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Abstract

Background: The rhetoric surrounding clinical artificial intelligence (AI) often exaggerates its effect on real-world care. Limited
understanding of the factors that influence its implementation can perpetuate this.

Objective: In this qualitative systematic review, we aimed to identify key stakeholders, consolidate their perspectives on clinical
AI implementation, and characterize the evidence gaps that future qualitative research should target.

Methods: Ovid-MEDLINE, EBSCO-CINAHL, ACM Digital Library, Science Citation Index-Web of Science, and Scopus
were searched for primary qualitative studies on individuals’ perspectives on any application of clinical AI worldwide (January
2014-April 2021). The definition of clinical AI includes both rule-based and machine learning–enabled or non–rule-based decision
support tools. The language of the reports was not an exclusion criterion. Two independent reviewers performed title, abstract,
and full-text screening with a third arbiter of disagreement. Two reviewers assigned the Joanna Briggs Institute 10-point checklist
for qualitative research scores for each study. A single reviewer extracted free-text data relevant to clinical AI implementation,
noting the stakeholders contributing to each excerpt. The best-fit framework synthesis used the Nonadoption, Abandonment,
Scale-up, Spread, and Sustainability (NASSS) framework. To validate the data and improve accessibility, coauthors representing
each emergent stakeholder group codeveloped summaries of the factors most relevant to their respective groups.

Results: The initial search yielded 4437 deduplicated articles, with 111 (2.5%) eligible for inclusion (median Joanna Briggs
Institute 10-point checklist for qualitative research score, 8/10). Five distinct stakeholder groups emerged from the data: health
care professionals (HCPs), patients, carers and other members of the public, developers, health care managers and leaders, and
regulators or policy makers, contributing 1204 (70%), 196 (11.4%), 133 (7.7%), 129 (7.5%), and 59 (3.4%) of 1721 eligible
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excerpts, respectively. All stakeholder groups independently identified a breadth of implementation factors, with each producing
data that were mapped between 17 and 24 of the 27 adapted Nonadoption, Abandonment, Scale-up, Spread, and Sustainability
subdomains. Most of the factors that stakeholders found influential in the implementation of rule-based clinical AI also applied
to non–rule-based clinical AI, with the exception of intellectual property, regulation, and sociocultural attitudes.

Conclusions: Clinical AI implementation is influenced by many interdependent factors, which are in turn influenced by at least
5 distinct stakeholder groups. This implies that effective research and practice of clinical AI implementation should consider
multiple stakeholder perspectives. The current underrepresentation of perspectives from stakeholders other than HCPs in the
literature may limit the anticipation and management of the factors that influence successful clinical AI implementation. Future
research should not only widen the representation of tools and contexts in qualitative research but also specifically investigate
the perspectives of all stakeholder HCPs and emerging aspects of non–rule-based clinical AI implementation.

Trial Registration: PROSPERO (International Prospective Register of Systematic Reviews) CRD42021256005;
https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=256005

International Registered Report Identifier (IRRID): RR2-10.2196/33145

(J Med Internet Res 2023;25:e39742) doi: 10.2196/39742
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Introduction

Background
Clinical artificial intelligence (AI) is a growing focus in
academia, industry, and governments [1-3]. However, patients
have benefited only in a few real-world contexts, reflecting a
know-do gap called the “AI chasm” [4,5]. There is already
evidence of tasks where health care professional (HCP)
performance has been surpassed [6]. Reporting practices
concerning quantitative measures of efficacy are also improving
against evolving standards [7]. The rate-limiting step to patient
benefit from clinical AI now seems to be real-world
implementation [8]. This necessitates an understanding of how
in real-world use, each technology may interact with the various
configurations of policy-, organizational-, and practice-level
factors [9,10]. Qualitative methods are best suited to produce
evidence-based guidance to anticipate and manage
implementation challenges; however, they remain rare in the
clinical AI literature [1,11,12].

Prior Work
Qualitative clinical AI literature was broadly synthesized until
2013 [13]. Despite accommodating eligibility criteria, the study
synthesized 16% (9/56) of qualitative studies that were eligible,
prioritizing only higher-quality articles for data extraction. All
the 9 studied tools were based on electronic health care records
to support various aspects of prescribing. All except 1 of the
studies were set in the United States, and all applied rule-based
decision logic preprogrammed by human experts. The main
findings included usability concerns for HCPs, poor integration
of the data used by tools with the workflows and platforms in
which they were placed, the technical immaturity of tools and
their host systems, and the fact that adopters had a variable
perception of the AI tools’ value depending on their own
experience [13]. Much of the subsequent clinical AI literature
refers to machine learning or non–rule-based tools, which differ
from rule-based tools in ways that may limit the understanding
of the clinical, social, and ethical implications of their

implementation [3]. An example of such a tool is a classification
algorithm that distinguishes retinal photographs containing signs
of diabetic retinopathy from those that do not [14]. The tool
“learned” to do this in a relatively unexplainable fashion through
exposure to a great quantity of retinal imaging data accompanied
by human-expert labels of whether diabetic retinopathy was
present. These non–rule-based tools promise broader
applicability and higher performance than rule-based tools that
automate established human clinical reasoning methods [3]. An
example of a rule-based tool is one that applies an a priori
decision tree determined by human clinical experts to produce
individualized management recommendations for patients [15].
Despite the differences in their mechanisms, both tool groups
satisfy the Organization for Economic Cooperation and
Development’s definition of AI [16]. It is unclear whether the
rule-based majority of the limited qualitative clinical AI
evidence base is relevant to the modern focus on non–rule-based
clinical AI [17]. However, as only 4 primary qualitative studies
were identified across 2 recent syntheses of non–rule-based
tools, it appears that broader eligibility criteria will be required
to synthesize a meaningful volume of research at present [11,12].
Although primary qualitative clinical AI research is growing,
its pace remains relatively slow. If the impact of this important
work is to be maximized, clarity is required regarding which
perspectives and factors that influence implementation remain
inadequately explored [1].

Goal of This Study
This qualitative evidence synthesis aimed to identify key
stakeholder groups in clinical AI implementation and consolidate
their published perspectives. This synthesis process aimed to
maximize the accessibility and utility of published data for
practitioners to support their efforts to implement various
clinical AI tools and to complement their insight into the unique
context that they target (Textbox 1). As a secondary aim, this
synthesis aimed to improve the impact of future qualitative
investigations of clinical AI implementation by recommending
evidence-based research priorities.
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Textbox 1. The research question, eligibility criteria informing a search strategy, and research databases that the search strategy was applied to on April
30, 2021 (Multimedia Appendix 1).

• Research question

• What are the perspectives of stakeholders in clinical artificial intelligence (AI) and how can they inform its implementation?

• Participants

• Humans participating in primary research reporting free-text qualitative data

• Phenomena of interest

• Individuals’ perspectives of rule-based or non–rule-based clinical AI implementation

• Context

• Research from any real-world, simulated, or hypothetical health care setting worldwide, published between January 1, 2014, and April 30,
2021, in any language

• Databases searched

• Ovid-MEDLINE, EBSCO-CINAHL, ACM Digital Library, Science Citation Index-Web of Science, and Scopus

Methods

Overview
This qualitative evidence synthesis adhered to an a priori
protocol, the Joanna Briggs Institute (JBI) guidance for conduct
and ENTREQ (Enhancing Transparency in Reporting the
Synthesis of Qualitative research) reporting guidance [18-20].
The best-fit framework synthesis method was selected using
the RETREAT (Review Question-Epistemiology-Time or
Timescale-Resources-Expertise-Audience and Purpose-Type
of Data) criteria [21,22]. Following a review of implementation
frameworks, the Nonadoption, Abandonment, Scale-up, Spread,
and Sustainability (NASSS) framework was selected to
accommodate the interacting complexity of factors and related
stakeholders, which shape the implementation of health care
technologies at the policy, organizational, and practice level
[10]. The NASSS framework consists of seven domains, which
categorize the factors that can influence implementation: (1)
Condition, (2) Technology, (3) Value proposition, (4) Adopters,
(5) Organization, (6) Wider context, (7) Embedding and
adaptation over time [10]. In addition to its focus on
technological innovations and its value in considering
implementation factors between policy and practice levels,
NASSS can be used as a determinant or evaluation framework
rather than a process model, and it applies a relatively high level
of theoretical abstraction [23]. This means that NASSS can
readily accommodate perspectives from various stakeholders,
contexts, and tools without enforcing excessive assumptions
about the mechanisms of implementation, which is well-suited
to the heterogeneous literature to be synthesized [24].

Search Strategy and Selection Criteria
The research question and eligibility criteria informed a
preplanned search strategy (available for all databases in
Multimedia Appendix 1) that is designed with an experienced
information specialist (FRB), informed by published qualitative
and clinical AI search strategies and executed in 5 databases
(Textbox 1) [6,11,13,25,26]. The search strings were designed

in Ovid-MEDLINE and translated into EBSCO-CINAHL, ACM
Digital Library, Science Citation Index-Web of Science, and
Scopus. The exact terms used are available in Multimedia
Appendix 1, but each string combined the same 3 distinct
concepts of qualitative research, AI, and health care with AND
Boolean operator terms. Differing thesaurus terms and search
mechanisms between the databases demanded adaptation of the
original search string, but each translation was aimed to reflect
the original Ovid-MEDLINE version as closely as possible and
was checked for sensitivity and specificity through pilot searches
before the final execution. Studies concerning AI as a treatment,
such as chatbots to provide talking therapies for mental health
conditions, were not eligible as they represent an emerging
minority of clinical AI applications [27]. They also evoke social
and technological phenomena that are distinct from AI,
providing clinical decision support, and therefore, risk diluting
synthesized findings with nongeneralizable perspectives. The
search strategy was reported in line with the PRISMA-S
(Preferred Reporting Items for Systematic Reviews and
Meta-Analyses literature search extension) [28]. Search results
were pooled in Endnote (version 9.3.3; Clarivate Analytics) for
deduplication and uploaded to Rayyan [29]. The references of
any review or protocol studies returned were manually searched
before exclusion along with all eligible study references.
Potentially relevant missing data identified in the full-text
reviews were pursued with up to 3 emails to the corresponding
authors. Examples of such data included eligible protocols
published ≥1 year previously without a follow-up report of the
study itself or multimethod studies that appeared to report only
quantitative data. Title, abstract, and full-text screening were
fully duplicated by 2 independent reviewers (MA and HDJH)
with a third arbiter of disagreement (GM; Multimedia Appendix
2). Eligible articles without full text in English were translated
using an automated digital translation service between May and
June 2021 (Google Translate). The validity of this approach in
systematic reviews has been tested empirically and is applied
routinely in quantitative and qualitative syntheses [30,31].
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Data Analysis
Characteristics and an overall JBI 10-point checklist for
qualitative research score was assigned for each study and
discussed by 2 reviewers (MA and HDJH) for 9.9% (11/111)
of eligible studies [18]. The remaining 90.1% (100/111) were
equally divided for the independent extraction of characteristics
and assignment of the JBI 10-point checklist for qualitative
research scores. Free-text data extraction using NVivo (Release

1.2; QSR International) was performed by a single reviewer
(HDJH) following consensus exercises with 3 other authors
(MA, GM, and FRB). Data were extracted in individual excerpts,
which were determined to be continuous illustrations of a
stakeholder’s perspective on clinical AI. A single reviewer
(HDJH) assigned each excerpt a JBI 3-tiered level of credibility
(Textbox 2) to complement the global appraisal of each study
provided by the JBI 10-point checklist for qualitative research
[18].

Textbox 2. Three-tiered Joanna Briggs Institute (JBI) credibility rating applied to each data excerpt, as described in the JBI Reviewers’ Manual The
systematic review of qualitative data [18].

• Unequivocal

• Findings accompanied by an illustration that is beyond reasonable doubt and, therefore, not open to challenge

• Credible

• Findings accompanied by an illustration lacking clear association with it and, therefore, open to challenge

• Not supported

• When neither 1 nor 2 apply and when most notably findings are not supported by the data

All perspectives relating to the phenomena of interest (Textbox
1) arising from participant quotations or authors’ narratives
were extracted verbatim from the results and discussion sections.
Each excerpt was attributed to the voice of an emergent
stakeholder group and a single NASSS subdomain [10]. When
the researcher (HDJH) extracting data felt that perspectives fell
outside the NASSS subdomains, a draft subdomain was added
to the framework to be later reviewed and reiterated with authors
with varied perspectives as per the best-fit framework synthesis
method [26]. A similar approach was applied to validate the
stakeholder groupings which emerged. To permit greater
granularity and meaning from the synthesis of such a large
volume of data, inductive themes were also created within each
NASSS subdomain. The initial data-led titles for these inductive
themes were generated by the researcher extracting the data,
making initial revisions as the data extraction proceeded. This
was followed by several rounds of discussion with the coauthors
to review and reiterate the inductive themes alongside their
associated primary data to consolidate themes when appropriate
and to maximize the accessibility and accuracy of their titles.

NASSS allows researchers to operationalize theory to find
coherent sense in large and highly heterogeneous data such as
those in this study. However, this may limit the accessibility of
the analysis for some stakeholders, as it demands some
familiarity with theoretical approaches [32]. To remove this
barrier, the key implementation factors arising from the NASSS
best-fit framework synthesis were delineated by their relevance
for the 5 stakeholder groups that arose from the data. Coauthors
with lived experience of each emergent stakeholder role were
then invited to coproduce a narrative summary of the factors
most relevant to their role. The initial step in this process was
the provision of a longer draft of findings relating to each
stakeholder group’s perspective by the lead reviewer (HDJH)

before the review and initial discussion with each coauthor.
This included a senior consultant ophthalmologist delivering
and leading local services (SJT), a senior clinical academic
working in clinical AI regulation and sitting on a committee
advising the national government on regulatory reform (AKD),
a clinical scientist working for an international MedTech
company (CJK), the founder and managing director of The
Healthcare Leadership Academy (JM), and a panel of 4 members
of the public experienced in supporting research (reference
group). In these 5 separate coproduction streams, the lead
reviewer (HDJH) contributed their oversight of the data to
discussions with each stakeholder representative (AKD, CJK,
JM, SJT, and reference group), who gave feedback to prioritize
and frame the data discussed. The lead reviewer then redrafted
the section for further rounds of review and feedback until an
agreement was reached. This second analytical step validated
the findings, increased their accessibility, and aimed to support
different stakeholders’ empathy for one another.

To preserve methodological rigor while pursuing broad
accessibility, the results were presented for 3 levels of
engagement. First, we used 5 stakeholder group narratives.
Second, 63 inductive themes were distributed across the 27
subdomains of the adapted NASSS framework. The final most
granular level of presentation used an internal referencing
system within the Results section to link each assertion of the
stakeholder group narratives with its supporting primary data
and inductive theme (Multimedia Appendix 3 [33-143]).
Notably, insights relevant to a given stakeholder group’s
perspective were often contributed by study participants from
different stakeholder groups (Figure 1 [19]). This is
demonstrated by the selected excerpts contained within the 5
stakeholder group narratives, which are all followed by a brief
description of the stakeholders who contributed to the excerpt.
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Figure 1. Sankey diagram illustrating the proportion of 1721 primary study excerpts derived from the voice of each of 5 emergent stakeholder groups
and how each excerpt relates to each domain and subdomain of an adapted Non-adoption, Abandonment, Scale-up, Spread and Sustainability (NASSS)
framework [19]. EaAOT: embedding and adaptation over time.

Results

Overview
From an initial 4437 unique articles, 111 (2.5%) were found to
be eligible, in which 2 (1.8%) were written in languages other
than English [33,34] and the corresponding authors for 3 (2.7%)
further studies [144-146], containing potentially relevant data,
were not successfully contacted (Figure 2 [147]). Specific
exclusion criteria were recorded for each excluded article at the
full-text review stage (Multimedia Appendix 2), with most
exclusions (4115/4326, 95.12%) made at the title and abstract
screening stage. The absence of qualitative research methods
was the most common cause of these exclusions. In the 111
eligible studies, there were 1721 excerpts. In assigning a JBI
credibility score to each of these 1721 excerpts, 1155 (67.11%)
were classified as unequivocal, 373 (21.67%) as equivocal, and

193 (11.21%) as unsupported [18]. The excerpts were
categorized within the 27 subdomains of the adapted NASSS
framework (Table 1) Inductive themes from within each NASSS
subdomain are also listed along with the reference code applied
throughout the results section and additional materials and the
number of eligible primary studies which contributed.

Five distinct stakeholder groups emerged through the analysis,
each contributing excerpts related to 17 to 24 of the 27
subdomains (Figure 1). Eligible studies (Table 2) represented
23 nations, with the United States, the United Kingdom, Canada,
and Australia as the most common host nations, and 25 clinical
specialties, with a clear dominant contribution from primary
care (Multimedia Appendix 4 [33-143]). Although there was
some representation from resource-limited nations, 88.2%
(90/102) of the studies focusing on a single nation were in
countries meeting the United Nations Development
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Programme’s definition of “very high human development”
with a human development index between 0.8 and the upper
limit of 1.0 [148]. The median human development index of
the host nations for these 101 studies was 0.929 (IQR

0.926-0.944). The JBI 10-point checklist for qualitative research
scores assigned to each study had a median of 8 (IQR 7-8) [18].
Detailed characteristics, including AI use cases, are available
in Multimedia Appendix 4.

Figure 2. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) style flowchart of search and eligibility check executions
[39].
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Table 1. Subdomains of the Nonadoption, Abandonment, Scale-up, Spread, and Sustainability (NASSS) framework used for data analysis with 2
data-led additions to the original subdomain list (n=111) [10].

Papers, n (%)Inductive themeNASSS subdomain and codes

1a. Nature of condition or illness

11 (9.9)Type or format of care needs1a.1

23 (20.7)Ambiguous, complicated, or rare decisions1a.2

18 (16.2)Quality of current care1a.3

11 (9.9)Decision urgency and impact1a.4

1b. Comorbidities

5 (4.5)Other associated health problems1b.1

6 (5.4)Aligning patient and health priorities1b.2

13 (11.7)No subthemes1c Sociocultural factors

2a. Material properties

28 (25.2)Usability of the tool2a.1

12 (10.8)Lack of emotion2a.2

14 (12.6)Large amounts of changing data2a.3

2b. Knowledge to use it

24 (21.6)Knowledge required of patients2b.1

20 (18)Enabling users to evaluate tools2b.2

19 (17.1)Agreeing the scope of use2b.3

2c. Knowledge generated by it

45 (40.5)Communicate meaning effectively2c.1

23 (20.7)Target a clinical need2c.2

25 (22.5)Recommend clear action2c.3

2d. Supply model

23 (20.7)Equipment and network requirements2d.1

25 (22.5)Working across multiple health data systems2d.2

33 (29.7)Quality of the health data and guidelines used2d.3

14 (12.6)No subthemes2e. Who owns the intellectual property?

2f. Care pathway positioninga

23 (20.7)Extent of tools’ independence2f.1

21 (18.9)When and to whom the tool responds2f.2

20 (18)How and where the tool responds2f.3

7 (6.3)No subthemes3a. Supply-side value (to developer)

3b. Demand-side value (to patient)

27 (24.3)Time required for service provision3b.1

22 (19.8)Patient-centered care3b.2

17 (15.3)Cost of health care3b.3

28 (25.2)Impact on outcomes for patients3b.4

41 (36.9)Educating and prompting HCPsb3b.5

33 (29.7)Consistency and authority of care3b.6

4a. Staff (role and identity)

33 (29.7)Appetite and needs differ between staff groups4a.1

33 (29.7)Tools redefine staff roles4a.2
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Papers, n (%)Inductive themeNASSS subdomain and codes

28 (25.2)Aligning with staff values4a.3

4b. Patient (simple vs complex input)

10 (9.0)Inconvenience for patients4b.1

14 (12.6)Patients’ control over their care4b.2

11 (9.9)Aligning patients’ agendas with tool use4b.3

4 (3.6)No subthemes4c. Carers

4d. Relationshipsa

30 (27)Patients’ relationships with their HCPs4d.1

13 (11.7)Users’ relationships with tools4d.2

21 (18.9)Relationships between health professionals4d.3

5a. Capacity to innovate in general

29 (26.1)Resources needed to deliver the benefits5a.1

26 (23.4)Leadership5a.2

5b. Readiness for this technology

9 (8.1)Pressure to find a way of improving things5b.1

15 (13.5)Suitability of hosts’ premises and technology5b.2

7 (6.3)No subthemes5c. Nature of adoption or funding decision

5d. Extent of change needed to organizational routines

14 (12.6)Fitting the tool within current practices5d.1

22 (19.8)Change to intensity of work for staff5d.2

5e. Work needed to plan, implement, and monitor change

17 (15.3)Training requirements5e.1

23 (20.7)Effort and resources for tool launch5e.2

6a. Political or policy context

10 (9)Different ways to incentivize providers6a.1

8 (7.2)Importance of government strategy6a.2

15 (13.5)Policy and practice influence each other more6a.3

6b. Regulatory and legal issues

19 (17.1)Impact on patient groups6b.1

14 (12.6)Product assurance6b.2

8 (7.2)Deciding who is responsible6b.3

6c. Professional bodies

20 (18)Resistance from professional culture6c.1

9 (8.1)Lack of understanding between professional groups6c.2

6d. Sociocultural context

17 (15.3)Culture’s effect on tool acceptability6d.1

10 (9)Public reaction to tools varies6d.2

14 (12.6)No subthemes6e. Interorganizational networking

7a. Scope for adaptation over time

15 (13.5)Normalization of technology and decreased resistance7a.1

11 (9.9)Improvement of technology and its implementation7a.2
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Papers, n (%)Inductive themeNASSS subdomain and codes

3 (2.7)No subthemes7b. Organizational resilience

aIndicates a subdomain added to the original NASSS framework through application of the best-fit framework synthesis method [21].
bHCP: health care professional.

Table 2. Characteristics of 111 eligible studies and the clinical artificial intelligence (AI) studied.

Studies, n (%)Characteristic

Clinical AI application

31 (27.9)Hypothetical

24 (21.6)Simulated

56 (50.5)Clinical

Clinical AI nature

66 (59.5)Rule based

41 (36.9)Non–rule based

4 (3.6)NSa

Clinical AI audience

5 (4.5)Public

45 (40.5)Primary care

43 (38.7)Secondary care

3 (2.7)Mixed

15 (13.5)NS

Clinical AI input

83 (74.8)Numerical or categorical

9 (8.1)Imaging

1 (0.9)Mixed

Clinical AI task

15 (13.5)Triage

15 (13.5)Diagnosis

10 (9)Prognosis

46 (41.4)Management

24 (21.6)NS

Research method

54 (48.6)Interviews

19 (17.1)Focus groups

12 (10.8)Surveys

1 (0.9)Think aloud exercises

1 (0.9)Observation

24 (21.6)Mixed

aNS: not specified.

Developers
The developers of clinical AI required both technical and clinical
expertise alongside effective interaction within the multiple
professional cultures that stakeholders inhabit (6e and 6c.2).
This made cross-disciplinary work a priority, but it was

challenged by the immediate demands of clinical duties that
limited HCPs’ engagement (5a.1). State incentive systems for
cross-disciplinary work had the potential to make this
collaboration more attractive for developers (6a.2); nevertheless,
those who independently prioritized multidisciplinary teams
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appeared to increase their innovations’ chances of real-world
utility (2c.2). The instances when HCP time had been funded
by industry or academia were highly valued (4a.3):

...she [an IT person with a clinical background] really
bridges that gap...when IT folks talk directly to the
front line, sometimes there’s just the language barrier
there. [Unspecified professional [35]]

To safeguard clinical AI utility, developers sometimes built in
plasticity to accommodate variable host contexts (2a.3). This
plasticity was beneficial both in terms of the clinical “reasoning”
a tool applied and where and how it could be applied within
different organizations’ or individuals’ practice (2e and 5d.1).
The usability and accessibility of clinical AI often have a greater
impact on adopter perceptions than their performance (2a.1 and
2b.1). There were many examples of clinical AI abandonment
from adopters who had not fully understood a tool (2b.3 and
5e.1) or organizations that lacked the capacity or experience to
effectively implement it (5e.2). Vendors who invested in
training, troubleshooting, and implementation consultancy were
often better received:

I’ve learned...that this closing the loop is what makes
the sale...sometimes, we’re handed a package with
the implementation science done. [Health care
manager [36]]

The poor interoperability of different systems has inhibited
clinical AI scale-up (2d.2), but it has seemed to benefit
electronic health care record providers, whose market dominance
has driven the uptake of their own clinical AI tools (3a.1).
Clinical AI developed inhouse, or by third parties, seemed to
be at a competitive disadvantage (2d.1). Increasing market
competition and political attention may lead to software or
regulatory developments that indiscriminately enhance
interoperability and disrupt this strategic issue (3a.1 and 7a).
Developers were also affected by defensive attitudes from health
care organizations and patients, many of whom distrust industry
with access to the data on which clinical AI’s training depends
(2d.3 and 2e):

For example, Alibaba is entering the health industry.
But hospitals only allow Alibaba to access data of
outpatients, not data of inpatients. They [the IT firms]
cannot get the core data [continuous data of
inpatients] from hospitals. [Policy maker [37]]

Health Care Professionals
The HCPs’ perspectives on clinical AI varied greatly (4a.1),
but they commonly perceived value from clinical AI that
facilitated clinical training (3b.5), reduced simple or repetitive
tasks (3b.1 and 3b.2), improved patient outcomes (3b.4), or
widened individuals’ scope of practice (4a.2). Despite these
incentives, HCP adoption was often hampered by inadequate
time to embed clinical AI in practice (5d.1), skepticism about
its ability to inform clinical decisions (6c.1 and 2c.2), and
uncertainty around its mechanics (2b.2). The “black box” effect
associated with non–rule-based clinical AI prompted varied
responses, with the burden of improvement placed on either the
HCP to educate themselves or developers to produce more
familiar metrics of efficacy and interpretability (2c.1 and 2b.2):

“When I bring on a test, I usually know what method
it is. You tell me AI, and I have conceptually no
idea.”... As a result, pathologists wanted to get a basic
crash course in using AI... [HCP [38]]

The HCP culture could be very influential in local clinical AI
implementation (6c.1). Professional hierarchies were exposed
and challenged through the interplay of clinical AI and
professional roles and relationships (4d.3). Some experienced
this as a “levelling-up” opportunity, favoring evidence over
eminence-based medicine and nurturing more collaborative
working environments (2d.3 and 3b.6). Others felt that their
capabilities were being undervalued and even feared redundancy
on occasion (4a.2):

The second benefit was the potential to use the deep
learning system’s result to prove their own readings
to on-site doctors. Several nurses expressed
frustration with their assessments being undervalued
or dismissed by physicians. [Authors’ representation
of HCPs [39]]

In some studies, HCPs felt that care provision improved both
in terms of quality and reach (3b.1 and 3b.4). A virtuous cycle
of engagement and value perception could develop, depending
on where HCPs saw value and need in a given context (2c.2
and 2b.3). This was often when clinical AI aligned with familiar
ways of working (5d.1), prompting or actioning things that
HCPs knew but easily forgot (3b.5), and where the transfer of
responsibility was gradual and HCP led (2f.1):

...to the physician, the algorithmic sorting constituted
an extension of her own, and her experienced
colleagues’ expertise...“I consider it a clinical
judgement, which we made when we decided upon
the thresholds”... [HCP [40]]

Health Care Managers and Leaders
Strong leadership at any level within health care organizations
supported successful implementation (5a.2). Competing clinical
demands and the scale of projects had the potential to
disincentivize initial resource investments and jeopardize the
implementation of clinical AI (5e.2). Resources committed to
the clinical AI implementation held more than their intrinsic
value, as they signaled to adopters that implementation was a
priority and encouraged a positive workforce attitude (5b.2). A
careful selection of clinical AI tools that seem likely to
ultimately relieve workforce pressure may help managers to
protect investment and adopter buy-in despite excessive clinical
burdens (3b.1 and 5b.1). Stepwise or cyclical implementation
of clinical AI were also advocated as a means of smoothing
workflow changes and minimizing distractions from active
projects:

I think that if you keep it simple, and maybe in a
structured way if you could layer it, so that you know,
for 2012 we are focusing on these five issues and in
2013 we’re focusing on these...over time you would
introduce better prescribing. [Primary care leader
[41]]

The significant commitment required for effective
implementation underlined the importance of judicious clinical
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AI selection and where, how, and for whom it would be applied
(2f and 1a.3). A heuristic approach from managers’ knowledge
of their staff characteristics (eg, age, training, and contract
length) roughly informed a context-specific implementation
strategy (4a.1). However, co-design with the adopters
themselves better supported the alignment of local clinical AI
values, staff priorities, and patient needs (4b.3 and 5d.1). There
were examples of this process being rushed and heavy
investments achieving little owing to misalignment of these
aspects (2b.3 and 5a):

...due to shortage of capacity and resources in
hospitals, business cases were often developed too
quickly and procurements were made without
adequate understanding of the problems needing to
be addressed [Authors’ representation of health care
managers [42]]

HCPs sometimes developed negative relationships with clinical
AI, which limited sustainability if issues were not identified or
addressed (4d.2 and 4a.1). Just as clinical AI with the flexibility
to be applied to different local workflows appeared to be better
received by adopters, an influential factor for implementation
was health care managers who were prepared to be flexible
about which part of workflow was targeted (2f). Clinical AI
implementation often revealed preexistent gaps between ideal
and real-world care. Managers framed this as not only a
problematic creation of necessary work but also helpful evidence
to justify greater resourcing from policy makers or higher
leadership (6a.3 and 5a.1). The need to consider staff well-being
by managers was also illustrated, as clinical AI sometimes
absorbed simple aspects of clinical work, increasing the
concentration of intellectually or emotionally strenuous tasks
within clinician workflows (2a.2, 1a.2, and 5d.2):

The problem with implementing digital technologies
is that all too often, we fail to recognise or support
the human effort necessary to bring them into use and
keep them in use. [Authors’ representation of HCPs
[43]]

Patients, Carers, and the Public
Concerns about the impact of clinical AI on HCP-patient
interactions mainly came from the fear of HCP substitution
(4d.1). These concerns seemed strongest within mental health
and social care contexts, which were felt to demand a “human
touch” (1a.1, 1c, and 2a.2). Patient-facing clinical AI, such as
chronic disease self-management tools, was well received if
they operated under close HCP oversight (2f.1 and 2f.2). The
use of clinical AI as an adjunct for narrow and simplistic tasks
was more prevalent (2f.1 and 1a.2), aiming to liberate HCPs’
attention to improve care quality or reach (3b.2). There were
also examples of patient-facing clinical AI that appeared to
better align patients and HCP agendas ahead of consultations,
empowering patients to represent their wishes more effectively
(4b.2 and 4c):

It is an advantage when reliable information can be
sent to the patient, because GPs [General
Practitioners] often have to use time to reassure

patients that have read inappropriate information
from unreliable sources. [HCP [44]]

There was little evidence of research into carers’ perspectives.
Available perspectives suggested that clinical AI could make
health care decisions more transparent, helping carers to
advocate for patients (4c). This could help anticipate and
mitigate some of the reported patient inconveniences and
anxieties associated with clinical AI (2b.1 and 4b.1):

One participant stated that the intervention needed
to be “patient-centred”. “Including patients in the
design phase” and “conducting focus groups for
patients” were suggested to improve implementation
of the eHealth intervention. [Unspecified participants
[45]]

Public perception of clinical AI was extremely variable, and
with little personal experience, it was common to draw on
hesitancy (6d.2 and 6d.1):

...many women, who had a negative or mixed view of
the effect of AI in society, were unsure of why they
felt this way... [Authors’ representation of public [46]]

Popular media were often felt to play a key role in informing
the public and to encourage expectations far removed from
real-world health care (6d.1) However, in cases where clinical
AI was endorsed by trusted HCPs overseeing their care, these
issues did not appear problematic (6b.2).

Regulators and Policy Makers
There was a perceived need for ongoing regulation of clinical
AI and the contexts in which they are applied. This was both
in terms of how tools are deployed to new sites (2b.3 and 5f.2)
and how they may evolve through everyday practice (2a.3 and
7a.2). To make this evolution safe, stakeholders identified the
need for long-term multistakeholder collaboration (6e).
However, the data highlighted disincentives for this way of
working, suggesting that there may be a need to enforce it (6a.2
and 6c.2). Stakeholders also raised issues around generalizability
and bias for the populations they served, which were context
specific and could evolve over time (6b.1). Otherwise,
practitioners could gradually apply clinical AI to specific
settings for which it was not appropriately trained or validated
(2b.3). This “use case creep” described in the data further
supported the perceived need for continual monitoring and
evaluation of adopters’ interaction with clinical AI (6b):

...they reported use of the e-algo only when they were
confused or had more difficult cases. They did not
feel the time required to use the e-algo warranted its
use in the cases they perceived as routine or simple.
[Authors’ representation of HCPs [15]]

Stakeholders often felt that clinical AI increased the speed and
strength of policy and practice’s influence over one another
(6a.3). Many appreciated its improvement of care consistency
across contexts and alignment of practices with guidelines (3b.6
and 2d.3). Others criticized it as an oversimplification (6c.1).
An opportunity was seen for policy development to become
more dynamic and evidence based (3b.4). Some envisaged this
as an automated quality improvement cycle, whereas others
anticipated complete overhauls of treatment paradigms (2f.1).
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I could easily see us going to that payer and saying,
“Well, our risk model...shows your patient population
is higher risk. We need to do more intervention, so
we need more money.” [Health care manager [36]]

Anxiety over who would hold legal responsibility if clinical AI
became dominant was common (6b.3). The litigative threat was
even felt by individuals who avoided clinical AI use, as HCPs
feared allegations of negligence for not using clinical AI (6b.3).
Neither industry nor clinical professionals felt well placed to
take on legal responsibility for clinical AI outcomes because
they felt they only understood part of the whole (2b.2 and 6e).
This was mainly presented as an educational issue rather than
a consequence of transparency and explainability concerns
(2b.2). Such high-stakes uncertainties appeared likely to
perpetuate resistance from stakeholders (6c.1) although some
data suggested that legislation could prompt adaptation to
commercial and clinical practices that would reassure individual
adopters (6b.2):

...physicians stated that they were not prepared
(would not agree?) to be held criminally responsible

if a medical error was made by an AI tool. [Authors’
representation of HCPs [47]]

...content vendors clearly state that they do not
practice medicine and therefore should not be liable...
[Authors’ representation of developer [48]]

Discussion

Principal Findings
These data highlight the breadth of the interdependent factors
that influence the implementation of clinical AI. They also
highlight the influence of at least 5 distinct stakeholder groups
over each factor (Figure 1): developers, HCPs, health care
managers and leaders, public stakeholders, and regulators and
policy makers. It should be emphasized that most individuals
belong to more than one stakeholder group simultaneously, and
the clinical AI tool and context under consideration will
transform the influence of any given implementation factor;
thus, robust boundaries and weightings between different
stakeholders are inevitably artificial. However, to provide a
simplified overview, the common factors related to each
stakeholder group’s perspective are summarized in Table 3.

Table 3. A summary of common factors influencing clinical artificial intelligence (AI) implementation from 5 different stakeholder perspectives.

Common factors influencing clinical AI implementationStakeholder group

Developers • Understanding clinical needs
• Producing clinical AI tools capable of adapting to clinical and organizational changes
• Safeguarding value in a dynamic and uncertain market

Health care professionals • Feeling able to make sense of clinical AI tools in the context of their own practice
• Accounting for changes to patient and professional relationships
• Managing disruption to current care pathways

Health care managers and leaders • Anticipating the resources required to enable implementation
• Engaging all adopters early in implementation
• Remaining reflexive and reactive throughout implementation

Patients, carers, and the public • Understanding what clinical AI will mean for access to health care professionals
• Gaining access into clinical decision-making
• Reconciling varied perceptions and experiences of clinical AI

Regulators and policy makers • Establishing mechanisms for the longitudinal monitoring of the clinical AI tool and implementation
context

• Strengthening the bidirectional influence of policy and practice
• Achieving clarity over clinical and technical accountability

The strong representation of HCPs’perspectives in the literature
is an asset. However, the 30.04% (517/1721) of the excerpts
from all other stakeholder perspectives clearly hold important
but underexplored insights across all implementation factors
(Figure 1), which should be prioritized in future research. The
underrepresentation of certain stakeholders is partly masked by
the need to group together the least represented stakeholders to
permit meaningful synthesis, exemplified by the total of 0.35%
(6/1721) of excerpts, which is related to the carer perspective.
Failure to reform this clinician-centricity will limit the
understanding and management of the inherent multistakeholder
process of implementation. Encouragingly, the frequency at
which specific factors arose in studies of rule-based and
non–rule-based tools seemed largely comparable (Multimedia

Appendix 5). This supports the use of the wider general clinical
AI evidence base to inform non–rule-based tool implementation,
which has been curated and characterized in this study to support
future tool and context-specific implementation efforts in
anticipating and managing a unique constellation of factors and
stakeholders (Multimedia Appendix 3). This is caveated in more
dominant areas of discussion for non–rule-based tools, such as
intellectual property, regulation, and sociocultural attitudes,
where further research specific to non–rule-based clinical AI is
required.

Comparison With Prior Work
This qualitative evidence synthesis has demonstrated that many
implementation factors concerning early rule-based clinical AI
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tools continue to be influential [149]. However, the analysis
and presentation of this work has prioritized enabling a varied
readership to interpret data within their own context and
experience rather than prescribing factors to be considered for
a narrow range of clinical AI tools and contexts [24,32]. As a
result, this study has consolidated a wider scope of research
than previous work to synthesize findings that can support future
implementation practice and research, considering a wide range
of clinical AI tools and contexts. This approach may
compromise the depth of support offered by this study relative
to other syntheses for particular clinical specialties, clinical AI
types, or stakeholder groups [11,12]. To maintain rigor while
acknowledging the subjective value of eligible data, a
systematic, transparent, and empirical approach has been
adopted. This contrasts with narrative reviews in the literature,
which provide valuable insights that draw more directly on the
expertise of particular groups and collaborations but may not
be easily generalized to diverse clinical AI tools [8,150].

Limitations
First, some of this study’s findings are limited by the low
representation of certain groups’perspectives in eligible studies,
which necessitated highly abstracted definitions of key
stakeholders to facilitate meaningful synthesis. In addition to
the example of carers mentioned previously, employees of
academic and commercial institutions were both termed
“developers.” A related second limitation of this study was the
use of databases that focused on peer-reviewed literature. This
search strategy is likely to have contributed to the low
representation of non-HCP stakeholder groups, as peer-reviewed
publications are a resource-intensive approach to dissemination
that does not reward other stakeholders as closely as it does
HCPs. Potential mitigation steps included the addition of social
media or policy documents, but they were thought to be
unfeasible for this study, given the extensive eligible literature
returned by the broad search strategy applied [151]. Instead, a
codevelopment step was added to the analysis process to
reinforce the limited stakeholder perspectives that did arise from
the search strategy with the coauthors’ lived experience. This
was also valuable because it helped mitigate a further source of
bias from factors relevant to given stakeholders that were often

being described in the primary data by participants from
different stakeholder groups. This is reflected in the sources of
the sample excerpts interspersing the results section and by the
61 excerpts attributed to the patient (4b) or carer (4c) NASSS
subdomains, 57% (35/61) were sourced from stakeholders
outside the public, patients, and carer stakeholder group. In
addition to mitigating these limitations, the codevelopment step
of analysis was also intended to help improve the accessibility
of implementation science within clinical AI, where
theory-focused dogma often obscures the value for practitioners
[32,152]. A third limitation is the likely underrepresentation of
non-English language reports of studies, despite the English
language limits only being applied through database indexing.
Search strings devised in other languages or searches deployed
in databases that focus on non-English literature could examine
this potential limitation.

Future Directions
The relatively short list of eligible qualitative studies derived
from such broad eligibility criteria emphasizes the need for
more primary qualitative research to explore the growing breadth
of clinical AI tools and implementation contexts. Future primary
qualitative studies should prioritize the perspectives of non-HCP
stakeholders. Researchers may wish to couple the relevant data
curated here (Multimedia Appendix 3) and a rationally selected
theoretical approach to develop their sampling and data
collection strategies [153]. Further exploration of
implementation factors more pertinent to non–rule-based tools,
such as intellectual property, regulation, and sociocultural
attitudes, may also improve the literature’s contemporary
relevance.

Conclusions
This study has consolidated multistakeholder perspectives of
clinical AI implementation in an accessible format that can
inform clinical AI development and implementation strategies
involving varied tools and contexts. It also demonstrates the
need for more qualitative research on clinical AI, which more
adequately represents the perspectives of the many stakeholders
who influence its implementation and the emerging aspects of
non–rule-based clinical AI implementation.
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