow/tensor2tensor [doi:
10.1007/978-1-4842-6150-7_7]

46. Gopinath D, Agrawal M, Murray L, Horng S, Karger D, Sontag D. Fast, structured clinical documentation via contextual
autocomplete. arXiv Preprint posted online July 29, 2020. [doi: 10.48550/arXiv.2007.15153]

47. Af Ugglas B, Skyttberg N, Wladis A, Djärv T, Holzmann MJ. Emergency department crowding and hospital transformation
during COVID-19, a retrospective, descriptive study of a university hospital in Stockholm, Sweden. Scand J Trauma Resusc
Emerg Med 2020 Oct 28;28(1):107 [FREE Full text] [doi: 10.1186/s13049-020-00799-6] [Medline: 33115521]

48. Saberian P, Conovaloff J, Vahidi E, Hasani-Sharamin P, Kolivand P. How the COVID-19 epidemic affected prehospital
emergency medical services in Tehran, Iran. West J Emerg Med 2020 Sep 25;21(6):110-116 [FREE Full text] [doi:
10.5811/westjem.2020.8.48679] [Medline: 33052824]

49. 911 Overflow. Devpost. URL: https://devpost.com/software/911-overflow [accessed 2022-09-05]
50. Pfeifer R, Halvachizadeh S, Schick S, Sprengel K, Jensen KO, Teuben M, et al. Are pre-hospital trauma deaths preventable?

A systematic literature review. World J Surg 2019 Oct 18;43(10):2438-2446. [doi: 10.1007/s00268-019-05056-1] [Medline:
31214829]

51. Tollinton L, Metcalf AM, Velupillai S. Enhancing predictions of patient conveyance using emergency call handler free
text notes for unconscious and fainting incidents reported to the London Ambulance Service. Int J Med Inform 2020
Sep;141:104179 [FREE Full text] [doi: 10.1016/j.ijmedinf.2020.104179] [Medline: 32663739]

J Med Internet Res 2023 | vol. 25 | e40031 | p. 14https://www.jmir.org/2023/1/e40031
(page number not for citation purposes)

Chenais et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.1145/3386723.3387897
https://github.com/babylonhealth/neuralTPPs
http://dx.doi.org/10.48550/arXiv.2007.13794
https://bmchealthservres.biomedcentral.com/articles/10.1186/1472-6963-14-380
http://dx.doi.org/10.1186/1472-6963-14-380
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25209450&dopt=Abstract
https://www.scielo.br/scielo.php?script=sci_arttext&pid=S0102-86502018001201110&lng=en&nrm=iso&tlng=en
http://dx.doi.org/10.1590/s0102-865020180120000009
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30624517&dopt=Abstract
http://dx.doi.org/10.1071/ah09866
https://linkinghub.elsevier.com/retrieve/pii/S0300-9572(21)00099-X
http://dx.doi.org/10.1016/j.resuscitation.2021.02.041
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33689794&dopt=Abstract
http://dx.doi.org/10.21437/interspeech.2020-1750
http://dx.doi.org/10.1145/1143844.1143891
http://dx.doi.org/10.1016/j.injury.2022.03.020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35321793&dopt=Abstract
http://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1810.04805
https://github.com/codelucas/newspaper
https://doi.org/10.1038/s41746-021-00455-y
http://dx.doi.org/10.1038/s41746-021-00455-y
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34017034&dopt=Abstract
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-022-04688-w
http://dx.doi.org/10.1186/s12859-022-04688-w
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35448946&dopt=Abstract
https://github.com/tensorflow/tensor2tensor
http://dx.doi.org/10.1007/978-1-4842-6150-7_7
http://dx.doi.org/10.48550/arXiv.2007.15153
https://sjtrem.biomedcentral.com/articles/10.1186/s13049-020-00799-6
http://dx.doi.org/10.1186/s13049-020-00799-6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33115521&dopt=Abstract
https://europepmc.org/abstract/MED/33052824
http://dx.doi.org/10.5811/westjem.2020.8.48679
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33052824&dopt=Abstract
https://devpost.com/software/911-overflow
http://dx.doi.org/10.1007/s00268-019-05056-1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31214829&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S1386-5056(20)30184-2
http://dx.doi.org/10.1016/j.ijmedinf.2020.104179
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32663739&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


52. Ferri P, Sáez C, Félix-De Castro A, Juan-Albarracín J, Blanes-Selva V, Sánchez-Cuesta P, et al. Deep ensemble multitask
classification of emergency medical call incidents combining multimodal data improves emergency medical dispatch. Artif
Intell Med 2021 Jul;117:102088 [FREE Full text] [doi: 10.1016/j.artmed.2021.102088] [Medline: 34127234]

53. Fix J, Ising AI, Proescholdbell SK, Falls DM, Wolff CS, Fernandez AR, et al. Linking emergency medical services and
emergency department data to improve overdose surveillance in North Carolina. Public Health Rep 2021 Nov
02;136(1_suppl):54S-61S [FREE Full text] [doi: 10.1177/00333549211012400] [Medline: 34726971]

54. Martin T, Ranney M, Dorroh J, Asselin N, Sarkar I. Health information exchange in emergency medical services. Appl
Clin Inform 2018 Oct 12;9(4):884-891 [FREE Full text] [doi: 10.1055/s-0038-1676041] [Medline: 30541153]

55. Redfield C, Tlimat A, Halpern Y, Schoenfeld DW, Ullman E, Sontag DA, et al. Derivation and validation of a machine
learning record linkage algorithm between emergency medical services and the emergency department. J Am Med Inform
Assoc 2020 Jan 01;27(1):147-153 [FREE Full text] [doi: 10.1093/jamia/ocz176] [Medline: 31605488]

56. Kirkland SW, Soleimani A, Rowe BH, Newton AS. A systematic review examining the impact of redirecting low-acuity
patients seeking emergency department care: is the juice worth the squeeze? Emerg Med J 2019 Feb 03;36(2):97-106. [doi:
10.1136/emermed-2017-207045] [Medline: 30510034]

57. Worster A, Fernandes CM, Eva K, Upadhye S. Predictive validity comparison of two five-level triage acuity scales. Eur J
Emergency Med 2007;14(4):188-192. [doi: 10.1097/mej.0b013e3280adc956]

58. Farrohknia N, Castrén M, Ehrenberg A, Lind L, Oredsson S, Jonsson H, et al. Emergency department triage scales and
their components: a systematic review of the scientific evidence. Scand J Trauma Resusc Emerg Med 2011 Jun 30;19:42
[FREE Full text] [doi: 10.1186/1757-7241-19-42] [Medline: 21718476]

59. Christ M, Grossmann F, Winter D, Bingisser R, Platz E. Modern triage in the emergency department. Dtsch Arztebl Int
2010 Dec;107(50):892-898 [FREE Full text] [doi: 10.3238/arztebl.2010.0892] [Medline: 21246025]

60. Hinson JS, Martinez DA, Cabral S, George K, Whalen M, Hansoti B, et al. Triage performance in emergency medicine: a
systematic review. Ann Emerg Med 2019 Jul;74(1):140-152. [doi: 10.1016/j.annemergmed.2018.09.022] [Medline:
30470513]

61. Fernandes M, Vieira SM, Leite F, Palos C, Finkelstein S, Sousa JM. Clinical decision support systems for triage in the
emergency department using intelligent systems: a review. Artif Intell Med 2020 Jan;102:101762. [doi:
10.1016/j.artmed.2019.101762] [Medline: 31980099]

62. Levin S, Toerper M, Hamrock E, Hinson JS, Barnes S, Gardner H, et al. Machine-learning-based electronic triage more
accurately differentiates patients with respect to clinical outcomes compared with the emergency severity index. Annal
Emergency Med 2018 May;71(5):565-74.e2. [doi: 10.1016/J.ANNEMERGMED.2017.08.005]

63. Ivanov O, Wolf L, Brecher D, Lewis E, Masek K, Montgomery K, et al. Improving ED emergency severity index acuity
assignment using machine learning and clinical natural language processing. J Emerg Nurs 2021 Mar;47(2):265-78.e7
[FREE Full text] [doi: 10.1016/j.jen.2020.11.001] [Medline: 33358394]

64. Chen T, Guestrin C. XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. 2016 Presented at: KDD '16: The 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining; Aug 13 - 17, 2016; San Francisco California USA. [doi:
10.1145/2939672.2939785]

65. Sinsky C, Colligan L, Li L, Prgomet M, Reynolds S, Goeders L, et al. Allocation of physician time in ambulatory practice:
a time and motion study in 4 specialties. Ann Intern Med 2016 Sep 06;165(11):753. [doi: 10.7326/m16-0961]

66. Gardner R, Cooper E, Haskell J, Harris DA, Poplau S, Kroth PJ, et al. Physician stress and burnout: the impact of health
information technology. J Am Med Inform Assoc 2019 Feb 01;26(2):106-114 [FREE Full text] [doi: 10.1093/jamia/ocy145]
[Medline: 30517663]

67. Carayon P, Wetterneck TB, Alyousef B, Brown RL, Cartmill RS, McGuire K, et al. Impact of electronic health record
technology on the work and workflow of physicians in the intensive care unit. Int J Med Inform 2015 Aug;84(8):578-594
[FREE Full text] [doi: 10.1016/j.ijmedinf.2015.04.002] [Medline: 25910685]

68. Chan KS, Fowles JB, Weiner JP. Review: electronic health records and the reliability and validity of quality measures: a
review of the literature. Med Care Res Rev 2010 Oct 11;67(5):503-527. [doi: 10.1177/1077558709359007] [Medline:
20150441]

69. Kossman SP, Scheidenhelm SL. Nurses' perceptions of the impact of electronic health records on work and patient outcomes.
Comput Inform Nurs 2008;26(2):69-77. [doi: 10.1097/01.NCN.0000304775.40531.67] [Medline: 18317257]

70. Smith CA, Hetzel S, Dalrymple P, Keselman A. Beyond readability: investigating coherence of clinical text for consumers.
J Med Internet Res 2011 Dec 02;13(4):e104 [FREE Full text] [doi: 10.2196/jmir.1842] [Medline: 22138127]

71. Grigonyte G, Kvist M, Velupillai S, Wirén M. Improving readability of Swedish electronic health records through lexical
simplification: first results. In: Proceedings of the 3rd Workshop on Predicting and Improving Text Readability for Target
Reader Populations (PITR). 2014 Presented at: 3rd Workshop on Predicting and Improving Text Readability for Target
Reader Populations (PITR); Apr 27, 2014; Gothenburg, Sweden. [doi: 10.3115/v1/W14-1209]

72. Greenbaum N, Jernite Y, Halpern Y, Calder S, Nathanson LA, Sontag D, et al. Contextual autocomplete: a novel user
interface using machine learning to improve ontology usage and structured data capture for presenting problems in the
emergency department. bioRxiv 2017 Apr 12. [doi: 10.1101/127092]

J Med Internet Res 2023 | vol. 25 | e40031 | p. 15https://www.jmir.org/2023/1/e40031
(page number not for citation purposes)

Chenais et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://riunet.upv.es/handle/10251/183077
http://dx.doi.org/10.1016/j.artmed.2021.102088
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34127234&dopt=Abstract
https://europepmc.org/abstract/MED/34726971
http://dx.doi.org/10.1177/00333549211012400
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34726971&dopt=Abstract
https://europepmc.org/abstract/MED/30541153
http://dx.doi.org/10.1055/s-0038-1676041
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30541153&dopt=Abstract
https://europepmc.org/abstract/MED/31605488
http://dx.doi.org/10.1093/jamia/ocz176
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31605488&dopt=Abstract
http://dx.doi.org/10.1136/emermed-2017-207045
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30510034&dopt=Abstract
http://dx.doi.org/10.1097/mej.0b013e3280adc956
https://sjtrem.biomedcentral.com/articles/10.1186/1757-7241-19-42
http://dx.doi.org/10.1186/1757-7241-19-42
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21718476&dopt=Abstract
https://europepmc.org/abstract/MED/21246025
http://dx.doi.org/10.3238/arztebl.2010.0892
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21246025&dopt=Abstract
http://dx.doi.org/10.1016/j.annemergmed.2018.09.022
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30470513&dopt=Abstract
http://dx.doi.org/10.1016/j.artmed.2019.101762
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31980099&dopt=Abstract
http://dx.doi.org/10.1016/J.ANNEMERGMED.2017.08.005
https://linkinghub.elsevier.com/retrieve/pii/S0099-1767(20)30376-7
http://dx.doi.org/10.1016/j.jen.2020.11.001
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33358394&dopt=Abstract
http://dx.doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.7326/m16-0961
https://europepmc.org/abstract/MED/30517663
http://dx.doi.org/10.1093/jamia/ocy145
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30517663&dopt=Abstract
https://europepmc.org/abstract/MED/25910685
http://dx.doi.org/10.1016/j.ijmedinf.2015.04.002
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25910685&dopt=Abstract
http://dx.doi.org/10.1177/1077558709359007
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20150441&dopt=Abstract
http://dx.doi.org/10.1097/01.NCN.0000304775.40531.67
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18317257&dopt=Abstract
https://www.jmir.org/2011/4/e104/
http://dx.doi.org/10.2196/jmir.1842
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22138127&dopt=Abstract
http://dx.doi.org/10.3115/v1/W14-1209
http://dx.doi.org/10.1101/127092
http://www.w3.org/Style/XSL
http://www.renderx.com/


73. Murray L, Gopinath D, Agrawal M, Horng S, Sontag D, Karger D. MedKnowts: unified documentation and information
retrieval for electronic health records. In: Proceedings of the 34th Annual ACM Symposium on User Interface Software
and Technology. 2021 Presented at: UIST '21: The 34th Annual ACM Symposium on User Interface Software and
Technology; Oct 10 - 14, 2021; Virtual Event USA. [doi: 10.1145/3472749.3474814]

74. Li J. Recent advances in end-to-end automatic speech recognition. APSIPA Transact Signal Inform Process 2022;11(1):e8.
[doi: 10.1561/116.00000050]

75. Using an AI assistant to reduce documentation burden in family medicine. American Academy of Family Physicians
Innovation Labs Report. 2021 Nov. URL: https://www.aafp.org/dam/AAFP/documents/practice_management/innovation_lab/
report-suki-assistant-documentation-burden.pdf [accessed 2022-10-11]

76. Nuance Dragon Medical One homepage. Nuance Dragon Medical One. URL: https://www.nuance.com/healthcare/provider
-solutions/speech-recognition/dragon-medical-one.html [accessed 2022-09-21]

77. Elayan H, Aloqaily M, Guizani M. Digital twin for intelligent context-aware IoT healthcare systems. IEEE Internet Things
J 2021 Dec 1;8(23):16749-16757. [doi: 10.1109/jiot.2021.3051158]

78. Chaou C, Chen H, Chang S, Tang P, Pan S, Yen AM, et al. Predicting length of stay among patients discharged from the
emergency department-using an accelerated failure time model. PLoS One 2017 Jan 20;12(1):e0165756 [FREE Full text]
[doi: 10.1371/journal.pone.0165756] [Medline: 28107348]

79. Bacchi S, Tan Y, Oakden-Rayner L, Jannes J, Kleinig T, Koblar S. Machine learning in the prediction of medical inpatient
length of stay. Intern Med J 2022 Feb 27;52(2):176-185. [doi: 10.1111/imj.14962] [Medline: 33094899]

80. Hojat M, Louis DZ, Markham FW, Wender R, Rabinowitz C, Gonnella JS. Physicians' empathy and clinical outcomes for
diabetic patients. Acad Med 2011 Mar;86(3):359-364. [doi: 10.1097/ACM.0b013e3182086fe1] [Medline: 21248604]

81. Kelley JM, Kraft-Todd G, Schapira L, Kossowsky J, Riess H. The influence of the patient-clinician relationship on healthcare
outcomes: a systematic review and meta-analysis of randomized controlled trials. PLoS One 2014 Apr 9;9(4):e94207 [FREE
Full text] [doi: 10.1371/journal.pone.0094207] [Medline: 24718585]

82. Richter JP, Muhlestein DB. Patient experience and hospital profitability: is there a link? Health Care Manage Rev
2017;42(3):247-257. [doi: 10.1097/HMR.0000000000000105] [Medline: 27050925]

83. Pitrou I, Lecourt A, Bailly L, Brousse B, Dauchet L, Ladner J. Waiting time and assessment of patient satisfaction in a
large reference emergency department: a prospective cohort study, France. Eur J Emergency Med 2009;16(4):177-182.
[doi: 10.1097/mej.0b013e32831016a6]

84. Thompson DA, Yarnold PR, Williams DR, Adams SL. Effects of actual waiting time, perceived waiting time, information
delivery, and expressive quality on patient satisfaction in the emergency department. Ann Emerg Med 1996
Dec;28(6):657-665. [doi: 10.1016/s0196-0644(96)70090-2] [Medline: 8953956]

85. Sonis JD, Aaronson EL, Lee RY, Philpotts LL, White BA. Emergency department patient experience: a systematic review
of the literature. J Patient Exp 2018 Jun 29;5(2):101-106 [FREE Full text] [doi: 10.1177/2374373517731359] [Medline:
29978025]

86. Crilly J, Chaboyer W, Creedy D. Violence towards emergency department nurses by patients. Accid Emerg Nurs 2004
Apr;12(2):67-73. [doi: 10.1016/j.aaen.2003.11.003] [Medline: 15041007]

87. Pich J, Hazelton M, Sundin D, Kable A. Patient-related violence at triage: a qualitative descriptive study. Int Emerg Nurs
2011 Jan;19(1):12-19. [doi: 10.1016/j.ienj.2009.11.007] [Medline: 21193163]

88. Krishel S, Baraff LJ. Effect of emergency department information on patient satisfaction. Ann Emerg Med 1993
Mar;22(3):568-572. [doi: 10.1016/s0196-0644(05)81943-2] [Medline: 8442546]

89. Hassan R, Twynam N, Nah F, Siau K. Patient engagement in the medical facility waiting room using gamified healthcare
information delivery. In: HCI in Business, Government, and Organizations: Information Systems. Cham: Springer; 2016.

90. Göransson KE, von Rosen A. Patient experience of the triage encounter in a Swedish emergency department. Int Emerg
Nurs 2010 Jan;18(1):36-40. [doi: 10.1016/j.ienj.2009.10.001] [Medline: 20129440]

91. Broida R, Desai S, Easter B. Emergency department crowding: high impact solutions. Emergency Medicine Practice
Committee. 2016 May. URL: https://www.acep.org/globalassets/sites/acep/media/crowding/empc_crowding-ip_092016.
pdf [accessed 2022-10-01]

92. Xie C, Zhang J, Morrison AM, Coca-Stefaniak JA. The effects of risk message frames on post-pandemic travel intentions:
the moderation of empathy and perceived waiting time. Current Issues Tourism 2021 Feb 10;24(23):3387-3406. [doi:
10.1080/13683500.2021.1881052]

93. Kilaru AS, Meisel ZF, Paciotti B, Ha YP, Smith RJ, Ranard BL, et al. What do patients say about emergency departments
in online reviews? A qualitative study. BMJ Qual Saf 2016 Jan 24;25(1):14-24. [doi: 10.1136/bmjqs-2015-004035] [Medline:
26208538]

94. Gold JI, Belmont KA, Thomas DA. The neurobiology of virtual reality pain attenuation. Cyberpsychol Behav 2007
Aug;10(4):536-544. [doi: 10.1089/cpb.2007.9993] [Medline: 17711362]

95. Al-Nerabieah Z, Alhalabi M, Owayda A, Alsabek L, Bshara N, Kouchaji C. Effectiveness of using virtual reality eyeglasses
in the waiting room on preoperative anxiety: a randomized controlled trial. Perioperative Care Operating Room Manage
2020 Dec;21:100129. [doi: 10.1016/j.pcorm.2020.100129]

J Med Internet Res 2023 | vol. 25 | e40031 | p. 16https://www.jmir.org/2023/1/e40031
(page number not for citation purposes)

Chenais et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.1145/3472749.3474814
http://dx.doi.org/10.1561/116.00000050
https://www.aafp.org/dam/AAFP/documents/practice_management/innovation_lab/report-suki-assistant-documentation-burden.pdf
https://www.aafp.org/dam/AAFP/documents/practice_management/innovation_lab/report-suki-assistant-documentation-burden.pdf
https://www.nuance.com/healthcare/provider-solutions/speech-recognition/dragon-medical-one.html
https://www.nuance.com/healthcare/provider-solutions/speech-recognition/dragon-medical-one.html
http://dx.doi.org/10.1109/jiot.2021.3051158
https://dx.plos.org/10.1371/journal.pone.0165756
http://dx.doi.org/10.1371/journal.pone.0165756
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28107348&dopt=Abstract
http://dx.doi.org/10.1111/imj.14962
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33094899&dopt=Abstract
http://dx.doi.org/10.1097/ACM.0b013e3182086fe1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21248604&dopt=Abstract
https://dx.plos.org/10.1371/journal.pone.0094207
https://dx.plos.org/10.1371/journal.pone.0094207
http://dx.doi.org/10.1371/journal.pone.0094207
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24718585&dopt=Abstract
http://dx.doi.org/10.1097/HMR.0000000000000105
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27050925&dopt=Abstract
http://dx.doi.org/10.1097/mej.0b013e32831016a6
http://dx.doi.org/10.1016/s0196-0644(96)70090-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8953956&dopt=Abstract
https://journals.sagepub.com/doi/abs/10.1177/2374373517731359?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub  0pubmed
http://dx.doi.org/10.1177/2374373517731359
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29978025&dopt=Abstract
http://dx.doi.org/10.1016/j.aaen.2003.11.003
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15041007&dopt=Abstract
http://dx.doi.org/10.1016/j.ienj.2009.11.007
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21193163&dopt=Abstract
http://dx.doi.org/10.1016/s0196-0644(05)81943-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8442546&dopt=Abstract
http://dx.doi.org/10.1016/j.ienj.2009.10.001
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20129440&dopt=Abstract
https://www.acep.org/globalassets/sites/acep/media/crowding/empc_crowding-ip_092016.pdf
https://www.acep.org/globalassets/sites/acep/media/crowding/empc_crowding-ip_092016.pdf
http://dx.doi.org/10.1080/13683500.2021.1881052
http://dx.doi.org/10.1136/bmjqs-2015-004035
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26208538&dopt=Abstract
http://dx.doi.org/10.1089/cpb.2007.9993
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17711362&dopt=Abstract
http://dx.doi.org/10.1016/j.pcorm.2020.100129
http://www.w3.org/Style/XSL
http://www.renderx.com/


96. Dandu KV, Carniol ET, Sanghvi S, Baredes S, Eloy JA. A 10-year analysis of head and neck injuries involving nonpowder
firearms. Otolaryngol Head Neck Surg 2017 May 01;156(5):853-856. [doi: 10.1177/0194599817695546] [Medline:
28457218]

97. Josseran L, Fouillet A, Caillère N, Brun-Ney D, Ilef D, Brucker G, et al. Assessment of a syndromic surveillance system
based on morbidity data: results from the Oscour network during a heat wave. PLoS One 2010 Aug 09;5(8):e11984 [FREE
Full text] [doi: 10.1371/journal.pone.0011984] [Medline: 20711252]

98. Gil-Jardiné C, Chenais G, Pradeau C, Tentillier E, Revel P, Combes X, et al. Surveillance of COVID-19 using a keyword
search for symptoms in reports from emergency medical communication centers in Gironde, France: a 15 year retrospective
cross-sectional study. Intern Emerg Med 2022 Mar 29;17(2):603-608 [FREE Full text] [doi: 10.1007/s11739-021-02818-5]
[Medline: 34324146]

99. Gil-Jardiné C, Chenais G, Pradeau C, Tentillier E, Revel P, Combes X, et al. Trends in reasons for emergency calls during
the COVID-19 crisis in the department of Gironde, France using artificial neural network for natural language classification.
Scand J Trauma Resusc Emerg Med 2021 Mar 31;29(1):55 [FREE Full text] [doi: 10.1186/s13049-021-00862-w] [Medline:
33789721]

100. Sahu KS, Majowicz SE, Dubin JA, Morita PP. NextGen public health surveillance and the Internet of Things (IoT). Front
Public Health 2021 Dec 3;9:756675 [FREE Full text] [doi: 10.3389/fpubh.2021.756675] [Medline: 34926381]

101. AI Risk Management Framework: Second Draft. National Institute of Standard and Technology. 2022 Aug 18. URL: https:/
/www.nist.gov/system/files/documents/2022/08/18/AI_RMF_2nd_draft.pdf [accessed 2022-09-22]

102. Ethics and Governance of Artificial Intelligence for Health WHO Guidance. Geneva: World Health Organization; 2021.
103. Meskó B, Spiegel B. A revised hippocratic oath for the era of digital health. J Med Internet Res 2022 Sep 07;24(9):e39177

[FREE Full text] [doi: 10.2196/39177] [Medline: 36069845]
104. ISO/IEC TS 5723:2022(en) Trustworthiness — Vocabulary. ISO. URL: https://www.iso.org/obp/ui/fr/#iso:std:iso-iec:ts:5723

:ed-1:v1:en [accessed 2022-09-23]
105. Zhuang S, Hadfield-Menell D. Consequences of misaligned AI. In: Proceedings of the 34th International Conference on

Neural Information Processing Systems. 2020 Presented at: 34th International Conference on Neural Information Processing
Systems (NeurIPS). ; 2020; Dec 6, 2020; Vancouver, BC, Canada URL: https://dl.acm.org/doi/abs/10.5555/3495724.
3497046 [doi: 10.5555/3495724.3497046]

106. D'Amour A, Heller K, Moldovan D, Adlam B, Alipanahi B, Beutel A, et al. Underspecification presents challenges for
credibility in modern machine learning. J Mach Learn Res 2022 Jan;23(1):10237-10297 [FREE Full text] [doi:
10.5555/3586589.3586815]

107. Passi S, Barocas S. Problem formulation and fairness. In: Proceedings of the Conference on Fairness, Accountability, and
Transparency. 2019 Presented at: FAT* '19: Conference on Fairness, Accountability, and Transparency; Jan 29 - 31, 2019;
Atlanta GA USA. [doi: 10.1145/3287560.3287567]

108. Amodei D, Olah C, Steinhardt J, Christiano P, Schulman J, Mané D. Concrete problems in AI safety. arXiv 2016 [FREE
Full text]

109. Hardt M, Barocas S, Narayanan A. Fairness and Machine Learning Limitations and Opportunities. Cambridge, Massachusetts,
United States: MIT Press; 2023.

110. Mehrabi N, Morstatter F, Saxena N, Lerman K, Galstyan A. A survey on bias and fairness in machine learning. ACM
Comput Surv 2021 Jul;54(6):1-35. [doi: 10.1145/3457607]

111. Milner KA, Vaccarino V, Arnold AL, Funk M, Goldberg RJ. Gender and age differences in chief complaints of acute
myocardial infarction (Worcester Heart Attack Study). Am J Cardiol 2004 Mar 01;93(5):606-608. [doi:
10.1016/j.amjcard.2003.11.028] [Medline: 14996588]

112. Bozkurt B, Khalaf S. Heart failure in women. Methodist Debakey Cardiovasc J 2017;13(4):216-223 [FREE Full text] [doi:
10.14797/mdcj-13-4-216] [Medline: 29744014]

113. Suresh H, Guttag J. A framework for understanding sources of harm throughout the machine learning life cycle. In:
Proceedings of the Equity and Access in Algorithms, Mechanisms, and Optimization. 2021 Presented at: EAAMO '21:
Equity and Access in Algorithms, Mechanisms, and Optimization; Oct, 2021; NY, USA. [doi: 10.1145/3465416.3483305]

114. Blyth CR. On simpson's paradox and the sure-thing principle. J Am Statistical Assoc 1972 Jun;67(338):364-366. [doi:
10.1080/01621459.1972.10482387]

115. Forbes L, Canner J, Milio L, Halscott T, Vaught A. Association of patient sex and pregnancy status with naloxone
administration during emergency department visits. Obstet Gynecol 2021 May 01;137(5):855-863 [FREE Full text] [doi:
10.1097/AOG.0000000000004357] [Medline: 33831915]

116. Gehlke CE, Biehl K. Certain effects of grouping upon the size of the correlation coefficient in census tract material. J Am
Statistical Assoc 1934 Mar;29(185A):169-170. [doi: 10.1080/01621459.1934.10506247]

117. Kok MR, Tuson M, Yap M, Turlach B, Boruff B, Vickery A, et al. Impact of the modifiable areal unit problem in assessing
determinants of emergency department demand. Emerg Med Australas 2021 Oct 31;33(5):794-802. [doi:
10.1111/1742-6723.13727] [Medline: 33517585]

J Med Internet Res 2023 | vol. 25 | e40031 | p. 17https://www.jmir.org/2023/1/e40031
(page number not for citation purposes)

Chenais et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.1177/0194599817695546
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28457218&dopt=Abstract
https://dx.plos.org/10.1371/journal.pone.0011984
https://dx.plos.org/10.1371/journal.pone.0011984
http://dx.doi.org/10.1371/journal.pone.0011984
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20711252&dopt=Abstract
https://europepmc.org/abstract/MED/34324146
http://dx.doi.org/10.1007/s11739-021-02818-5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34324146&dopt=Abstract
https://sjtrem.biomedcentral.com/articles/10.1186/s13049-021-00862-w
http://dx.doi.org/10.1186/s13049-021-00862-w
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33789721&dopt=Abstract
https://europepmc.org/abstract/MED/34926381
http://dx.doi.org/10.3389/fpubh.2021.756675
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34926381&dopt=Abstract
https://www.nist.gov/system/files/documents/2022/08/18/AI_RMF_2nd_draft.pdf
https://www.nist.gov/system/files/documents/2022/08/18/AI_RMF_2nd_draft.pdf
https://www.jmir.org/2022/9/e39177/
http://dx.doi.org/10.2196/39177
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36069845&dopt=Abstract
https://www.iso.org/obp/ui/fr/#iso:std:iso-iec:ts:5723:ed-1:v1:en
https://www.iso.org/obp/ui/fr/#iso:std:iso-iec:ts:5723:ed-1:v1:en
https://dl.acm.org/doi/abs/10.5555/3495724.3497046
https://dl.acm.org/doi/abs/10.5555/3495724.3497046
http://dx.doi.org/10.5555/3495724.3497046
https://dl.acm.org/doi/abs/10.5555/3586589.3586815
http://dx.doi.org/10.5555/3586589.3586815
http://dx.doi.org/10.1145/3287560.3287567
http://arxiv.org/abs/1606.06565
http://arxiv.org/abs/1606.06565
http://dx.doi.org/10.1145/3457607
http://dx.doi.org/10.1016/j.amjcard.2003.11.028
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=14996588&dopt=Abstract
https://europepmc.org/abstract/MED/29744014
http://dx.doi.org/10.14797/mdcj-13-4-216
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29744014&dopt=Abstract
http://dx.doi.org/10.1145/3465416.3483305
http://dx.doi.org/10.1080/01621459.1972.10482387
https://europepmc.org/abstract/MED/33831915
http://dx.doi.org/10.1097/AOG.0000000000004357
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33831915&dopt=Abstract
http://dx.doi.org/10.1080/01621459.1934.10506247
http://dx.doi.org/10.1111/1742-6723.13727
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33517585&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


118. Reimer AP, Milinovich A, Madigan EA. Data quality assessment framework to assess electronic medical record data for
use in research. Int J Med Inform 2016 Jun;90:40-47 [FREE Full text] [doi: 10.1016/j.ijmedinf.2016.03.006] [Medline:
27103196]

119. Taylor RA, Pare JR, Venkatesh AK, Mowafi H, Melnick ER, Fleischman W, et al. Prediction of in-hospital mortality in
emergency department patients with sepsis: a local big data-driven, machine learning approach. Acad Emerg Med 2016
Mar 13;23(3):269-278 [FREE Full text] [doi: 10.1111/acem.12876] [Medline: 26679719]

120. Barberà-Mariné MG, Cannavacciuolo L, Ippolito A, Ponsiglione C, Zollo G. The weight of organizational factors on
heuristics. Manage Decision 2019 Nov 12;57(11):2890-2910. [doi: 10.1108/md-06-2017-0574]

121. Mohan D, Fischhoff B, Angus DC, Rosengart MR, Wallace DJ, Yealy DM, et al. Serious games may improve physician
heuristics in trauma triage. Proc Natl Acad Sci U S A 2018 Sep 11;115(37):9204-9209 [FREE Full text] [doi:
10.1073/pnas.1805450115] [Medline: 30150397]

122. Hovy D, Prabhumoye S. Five sources of bias in natural language processing. Lang Linguist Compass 2021 Aug
20;15(8):e12432 [FREE Full text] [doi: 10.1111/lnc3.12432] [Medline: 35864931]

123. Paullada A, Raji ID, Bender EM, Denton E, Hanna A. Data and its (dis)contents: a survey of dataset development and use
in machine learning research. Patterns (N Y) 2021 Nov 12;2(11):100336 [FREE Full text] [doi: 10.1016/j.patter.2021.100336]
[Medline: 34820643]

124. Schrader CD, Lewis LM. Racial disparity in emergency department triage. J Emerg Med 2013 Feb;44(2):511-518. [doi:
10.1016/j.jemermed.2012.05.010] [Medline: 22818646]

125. Arslanian-Engoren C. Gender and age bias in triage decisions. J Emerg Nurs 2000 Apr;26(2):117-124. [doi:
10.1016/s0099-1767(00)90053-9] [Medline: 10748383]

126. Bender E, Gebru T, McMillan-Major A, Shmitchell S. On the dangers of stochastic parrots: can language models be too
big? In: Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency. 2021 Presented at:
FAccT '21: 2021 ACM Conference on Fairness, Accountability, and Transparency; Mar 3 - 10, 2021; Virtual Event Canada.
[doi: 10.1145/3442188.3445922]

127. Wagner C, Garcia D, Jadidi M, Strohmaier M. It’s a man’s wikipedia? Assessing gender inequality in an online encyclopedia.
Proc Int AAAI Conf Web Social Media 2021 Aug 03;9(1):454-463 [FREE Full text] [doi: 10.1609/icwsm.v9i1.14628]

128. Liang P, Li I, Zheng E, Lim Y, Salakhutdinov R, Morency LP. Towards debiasing sentence representations. In: Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics. 2020 Presented at: 58th Annual Meeting of
the Association for Computational Linguistics; Jan 1, 2020; Online URL: https://aclanthology.org/2020.acl-main.488 [doi:
10.18653/v1/2020.acl-main.488]

129. Liu X, Rivera SC, Moher D, Calvert MJ, Denniston AK, SPIRIT-AICONSORT-AI Working Group. Reporting guidelines
for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI Extension. BMJ 2020 Sep
09;370:m3164 [FREE Full text] [doi: 10.1136/bmj.m3164] [Medline: 32909959]

130. Rivera SC, Liu X, Chan A, Denniston AK, Calvert MJ, SPIRIT-AICONSORT-AI Working Group. Guidelines for clinical
trial protocols for interventions involving artificial intelligence: the SPIRIT-AI Extension. BMJ 2020 Sep 09;370:m3210
[FREE Full text] [doi: 10.1136/bmj.m3210] [Medline: 32907797]

131. Intellectual Property and Digital Trade in the Age of Artificial Intelligence and Big Data, Global Perspectives for the
Intellectual Property System. Geneva, Switzerland: International Centre for Trade and Sustainable Development (ICTSD);
2018.

132. Gerke S, Minssen T, Cohen G. Chapter 12 - Ethical and legal challenges of artificial intelligence-driven healthcare. In:
Artificial Intelligence in Healthcare. Cambridge, Massachusetts, United States: Academic Press; 2020.

133. Maliha G, Gerke S, Cohen IG, Parikh RB. Artificial intelligence and liability in medicine: balancing safety and innovation.
Milbank Q 2021 Sep 06;99(3):629-647 [FREE Full text] [doi: 10.1111/1468-0009.12504] [Medline: 33822422]

134. Price WN, Gerke S, Cohen IG. Potential liability for physicians using artificial intelligence. JAMA 2019 Nov
12;322(18):1765-1766. [doi: 10.1001/jama.2019.15064] [Medline: 31584609]

135. Antoniadi AM, Du Y, Guendouz Y, Wei L, Mazo C, Becker BA, et al. Current challenges and future opportunities for XAI
in machine learning-based clinical decision support systems: a systematic review. Applied Sci 2021 May 31;11(11):5088.
[doi: 10.3390/app11115088]

136. Danilevsky M, Qian K, Aharonov R, Katsis Y, Kawas B, Sen P. A survey of the state of explainable AI for natural language
processing. In: Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational
Linguistics and the 10th International Joint Conference on Natural Language Processing. 2020 Presented at: 1st Conference
of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference
on Natural Language Processing; Dec 1, 2020; Suzhou, China URL: https://aclanthology.org/2020.aacl-main.46

137. Barredo Arrieta A, Díaz-Rodríguez N, Del Ser J, Bennetot A, Tabik S, Barbado A, et al. Explainable Artificial Intelligence
(XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inform Fusion 2020 Jun;58:82-115.
[doi: 10.1016/j.inffus.2019.12.012]

138. Castelvecchi D. Can we open the black box of AI? Nature 2016 Oct 06;538(7623):20-23. [doi: 10.1038/538020a] [Medline:
27708329]

139. Deering's California codes annotated. San Francisco, Calif: Bancroft-Whitney; 1957.

J Med Internet Res 2023 | vol. 25 | e40031 | p. 18https://www.jmir.org/2023/1/e40031
(page number not for citation purposes)

Chenais et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://europepmc.org/abstract/MED/27103196
http://dx.doi.org/10.1016/j.ijmedinf.2016.03.006
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27103196&dopt=Abstract
https://europepmc.org/abstract/MED/26679719
http://dx.doi.org/10.1111/acem.12876
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26679719&dopt=Abstract
http://dx.doi.org/10.1108/md-06-2017-0574
https://www.pnas.org/doi/abs/10.1073/pnas.1805450115?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub  0pubmed
http://dx.doi.org/10.1073/pnas.1805450115
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30150397&dopt=Abstract
https://europepmc.org/abstract/MED/35864931
http://dx.doi.org/10.1111/lnc3.12432
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35864931&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S2666-3899(21)00184-7
http://dx.doi.org/10.1016/j.patter.2021.100336
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34820643&dopt=Abstract
http://dx.doi.org/10.1016/j.jemermed.2012.05.010
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22818646&dopt=Abstract
http://dx.doi.org/10.1016/s0099-1767(00)90053-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10748383&dopt=Abstract
http://dx.doi.org/10.1145/3442188.3445922
https://ojs.aaai.org/index.php/ICWSM/article/view/14628
http://dx.doi.org/10.1609/icwsm.v9i1.14628
https://aclanthology.org/2020.acl-main.488
http://dx.doi.org/10.18653/v1/2020.acl-main.488
http://www.bmj.com/lookup/pmidlookup?view=long&pmid=32909959
http://dx.doi.org/10.1136/bmj.m3164
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32909959&dopt=Abstract
http://www.bmj.com/lookup/pmidlookup?view=long&pmid=32907797
http://dx.doi.org/10.1136/bmj.m3210
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32907797&dopt=Abstract
https://europepmc.org/abstract/MED/33822422
http://dx.doi.org/10.1111/1468-0009.12504
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33822422&dopt=Abstract
http://dx.doi.org/10.1001/jama.2019.15064
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31584609&dopt=Abstract
http://dx.doi.org/10.3390/app11115088
https://aclanthology.org/2020.aacl-main.46
http://dx.doi.org/10.1016/j.inffus.2019.12.012
http://dx.doi.org/10.1038/538020a
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27708329&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


140. Moore G, Matlock A, Kiley J, Percy K. Emergency physicians: beware of the consent standard of care. Clin Pract Cases
Emerg Med 2018 May 20;2(2):109-111 [FREE Full text] [doi: 10.5811/cpcem.2018.1.37822] [Medline: 29849254]

141. Proposal for a DIRECTIVE OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on adapting non-contractual
civil liability rules to artificial intelligence (AI Liability Directive). European Commission. 2022 Sep 28. URL: https:/
/commission.europa.eu/system/files/2022-09/1_1_197605_prop_dir_ai_en.pdf [accessed 2023-04-08]

142. New liability rules on products and AI to protect consumers and foster innovation. European Commission. 2022 Sep 28.
URL: https://ec.europa.eu/commission/presscorner/detail/en/ip_22_5807 [accessed 2022-10-01]

143. Forcier M, Gallois H, Mullan S, Joly Y. Integrating artificial intelligence into health care through data access: can the
GDPR act as a beacon for policymakers? J Law Biosci 2019 Oct;6(1):317-335 [FREE Full text] [doi: 10.1093/jlb/lsz013]
[Medline: 31666972]

Abbreviations
AI: artificial intelligence
ASR: automatic speech recognition
CDSS: clinical decision support system
CONSORT-AI: Consolidated Standards of Reporting Trials–Artificial Intelligence
E2E: end-to-end
ED: emergency department
EHR: electronic health record
EMD: emergency medical dispatch
GDPR: General Data Protection Regulation
NLP: natural language processing
OHCA: out of hospital cardiac arrest
SPIRIT-AI: Standard Protocol Items: Recommendations for Interventional Trials–Artificial Intelligence
XAI: explainable artificial intelligence

Edited by G Eysenbach; submitted 02.06.22; peer-reviewed by M Graber, R Hendricks-Sturrup, SJC Soerensen, M Elbattah, L Weinert;
comments to author 31.08.22; revised version received 18.10.22; accepted 19.12.22; published 23.05.23

Please cite as:
Chenais G, Lagarde E, Gil-Jardiné C
Artificial Intelligence in Emergency Medicine: Viewpoint of Current Applications and Foreseeable Opportunities and Challenges
J Med Internet Res 2023;25:e40031
URL: https://www.jmir.org/2023/1/e40031
doi: 10.2196/40031
PMID: 36972306

©Gabrielle Chenais, Emmanuel Lagarde, Cédric Gil-Jardiné. Originally published in the Journal of Medical Internet Research
(https://www.jmir.org), 23.05.2023. This is an open-access article distributed under the terms of the Creative Commons Attribution
License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete
bibliographic information, a link to the original publication on https://www.jmir.org/, as well as this copyright and license
information must be included.

J Med Internet Res 2023 | vol. 25 | e40031 | p. 19https://www.jmir.org/2023/1/e40031
(page number not for citation purposes)

Chenais et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://europepmc.org/abstract/MED/29849254
http://dx.doi.org/10.5811/cpcem.2018.1.37822
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29849254&dopt=Abstract
https://commission.europa.eu/system/files/2022-09/1_1_197605_prop_dir_ai_en.pdf
https://commission.europa.eu/system/files/2022-09/1_1_197605_prop_dir_ai_en.pdf
https://ec.europa.eu/commission/presscorner/detail/en/ip_22_5807
https://europepmc.org/abstract/MED/31666972
http://dx.doi.org/10.1093/jlb/lsz013
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31666972&dopt=Abstract
https://www.jmir.org/2023/1/e40031
http://dx.doi.org/10.2196/40031
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36972306&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

