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Abstract

Digital phenotyping refers to near–real-time data collection from personal digital devices, particularly smartphones, to better
quantify the human phenotype. Methodology using smartphones is often considered the gold standard by many for passive data
collection within the field of digital phenotyping, which limits its applications mainly to adults or adolescents who use smartphones.
However, other technologies, such as wearable devices, have evolved considerably in recent years to provide similar or better
quality passive physiologic data of clinical relevance, thus expanding the potential of digital phenotyping applications to other
patient populations. In this perspective, we argue for the continued expansion of digital phenotyping to include other potential
gold standards in addition to smartphones and provide examples of currently excluded technologies and populations who may
uniquely benefit from this technology.
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Introduction

Digital phenotyping is defined by Onnela and colleagues [1] as
the “moment-by-moment quantification of the individual-level
human phenotype in situ using data from personal digital
devices, in particular smartphones” [2]. Digital phenotyping
includes the key components of continuous data collection, on
an individual level, captured in a passive way without the
imposition of additional data collection tools. It provides new
objective biomarkers for disease manifestations, previously
reliant on subjective or self-reported data. This technical
advancement has garnered substantial research interest due to
both the hypothetical and realized promises of new objective

ways of understanding and measuring diseases. For example,
one study demonstrated that GPS data–based mobility and
location anomalies gathered from a smartphone were associated
with schizophrenia relapse, offering a new digital footprint of
the disease [3].

Originating primarily in psychiatry, digital phenotyping
addresses disease states that currently have no objective
measurable biomarker, a quandary known as a phenotyping
problem. For example, early studies demonstrated that
smartphone data could be useful in identifying adolescents at
risk for depression, bipolar disorder, and future stress [4-6].
Additional fields have also begun adopting this approach. For
instance, others have used digital phenotyping to define recovery
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in surgical patients and monitor for signs of respiratory
depression to potentially prevent opioid overdose [7-9]. With
the ever-expanding wealth of digital health information
available, digital phenotyping will become an inevitable part
of medicine.

Despite these advances, there remains controversy over the
optimal way (or gold standard) to collect data for digital
phenotyping. The initial definition of digital phenotyping by
Onnela and colleagues [1] has undoubtedly provided a new and
necessary framework for understanding diseases. However,
despite the aforementioned advances, it has been repeatedly
argued that digital phenotyping should be used primarily via
smartphones due to concerns about the availability, reliability,
and data quality of other devices [1,10,11]. For example, it has
been stated that smartphones are “ideally-suited” for digital
phenotyping and represent “the only approach that makes it
possible to aggregate data across studies and investigate aspects
of behavior.” Other means of data collection, such as wearable
devices, are considered to have “problematic” drawbacks such
as attrition and data quality [11].

A smartphone-only approach to digital phenotyping excludes
populations that cannot use or access a smartphone, such as
young children, older adults who have vision impairments or
have lost the ability to perform activities of daily living, and
those with cognitive/behavioral barriers. In addition,
smartphones can reliably provide GPS and actimetry data, but
other vital signs, such as heart rate, temperature, and oxygen
saturation, cannot be reliably obtained without a sensor placed
on the core or wrist of the individual’s body. In addition, in
today’s rapidly evolving technology landscape, the availability,
reliability, and data quality of other devices have been
significantly improved to address previous barriers that limited
their inclusion in digital phenotyping. With such capabilities,
we argue that there are significant opportunities to continue
expanding the gold standard devices for collecting data used
for digital phenotyping beyond smartphones and improving our
understanding of human diseases. The purpose of this paper is
to support the expansion of the definition and scope of digital
phenotyping to include additional technologies and populations.
While the inclusion of other devices, such as wearables, for
digital phenotyping is not new, we argue for the widespread
acceptance and adoption of these devices as another needed
means for data collection in an effort to maximize the utility of
digital phenotyping for medical care.

Of note, when considering digital phenotyping, this viewpoint
recognizes the subtle differences between the terms “digital
phenotype” introduced by Jain et al [12] in 2015 and “digital
phenotyping” introduced by Onnela et al [1] in 2016. The former
refers to the composition of disease-specific digital data and
recognizes the range of devices from which it comes. The latter,
however, refers to a field of science with a specific methodology
that is wary of devices outside of smartphones. This viewpoint
primarily refers to the latter, which is the specific methodology
of carrying out digital phenotyping, although the former is
affected as well. We also recognize more recent efforts to define
the philosophical and epistemological underpinnings of digital
phenotyping, which also expands original definitions. We seek
to build on those by providing concrete examples of how an

expanded definition of digital phenotyping plays out in
real-world clinical applications [13].

Limiting Digital Phenotyping to
Smartphones Excludes Other Advanced
Technologies for Capturing Physiologic
Data

Smartphones have developed significantly and become
ubiquitous in the last decade. However, other forms of smart
devices, such as wearables, have also improved considerably
in their ability to reliably collect and transmit passively collected
physiologic data. Wearable sensors, such as accelerometers and
heart rate monitors in the Fitbit or Apple Watch, present an
incredible opportunity for the integration of passively collected
digital information for digital phenotyping. These devices are
rapidly advancing with applications ranging from traditional
wrist-worn devices to patches, headbands, vests, glasses, and
even implantable sensors within medical devices [14]. An
advantage of these wearables is their direct contact with skin,
which affords an opportunity for the collection of physiologic
data, such as temperature and heart rate, which are not usually
available through smartphones. A systematic review examining
the validity of consumer wearable data found a “high” intra-
and interdevice correlation of step counts in both laboratory
and field studies and concluded that step counts from wearables
were accurate with acceptable rates of error [15]. Heart rates
obtained from consumer-grade wearables have also shown
accuracy compared with standard electrocardiograms, with
mean agreement rates as high as 95% [16]. With such
capabilities, wearable sensors may have arguably more passive
data collection capabilities in select scenarios than smartphones
alone (their Bluetooth technology is often still needed for
wearable data collection) because they can be used secondarily
by a user who does not need to primarily manage the technical
aspects (eg, a phone bill or account logins) of the device.

However, several concerns have been raised regarding the use
of wearables for digital phenotyping [14]. First, use of these
wearable sensors is growing at an exponential rate, and the
number of globally connected devices is estimated to reach over
1 billion devices by 2022, a doubling of the number of devices
in just 3 years [17]. If this rate of growth continues, these
devices will be as ubiquitous as smartphones within a decade.
Second, while older studies reported limited compliance with
wearables [18], newer studies cite high compliance, satisfaction,
and wear times in certain populations with adequate education
and follow-up [19-21]. Third, one may also argue that adding
devices represent an imposition that is unnatural and not passive,
which could bias results. However, the rise of wearables means
that they are likely a facet of our future digital lives (for health
care or otherwise) that ought to be leveraged for digital
phenotyping. In fact, studies are already using this by creating
free and open enrollment into studies for the general public who
already own and use wearables regularly to identify diseases
and measure outcomes (eg, COVID-19) [22]. Finally, in addition
to availability and reliability, the clinical incorporation of data
from wearable sensors has improved considerably. According
to a recent National Institutes of Health working group,
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wearables can be successfully incorporated into clinical practice
when “key principles” identified by the group are followed [23].
This group further concluded that wearables “herald a new era
in health care delivery with the potential to transform many
aspects of clinical care.”

With this versatility, wearables offer an improvement in both
the range and quality of data obtained compared to smartphones.
The value of these additional data cannot be underestimated,
and they have already been shown to be integral to the objective,
remote identification of disease, and solution to a certain type
of the aforementioned phenotyping problem. One needs to look
no further than the current COVID-19 pandemic to see how
wearable sensors proved useful in identifying signs of the
disease reflected in heart rate, step counts, and sleep, up to
multiple days prior to when patients would typically show
symptoms [24,25]. In our studies, we have shown that step
counts and heart rates from a wearable can be used to better
understand surgical recovery and that this data can influence
clinical decision-making [20,26].

These technologies are already advancing faster than the health
care systems that are beginning to adopt them. Because of the
rapidly changing technological landscape, new devices and
technologies ought to be constantly evaluated for their utility
in digital phenotyping. Without this, the definition and
methodology of digital phenotyping will miss an opportunity
to adapt along with evolving technologies and the wealth of
information they contain.

Limiting Digital Phenotyping to
Smartphones Exclude Populations That
Cannot Use or Access a Smartphone

A smartphone-only approach to digital phenotyping excludes
populations that cannot use or access a smartphone on their
own, such as young children, older adults who have vision
impairments or have lost the ability to perform activities of daily
living, and those with cognitive/behavioral barriers. These
populations represent a significant missing component of more
narrow applications of digital phenotyping that rely solely on
smartphone use. Although adolescents are increasingly using
smartphones (over 50% have a cell phone by the age of 11 in
the United States [27]), there will always be age and cognition
limits on the ability to use a smartphone. Just 61% of individuals
older than the age of 65 years own a smartphone (compared to
>90% in other age categories), with barriers to ownership in
this age group cited as financial limitations, vision impairment,
and lack of interest/knowledge in learning how to use the device
[27].

In fact, proactive inclusion of these populations may have an
even greater impact as these individuals are often the most
vulnerable. For example, one study demonstrated that wearable
sensors placed on infants demonstrated motion complexities
that may predict the onset of autism spectrum disorder later in
life [28], and another demonstrated gait characteristics that could
predict an increased risk of a fall in older adults [29]. Beyond
this, there may be many applications that could be truly
transformative. For example, the digital phenotyping of pain in

an irritable infant or of early stages of infection in a nursing
home patient with dementia would be transformative for patient
care and patient outcomes, providing an objective tool for
anxious caregivers and health care providers in this scenario.
Without a wearable, the collection of digital data from these
populations who cannot use a smartphone on their own would
not be possible. Exclusion of these populations not only limits
the generalizability of digital phenotyping but also misses an
incredible opportunity to assist specific populations of patients
who may benefit from digital phenotyping the most.

Toward a Broader Scope of Digital
Phenotyping

To address the limitations of a focus on digital phenotyping on
smartphones as the only gold standard, we propose an alternative
framework where there are multiple gold standards for digital
phenotyping in line with the diverse range of robust technologies
that are currently available on the market. This in turn allows
for better, more accurate digital phenotyping of certain diseases,
and the inclusion of important missed populations (Figure 1).
In fact, the literature review reveals that this idea is not entirely
novel, although its widespread adoption would be, and much
work is already being done, whether explicitly stated as digital
phenotyping or not, that expands far beyond the use of
smartphones.

For example, studies have combined smartphone and wearable
data from wrist-worn or finger-worn devices to find associations
between physical activity and self-reported feelings of
loneliness, identify depression, and generate risk algorithms for
suicidality [30-33]. Other studies have further expanded the
types of data used, such as the incorporation of an accelerometer,
gyroscope, compass, location, microphone, phone state
indication, light, temperature, and barometer data from a
smartwatch to describe emotional states [34]. Other fields, such
as oncology and palliative care, have also begun to use
wearables to track outcomes, offering new digital biomarkers
of disease [35,36]. In addition to clinical applications of digital
phenotyping, the ethical, philosophical, and epistemological
aspects of digital phenotyping are now being described to better
support the advancement of the field, including addressing topics
such as data equity, data safety, and device reliability [37].

In addition to the more recent literature just discussed, a review
of the origins of the definition of the phenotype and the process
of phenotyping is helpful for supporting an expanded scope of
digital phenotyping [13,38]. The phenotype is traditionally
thought of in two ways: (1) in its original definition, it refers to
the observable traits of an organism’s genetics; and (2) it also
refers to the extended phenotype, as defined by Richard Dawkins
[39] in 1978, which recognizes the effects of an organism’s
genetics and corresponding phenotype on its surroundings. For
example, beaver dams or beehives are expressions of that
organism’s genetic code that alter the environment and, in turn,
affect the populations of that environment. Digital phenotyping
data from humans is analogous to beaver dams and beehives
(eg, a beaver dam affects all the organisms in that environment,
just as the digital data upon which clinical decisions will be
based will in turn be generalized to the human population).
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Figure 1. Conceptual framework for understanding an expanded definition of digital phenotyping that demonstrates that the foundation of digital
phenotyping is rooted in a passive, smartphone-only approach but has the potential for an expanded definition that includes additional devices and
populations.

With these concepts in mind, the process of digital phenotyping
ought to be as broad as possible without affecting the integrity
of the process itself. The digital data that informs digital
phenotyping will inform health care decisions and will
subsequently affect people who may not have even provided
that digital information initially. For this reason, it becomes
paramount that novel digital footprints derived from digital
phenotyping be based on as diverse digital information as is
available. This means that while a completely passive process
of digital phenotyping is certainly preferred, it only applies to
those who can own and manage a device; have reliable
Bluetooth and network technology; can consent to studies on
their own; and, if needed, respond to surveys. On the other hand,
some individuals will need devices provided to them, and, in
some cases, devices in addition to smartphones may be preferred
for the reasons explained above. Additionally, some populations
may require additional resources and support to ensure data
collection.

Smartphones are certainly the foundation for digital phenotyping
and are, in fact, often necessary for the function of other devices
via associated apps and Bluetooth technology. However,
expanding the scope of digital phenotyping to include additional
technologies and populations, which at times require active
involvement by researchers, will allow for the unprecedented
collection of digital data that is diverse, robust, and inclusive.
Philosophically, this expansion respects the original definitions
of the phenotype, and ethically, it ensures broader inclusivity
of individuals in the process of digital phenotyping and the
generalizability of the subsequent findings.

Additional Considerations

As technologies advance and evolve, applications of digital
phenotyping can also advance, evolve, and be tailored to specific
populations. As mentioned above, this approach leads to a more
inclusive and equitable expansion of digital phenotyping.
However, additional considerations are needed beyond the
technology itself.

Individuals affected by the digital divide ought to be considered
in the future of digital phenotyping as well. This is a barrier that
exists regardless of what type of technology is used. A quarter
of individuals in the United States who earn less than US
$30,000 do not own a smartphone or have the reliable, constant
high-speed network connections necessary for data collection,
and this access gap has persisted over time [27]. The inclusion
of this population will not be solved with additional devices
that are also reliant on smartphones and reliable networks
themselves. Financial barriers will still exist even with the
inclusion of wearables, and may even exacerbate disparities if
not delivered equitably. Insurance coverage or provision of
these devices (smartphones and wearables), free-of-charge to
the patient, if necessary, not only addresses an issue of the
ethical principle of justice in access to the future of digital health
but also leads to opportunities for more robust understandings
of disease based on an incredible diversity of digital information
that is currently unobtainable given the known effects of social
determinants of health. While we commend Onnela and
colleagues [1] for examining the issue of socioeconomic
disparities in the process of digital phenotyping, their conclusion
that data can be reliably collected via smartphones across diverse
populations was based on a small sample size of participants
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that were nearly all college students and nurses, which is not
generalizable [40]. A more comprehensive understanding of
the requirements of diverse data collection is needed and ought
to be addressed in the future of digital phenotyping.

Funding for an expanded definition of digital phenotyping that
includes additional devices is certainly a concern, but solutions
are already being proposed or in place for a free-of-charge or
reduced-charge provision of devices. For example, the Centers
for Medicare and Medicaid Services has instituted Current
Procedural Terminology codes for reimbursement of not only
remote patient monitoring devices but also the clinical
monitoring of their data under Medicare, with an anticipated
expansion to Medicaid and private insurers as well [41]. A more
balanced approach to digital phenotyping recognizes that there
will always be a subset of individuals who will need devices or
additional resources proactively provided to them lest they be
excluded. This bias could severely threaten the validity and
generalizability of findings based on digital phenotyping, as
well as exacerbate socioeconomic-related health disparities.

Finally, one cannot ignore the fact that nearly all wearables rely
on the coexisting ownership of a smartphone by the patient or
their caretaker due to the cloud and Bluetooth capabilities for
data storage and transmission. We are not suggesting that
wearables or other devices replace smartphones in the future of
digital phenotyping, as they are necessary, but rather that a more
proactive provision of devices may be needed to ensure the
inclusion of all.

Examples of Expanded Applications of
Digital Phenotyping: Advantages of
Nonsmartphone Devices

Given the arguments, advantages, and barriers from above, the
following represent examples where additional technologies
and populations benefit from digital phenotyping and would be
entirely excluded if a smartphone-only approach was taken. In
the authors’ own experience and published results, wearables
can address research quandaries that smartphones alone cannot,
particularly in the care of children. In the case of surgical
recovery, the physiological process of returning to homeostasis
after the insult of surgery, wearables provide novel digital
biomarkers of recovery where objective measurements are
absent, particularly after discharge from the hospital. Defining
this process in a measurable way is important for ensuring
adequate recovery or identifying complications. In children,
this is particularly important as they are often unable to
adequately describe their symptoms and rely on proxies and
parent reporting, which have been shown to be subjective and
lead to suboptimal pain medication administration and
unnecessary emergency room visits during postsurgical care
[42-44]. Young children, who do not have the capacity to

operate a smartphone, uniquely benefit from a wearable that
can collect digital information that otherwise would have no
means of being collected. This wearable data have shown that
unique trajectories of recovery can be defined from physical
activity data to more objectively describe surgical recovery after
an appendectomy, offering a new objective biomarker of surgical
recovery in children [20]. Segmental regression modeling of
step counts by postoperative day demonstrated a rise and then
a plateau, an indication of recovery. Further, this data, along
with heart rate, can influence clinical decision-making [26].

Numerous other examples exist where nonsmartphone devices
provide an advantage. For example, accelerometers and sensors
on the sole, hip, and head can be used to create novel digital
biomarkers of gait characteristics predictive of falls or of
movement abnormalities for monitoring Parkinson disease
[29,45]. Not only can wearables be placed on various locations
on the body for novel metrics but they can also be worn
passively by an older individual who may not be able to operate
a smartphone, relying on Bluetooth aspects of data collection
via the smartphone managed by a caregiver. Wearables also
provide an advantage for populations in low-resource settings
or those isolated from care. The expanded range of metrics
available in wearables but not smartphones, such as wrist-based
photoplethysmogram heart rate and pulse oximetry, or
temperature from a wearable body patch, have replaced bedside
monitors and temperature devices in patients isolated from care
by providing metrics like clinically validated heart rate
variability in an intensive care unit in Vietnam [46] and novel
predictive algorithms for decompensation from COVID-19 in
patients in the outpatient setting that outperformed the standard
of care [47]. The addition of wearables in these scenarios not
only incorporates entire populations that would otherwise be
excluded but also creates an opportunity for additional types of
digital information and metrics not captured by a smartphone.
It must be reemphasized that wearables in these examples are
not meant to replace smartphones, but rather serve as adjuncts
that leverage existing smartphone availability and Bluetooth
technology.

Conclusions
The current scope of digital phenotyping is an invaluable first
step toward leveraging digital information for new
understandings of disease and ultimately improving health
outcomes. An expansion of this scope to include other evolving
technologies and populations that may, at times, require a more
proactive approach will only strengthen digital phenotyping in
the future. The incorporation of the wealth of digital information
across numerous populations and technologies into digital
phenotyping is possible and is already being done while still
respecting key principles of original definitions. With this
approach, the bounds of digital phenotyping are only as limited
as the innovation and creativity of those who implement it.
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