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Abstract

Background: Sleep is an important determinant of individuals’ health and behavior during the wake phase. Novel research
methods for field assessments are required to enable the monitoring of sleep over a prolonged period and across a large number
of people. The ubiquity of smartphones offers new avenues for detecting rest-activity patterns in everyday life in a noninvasive
an inexpensive manner and on a large scale. Recent studies provided evidence for the potential of smartphone interaction monitoring
as a novel tracking method to approximate rest-activity patterns based on the timing of smartphone activity and inactivity throughout
the 24-hour day. These findings require further replication and more detailed insights into interindividual variations in the
associations and deviations with commonly used metrics for monitoring rest-activity patterns in everyday life.

Objective: This study aimed to replicate and expand on earlier findings regarding the associations and deviations between
smartphone keyboard–derived and self-reported estimates of the timing of the onset of the rest and active periods and the duration
of the rest period. Moreover, we aimed to quantify interindividual variations in the associations and time differences between the
2 assessment modalities and to investigate to what extent general sleep quality, chronotype, and trait self-control moderate these
associations and deviations.

Methods: Students were recruited to participate in a 7-day experience sampling study with parallel smartphone keyboard
interaction monitoring. Multilevel modeling was used to analyze the data.

Results: In total, 157 students participated in the study, with an overall response rate of 88.9% for the diaries. The results
revealed moderate to strong relationships between the keyboard-derived and self-reported estimates, with stronger associations
for the timing-related estimates (β ranging from .61 to .78) than for the duration-related estimates (β=.51 and β=.52). The relational
strength between the time-related estimates was lower, but did not substantially differ for the duration-related estimates, among
students experiencing more disturbances in their general sleep quality. Time differences between the keyboard-derived and
self-reported estimates were, on average, small (<0.5 hours); however, large discrepancies were also registered for quite some
nights. The time differences between the 2 assessment modalities were larger for both timing-related and rest duration–related
estimates among students who reported more disturbances in their general sleep quality. Chronotype and trait self-control did not
significantly moderate the associations and deviations between the 2 assessment modalities.

Conclusions: We replicated the positive potential of smartphone keyboard interaction monitoring for estimating rest-activity
patterns among populations of regular smartphone users. Chronotype and trait self-control did not significantly influence the
metrics’ accuracy, whereas general sleep quality did: the behavioral proxies obtained from smartphone interactions appeared to
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be less powerful among students who experienced lower general sleep quality. The generalization and underlying process of these
findings require further investigation.

(J Med Internet Res 2023;25:e38066) doi: 10.2196/38066
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Introduction

Background
Sufficient sleep is crucial for individuals’ functioning during
the wake phase, and sleep disturbances may hamper health and
performance [1-7]. The timing and duration of sleep are
important determinants of individuals’ affective state and
behavior during the wake phase [3,8-11]. In fact, sleep
deprivation and irregularity in sleep timing have been associated
with a lower sleep quality [9,11-13] and reduced daytime
functioning, which is reflected in, for example, sleepiness,
fatigue, a lack of vitality, and a more negative mood [11,14-16].
In turn, this can challenge the resistance to engage in unhealthy
behaviors and impede a healthy lifestyle [17-19]. Sleep
disturbances are prevalent in clinical populations but are also
quite common in nonclinical populations [20-22] and may have
increased because of the COVID-19 pandemic [23]. Methods
for unobtrusively tracking such time-related sleep features
(timing and dosage) over longer periods may, therefore,
contribute significantly to both scientific health research and
practical health applications.

A common method to quantify rest-activity patterns in the field
is actimetry, which is obtained with wearable devices that
monitor gross motor activity at the wrist. Alternatively, diaries
are often used to capture a person’s recalled sleep-wake timing
and duration. Despite their merits, these methods require that
users wear sensors continuously or frequently respond to
questionnaires. Thus, monitoring and quantifying rest-activity
patterns over a prolonged period across numerous individuals
presents obvious challenges. Although survey data on sleep and
wake have been obtained from large samples in cross-sectional
studies, these have generally included aggregated, mean-level
data, lacking fine-grained information about the temporal
dynamics in individuals’ rest-activity patterns. Large-scale and
prolonged monitoring of trajectories of sleep parameters in real
life could facilitate the use of advanced (time series) data
analytic approaches and mathematical modeling of natural
rest-activity patterns. This could provide detailed insights into
individuals’ habitual rest-activity patterns and regularities or
irregularities in these patterns across days, weeks, or years
[24-26], potentially elucidating the effects of interventions or
treatment [27,28]. Moreover, obtaining and modeling intensive
longitudinal data could provide insights into interindividual
differences in rest-activity patterns and time-lagged responses
to perturbations in sleep. These insights can, in turn, inform the
design of adaptive, personalized strategies and just-in-time
interventions for promoting healthy sleep-wake patterns.
However, this would require unobtrusive, inexpensive, and
user-friendly tracking methods.

The widespread use of smartphones offers new opportunities
to detect and predict behavioral manifestations related to
rest-activity patterns in everyday situations in a noninvasive
manner and on a large scale. Recent studies have shown that
smartphone-derived metrics can serve as proxies for the timing
of sleep and wake by detecting periods of activity and inactivity
during the 24-hour day [29-31]. These studies reported strong
correlations between keyboard or touchscreen interactions and
estimates of rest-activity timing based on diaries or actigraphy
but also revealed informative deviations between these different
assessment methods. Consistency in the use of smartphones
before, during, and after sleep across days may vary from person
to person [30]; and interindividual differences were reported in
the associations and deviations between smartphone-derived
and self-reported [30,31] or physical activity–based putative
estimates of the rest and active periods [29,31]. These studies
revealed that the agreement between the different assessment
modalities was moderated by age, gender, chronotype, and
habitual (perisleep) smartphone use [29,30]. Moreover,
deviations suggested dissimilar profiles regarding sleep-wake
patterns and smartphone use surrounding sleep as a function of
the user’s age, employment status (student or university staff),
and habitual smartphone use [31].

In addition to chronotype, both trait self-control and general
sleep quality have been shown to be determinants—or
correlates—of sleep timing and duration as well as screen
technology use in the late evening [18,32-40]. Trait self-control
has been related to increased (bedtime) procrastination and, via
procrastination, to more disturbances in general sleep quality
among young adults [36,38]. Lower general sleep quality was
associated with shorter sleep duration, higher day-to-day
variability in sleep duration, more fragmented sleep, and a larger
sleep onset latency, as assessed by actigraphy [16]. There are
also indications that persons with lower trait self-control or
general sleep quality have a greater tendency to display poor
sleep hygiene–related behaviors [41,42], including media
technology use surrounding sleep [40,43-45]. However, the
extent to which these trait variables related to sleep and sleep
habits moderate the associations and deviations between
smartphone-based and commonly used metrics for monitoring
rest-activity patterns over time is largely unknown.

Goal of This Study
This study aimed to further investigate the extent to which
smartphone interactions can be used to track and quantify
rest-activity patterns in situ. To this end, we replicated and
expanded on an earlier study on the relationships between
smartphone keyboard–derived and self-reported estimates of
the onset of rest and active periods and the duration of the rest
period during the 24-hour day among students [30].
Complementary to earlier research findings, we aimed to

J Med Internet Res 2023 | vol. 25 | e38066 | p. 2https://www.jmir.org/2023/1/e38066
(page number not for citation purposes)

Smolders et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.2196/38066
http://www.w3.org/Style/XSL
http://www.renderx.com/


quantify interindividual variations in the relations and deviations
between these 2 assessment modalities and assess the extent to
which these variations are related to students’ chronotype,
general sleep quality, and trait self-control.

Methods

Design
This field study used an experience sampling methodology to
monitor rest-activity patterns among students by means of user
reports, which was combined with continuous smartphone
keyboard activity logging. The primary study parameters pertain
to the onset of the rest and active periods as well as the duration
of the rest period. The study is correlational in nature, and
monitoring occurred during the students’ daily routine.

Recruitment
First-year students registered for a specific course at the
Eindhoven University of Technology were recruited. They were
informed about the study via a short, recorded message and
given the opportunity to ask questions. Students participated in
the study as part of a course assignment. They were given the
opportunity to receive an alternative assignment if they preferred
not to participate.

Ethics Approval
The recruited students could indicate whether they provided
their consent to use their data for research purposes, in addition
to educational purposes. In the current analyses, we only
included the data of students who provided their consent to
participate in the study for research purposes. The study was
approved by the Ethics committee of the Human-Technology
Interaction group at the Eindhoven University of Technology
(ID: 1756).

Measures
The measures consisted of daily sleep diaries, continuous
keyboard activity logging on the students’ smartphones, and
1-time web-based questionnaires. In addition, the participants
reported their affective state during the wake episode using
experience sampling questionnaires.

Sleep Diary
The core Consensus Sleep Diary (CSD) [46] was used to probe
self-reported sleep timing, duration, and quality. This core
version of the CSD was supplemented with items regarding the
consumption of caffeinated and alcoholic drinks from the
extended version of the CSD. Moreover, the participants
indicated whether they woke up by an alarm, reported their
experienced level of fatigue on the previous day, and estimated
the number of minutes spent outdoors in daylight on the previous
day.

Bedtime, try-to-sleep time, sleep onset (try-to-sleep time + sleep
latency), midsleep time, sleep offset, and out-of-bed time were
used as estimates of the timing of students’ rest-activity patterns.
Moreover, the total bed period (time difference between bedtime
and out-of-bed time, in hours) and total sleep period (time
difference between sleep onset and sleep offset, in hours) were
computed and used as markers for the duration of the rest period.

Keyboard Interactions Monitoring
Keyboard activity on the students’ smartphones was
continuously and unobtrusively logged using the Neurokeys
app (Neurocast BV). The app replaced the native keyboard with
a smart keyboard that allowed the registration of keyboard
interactions in users’daily routine without collecting data about
the specific letters or numbers typed (to guarantee privacy).
Keyboard-derived estimates used in the analyses include the
timing of the last keystroke before and the first keystroke after
the longest time interval without keyboard activity between 7
PM and 3 PM on the next day, the length of this
keystroke-absence period (KAP), and the timing of the midpoint
between the last keystroke and first keystroke (midpoint KAP).
In addition to these primary parameters, the number of hours
during which keyboard activity was detected in the time interval
between the first and last keystrokes was computed and included
as a potential moderating variable.

One-Time Web-Based Questionnaires
Web-based questionnaires were administered to measure trait
self-control (short, 13-item, Trait Self-Control Scale [TSC];
[47]), general sleep quality during the past month (Pittsburg
Sleep Quality Index [PSQI]; [48]), and chronotype and social
jetlag (Ultrashort Munich Chronotype Questionnaire [µMCTQ];
[49]) at the start of the sampling week. Moreover, the level of
fatigue experienced during the past week was assessed at the
end of the sampling week using the Fatigue Severity Scale [50]
(Dutch version [51]).

Experience Sampling Questionnaires
The experience sampling questionnaires contained questions
regarding momentary sleepiness (Karolinska Sleepiness Scale
[52]); vitality, tension, and valence (6 items adopted from Zhang
et al [53]); and state self-control (8 items adopted from the State
Self-control Capacity Scale [54], similar to Zhang et al [53]).
These variables were not analyzed in this study.

Procedure
After providing informed consent, the participants installed the
Neurokeys app and started using the smart keyboard 1 to 3 days
before the start of the sampling week to familiarize themselves
with the keyboard. In addition, they were asked to complete
web-based questionnaires, including the TSC, PSQI, and
µMCTQ, and report their general demographics. During the
sampling week, the participants continued using the keyboard
and received notifications to complete the sleep diary questions
each morning at 10:30 for 7 consecutive days. Moreover, the
students received notifications to complete the short experience
sampling questionnaires at 8 semirandom moments during the
wake episode, with at least 30 minutes in between notifications.
On the first sampling day, the participants were also reminded
to complete the web-based questionnaires regarding trait
self-control, general sleep quality, and chronotype and social
jetlag. At the end of the sampling week, the participants were
asked to complete the FFS. The participants were acknowledged
for their participation and received a personalized feedback
report a few weeks after the last sampling day. The data were
collected in September 2020 in the Netherlands, when mild
COVID-19–related restrictions were in force.
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Statistical Analysis

Overview
All statistical analyses were performed in R (version 4.1.0, R
Foundation for Statistical Computing), using R Studio
(R Studio Inc). First, obvious mistakes in the sleep diary data
were corrected, and ambiguous values were coded as missing.
Next, the distributions and descriptive statistics of the variables
of interest were inspected, and outliers (defined as values >4
SD from the mean) were coded as missing. All variables were
checked for normality using the Shapiro-Wilk test, and the
skewness and kurtosis values were inspected. Owing to the
nested structure of the data, multilevel analyses were performed.
To account for repeated measures within participants, participant
ID was added as a random intercept in all multilevel models
(MLMs). An α criterium of .01 was used for all the models to
account for multiplicities. P values >.01 but <.05 were inspected
and classified as nonsignificant trends.

MLMs were first defined to investigate the variance explained
at the participant level (between participants) and day level
(within participants) in the keyboard-derived and self-reported
estimates. These metrics include estimates for the timing of the
rest period onset (timing of the last keystroke and self-reported
bedtime, try-to-sleep time, and sleep onset), the timing of the
midpoint of the rest period (midpoint KAP and self-reported
midsleep time), the timing of the activity period onset (timing
of the first keystroke and self-reported sleep offset and
out-of-bed time), and the duration of the rest period (KAP and
self-reported total sleep period and total bed period). To
determine the intraclass correlations (ICCs) for each
keyboard-derived and self-reported estimate of the students’
rest-activity patterns, we ran unconditional models (null models
or intercept-only models; separate model per estimate).

Agreement and Differences Between the
Keyboard-Derived and Self-reported Estimates
MLMs were then run to investigate whether the differences
between the keyboard-derived and self-reported estimates were
significantly different from zero. In these models, the values of
the self-reported and corresponding keyboard-derived estimates
were included as outcome parameter, and modality
(keyboard-derived vs self-reported) was added as a fixed factor.
The same MLMs were also used to test for equivalence with
equivalence bounds set at 0.5 hour as well as at 1 hour. To test
for equivalence, the two one-sided tests’ procedure [55] was
used. Moreover, Bland-Altman plots, adjusted for repeated
measures, were made to display the agreement and differences
between the keyboard-derived and self-reported estimates as a
function of the mean timing or duration of both assessment
modalities. These plots are presented in Multimedia Appendix
1.

Next, we investigated the strength of the association between
the keyboard-derived and corresponding self-reported estimates.
To this end, a series of MLMs were run with the different
self-reported estimates as outcome parameters regressed on the
corresponding keyboard-derived metric (separate analysis per
outcome parameter). The MLMs testing the associations
between the estimates derived via keyboard interactions and

those derived via self-reports were subsequently extended with
first-level (ie, day-level) predictors, which were expected to
interact with the keyboard-derived estimates [30] and comprised
the number of hours during which keyboard activity was
detected and type of day (weekday vs weekend day). In these
models, the keystroke-related metrics were cluster mean
centered to facilitate the interpretation of the interaction terms
and to distinguish between within-person and between-person
slopes. The cluster means (ie, participants’ means) for the last
keystroke, first keystroke, midpoint KAP, KAP, and (previous
day’s) number of hours with keyboard activity were determined
using the random intercepts derived from the unconditional
MLMs for the corresponding keyboard-derived estimate. The
participants’ mean scores for the last keystroke, first keystroke,
midpoint KAP, and KAP were, in addition to the centered scores
(ie, daily difference scores: observations − participant mean),
added as covariates to each MLM testing moderation by the
first-level predictors.

Interindividual Variations in the Relational Strength
and the Deviations Between Keyboard-Derived and
Self-reported Estimates
Random slope MLMs with keyboard-derived estimates
(participants’ mean and centered scores) as predictors and the
corresponding self-reported estimates as outcome parameters
were run to inspect interindividual variation in the relational
strength between the centered keyboard-derived estimates and
the corresponding self-reported estimates. Next, chronotype,
general sleep quality, and trait self-control were added as
second-level (ie, participant-level) predictors to these random
slope models, including both the “main effects” and the
interaction terms with the centered keystroke-derived predictor.
These covariates were also grand-mean centered to facilitate
the interpretation of the interaction terms. Pearson correlations
between these second-level predictors and the variance inflation
factors based on the MLMs were first inspected to check for
potential issues related to multicollinearity.

In addition to these assessments of the associations between the
keyboard-derived and self-reported estimates, we also computed
the differences between the timing or duration estimated with
keyboard interactions and the corresponding sleep diary data
and investigated the metric-specific and interindividual
variations in the magnitude and direction of these differences.
These models and their corresponding findings are described
in Multimedia Appendix 1.

Results

Sample Statistics
In total, 157 students (n=77, 49% male and n=80, 51% female),
with a mean age of 19.38 (SD 1.88; range 17-25) completed
the sleep diaries. Native Dutch students (136/157, 86.6%)
received the questions in Dutch and the remaining 13.4%
(21/157) of students in English. The µMCTQ revealed that the
timing of midsleep on work- and lecture-free days (corrected
for sleep debt accumulated during work and lecture days;
midsleep on free days, corrected for accumulated sleep debt)
was 04:50 on average (SD 01:01; range 02:30-07:32). The

J Med Internet Res 2023 | vol. 25 | e38066 | p. 4https://www.jmir.org/2023/1/e38066
(page number not for citation purposes)

Smolders et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


average (absolute) social jetlag was 1.22 hours (SD 0.73; range
0-3.5). On average, the participants showed at least some
disturbances in their general sleep quality (mean 5.16, SD 2.27;
range 1-13), as assessed using the PSQI. Scores on the TSC
scale ranged from 1.31 to 4.31, with an average of 2.98 (SD
0.56).

The overall response rate for the diaries was 88.9%. As shown
in Figure S1 in Multimedia Appendix 1, most students (105/157,
66.9%) completed all diaries. The number of participants who
completed the diary dropped slightly toward the end of the
sampling week, with a minimum of 76.4% (120/157) of
participants completing diaries on Sunday (the 7th sampling
day). On 60% of the weekdays (Monday to Friday), the
participants were woken up by an alarm, compared with 46%
of the weekend days. In total, 2,757,199 keystroke events were
generated from September 14 to 20, 2020. On average, keyboard
activity was detected during 12.3 hours per day (SD 4.0; range
1-21), with the keyboard used for more hours on weekdays
(mean 12.7, SD 3.9) than on weekends (mean 11.0, SD 4.1).

Descriptive Statistics for Rest-Activity Estimates
Table 1 shows the corresponding descriptive statistics for the
various rest-activity estimates, including the ICCs. The ICCs
revealed that most of the variance in the estimates (onset of rest
period, midpoint of the rest period, onset of active period, and
duration of the rest period) can be explained at the first level
(ie, day level). For the timing-related estimates, 21%-30% of
the variance can be explained at the second level (ie, participant
level), with very similar percentages for the keyboard-derived
and self-reported estimates. For self-reported estimates, the
variance in the duration of the rest period at the participant level
was lower than that in timing-related estimates, suggesting lower
consistency in the self-reported duration of the rest period across
days within participants. By contrast, for keyboard-derived
measures, the percentage of variance in KAP at the participant
level was higher and similar to the variance in the timing-related
estimates (Table 1).

Table 1. Descriptive statistics for the keyboard-derived and self-reported estimates of rest-activity timing and duration.

ICCaKurtosisSkewnessMaximumMinimumMean (SD)

0.233.480.645:45 AM7 PM23:59:34 (01:33:30)Bedtime

0.233.640.656:15 AM8:20 AM00:30:55 (01:28:09)Try-to-sleep time

0.223.710.636:30 AM8:30 PM00:46:47 (01:25:31)Sleep onset

0.293.360.598:58 AM1:08 AM04:39:52 (01:11:54)Midsleep time

0.283.500.3412:55 PM3:54 AM08:31:38 (01:19:08)Sleep offset

0.213.070.341:50 PM5:15 AM09:01:18 (01:22:13)Out-of-bed time

0.113.86−0.3812:30 PM2:23 AM07:45:32 (01:20:58)Total sleep period

0.133.69−0.182:50 PM3:31 AM09:02:46 (01:29:06)Total bed period

0.263.430.246:11 AM7:27 PM00:02:06 (01:35:50)Last keystroke

0.283.350.529:16 AM1:03 AM04:24:21 (01:14:06)Midpoint KAPb

0.303.880.412:10 PM3:27 AM08:46:23 (01:28:46)First keystroke

0.274.030.363:44 PM2:58 AM08:42:51 (01:52:18)KAP

aICC: intraclass correlation (determined using the corresponding unconditional [intercepts-only] model, and represents the variance explained at the
participant level).
bKAP: keystroke-absence period.

Quantification of Agreement and Differences Between
the Keyboard-Derived and Self-reported Estimates
Figure 1 shows the overlap between the distributions of the
various estimates of the timing of rest and activity periods and
the duration of the rest period assessed with keystroke logging

and the sleep diary. Figure 2 displays the calculated differences
between the keyboard-derived and self-reported estimates of
rest onset, midpoint, offset, and duration (also refer to Table S1
in Multimedia Appendix 1 for the descriptive statistics of the
deviations, including the ICCs).
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Figure 1. Ridgeline plots of rest-activity pattern estimates derived from the sleep diary and those derived from the keystroke logging data. KAP:
keystroke-absence period.
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Figure 2. Distributions of the difference scores between keyboard-derived and self-reported estimates (in hours). KAP: keystroke-absence period.

The vertical dashed lines correspond to a difference of zero.
Values smaller than zero represent a later timing or longer
duration for the self-reported estimates than for
keyboard-derived estimates, and positive values reflect an earlier
timing or a shorter duration for the self-reported estimates than
for the keyboard-derived estimates. Figure S2 in Multimedia
Appendix 1 shows the Bland-Altman plots of the rest-activity
pattern estimates derived from the sleep diary and keystroke
logging data.

Differences between the keyboard-derived and the
corresponding self-reported estimates were tested for statistical
significance and for statistical equivalence (defined as deviations
<0.5 hour or deviations <1 hour) using multilevel modeling.
The results of the null-hypothesis significance tests revealed
that all timing-related and duration-related estimates of the
participants’ self-reported rest-activity patterns were statistically
different from the corresponding keyboard-derived estimates
(all P<.001), except for the difference between the self-reported

estimate of the timing of bedtime and the timing of the last
keystroke, which was not statistically significant (P=.12; Figure
3). Equivalence tests against ΔL=−0.5 hour and ΔU=0.5 hour
yielded significant results for the deviations between the last
keystroke and self-reported bedtime, between midpoint KAP
and self-reported midsleep time, between the first keystroke
and self-reported sleep offset and out-of-bed time (all P<.001),
and between KAP and self-reported total bed period (P=.01).
This indicated that these differences were not significantly
longer than 30 minutes (Figure 3). Equivalence was rejected
for the difference between the timing of the last keystroke and
self-reported try-to-sleep time (P=.14) and sleep onset (P>.99)
and between KAP and self-reported total sleep period (P>.99),
indicating that these estimates deviated, on average, by >0.5
hour. All differences were statistically equivalent with
equivalence bounds of +1 hour and −1 hour (all P<.001), except
for the difference between KAP and the total sleep period
(P=.44; Figure 3).
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Figure 3. Forest plot for differences between the keyboard-derived and self-reported estimates of rest-activity timing and duration of the rest period.

In Figure 3, the thick bars represent the 98% CIs used for the
two one-sided tests’ analyses. The thin bars represent the 99%
CIs used for the null-hypothesis significance tests. Negative
differences refer to an earlier timing or a shorter duration for
the keyboard-derived estimate than for the self-reported
estimate.

Relations Between Keyboard-Derived and
Self-reported Estimates of Rest-Activity Patterns
Table 2 shows the results of the MLMs with the self-reported
estimates as outcome parameters regressed on the corresponding
keyboard-derived estimates. The timing of the last keystroke
was significantly related to all 3 self-reported estimates of the
rest period onset, with an estimated explained variance
(R-squared) of 0.57 to 0.58. The timing of the first keystroke

was significantly associated with the self-reported estimates of
the onset of the active period, and the midpoint of KAP was
significantly related to the self-reported midsleep time. Although
the R-squared value for the prediction of self-reported midsleep
time by midpoint KAP was somewhat higher than those for the
rest onset period estimates (R-squared=0.66), the estimated
explained variance was somewhat lower for self-reported timing
of sleep offset and out-of-bed time regressed on the timing of
the first keystroke (R-squared=0.41 for both estimates). KAP
was also significantly related to the self-reported estimates of
the duration of the rest period, but the predictions of the total
sleep period and total bed period yielded the lowest R-squared
values, suggesting that only 26%-27% of the variance in
self-reported duration of the rest period could be explained by
KAP.

Table 2. Results of the multilevel models with keyboard-derived estimates as predictor for self-reported estimates of rest-activity timing and duration.

P valuet test (df)99.5%0.5%βKeyboard-derived predictor and self-reported outcome

Last keystroke

<.00128.67 (698.9)0.810.67.74Bedtime

<.00128.70 (699.2)0.810.68.74Try-to-sleep time

<.00128.93 (699.0)0.810.68.75Sleep onset

Midpoint KAPa

<.00134.30 (678.7)0.840.72.78Midsleep time

First keystroke

<.00120.48 (698.3)0.680.53.61Sleep offset

<.00120.70 (677.7)0.700.55.63Out-of-bed time

KAP

<.00114.58 (682.7)0.600.42.51Total sleep period

<.00115.09 (681.4)0.600.43.52Total bed period

aKAP: keystroke-absence period.
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First-Level Moderators: Hours With Keyboard
Activity and Type of Day
The results revealed that the relationships between the
keyboard-derived and self-reported estimates were moderated
by the (previous) number of hours during which keyboard
activity was present for all the estimates of the timing of the
rest period onset and the active period onset and the duration
of the rest period (all P<.001; Tables S2-S9 in Multimedia
Appendix 1). The associations between the timing of the last
keystroke and self-reported bedtime, try-to-sleep time, and sleep
onset were stronger when participants had had more hours with
keyboard activity on the previous day was larger than their week
average (Tables S2-S4 in Multimedia Appendix 1). Similarly,
the relational strength between the timing of the first keystroke
and self-reported sleep offset and out-of-bed time was higher
when the participants used the keyboard during relatively more
hours on the next day (Tables S5 and S6 in Multimedia
Appendix 1). For self-reported midsleep time, total bed period,
and total sleep period, the interaction term with the number of
hours with keystrokes on the next day, but not on the previous
day, was significant, suggesting stronger associations between
the keyboard-derived and self-reported estimates when
participants used the keyboard during more hours on the
following day than their week average (Tables S7-S9 in
Multimedia Appendix 1). However, there was also a
nonsignificant trend for stronger associations between KAP and
self-reported total sleep period when the participants used the
keyboard during more hours on the previous day. The interaction
terms with type of day suggested no statistically significant
differences in the relational strength between the
keyboard-derived and self-reported estimates for the onset of
the rest period, onset of the active period, or duration of the rest
period (Tables S2-S9 in Multimedia Appendix 1). Similar to
the associations between the estimates obtained with the 2
modalities, the regularity of keyboard use was also significantly

or near-significantly associated with (most of) the time
differences between the keyboard-derived and self-reported
estimates, whereas type of day did not predict the magnitude
of these difference scores (Multimedia Appendix 1).

Figure S3 in Multimedia Appendix 1 shows boxplots of the
rest-activity estimates for weekdays and weekend days
separately, and Table S10 in Multimedia Appendix 1 shows the
results of MLMs investigating type-of-day moderations in
keyboard-derived and self-reported estimates. These findings
showed that all timing-related estimates occurred, on average,
later on weekend days than on weekdays, whereas there were
no statistically significant differences in the rest duration–related
estimates as a function of type of day. The differences in the
timing-related estimates between weekdays and weekend days
were detected for both modalities, albeit slightly more
pronounced for the self-reported than for keyboard-derived
estimates.

Interindividual Variation in the Relational Strength
Between Keyboard-Derived and Self-reported
Estimates
The results of the random slope MLMs with only the
keyboard-derived metrics (cluster mean and cluster mean
centered scores) as predictors and the corresponding
self-reported metrics as outcome parameters are presented in
Table 3. Random slopes were statistically significant for all
self-reported estimates regressed on the corresponding cluster
mean centered keyboard-derived estimate, indicating a slope
variation of 0.25 to 0.39 SD. The scatter plots in Figure 4 display
the associations between the keyboard-derived and self-reported
estimates, including the fixed and random slopes.

In Figure 4, the dashed line represents a perfect relationship.
The thicker solid line displays the fixed slope. The thinner lines
display the random slopes per participant.

J Med Internet Res 2023 | vol. 25 | e38066 | p. 9https://www.jmir.org/2023/1/e38066
(page number not for citation purposes)

Smolders et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 3. Statistics of random slope modelsa.

P valueLRTc (df)AICbLog likelihoodSD of slopes across
participants

Keyboard-derived predictor and self-reported
outcome

Last keystroke

<.00194.56 (2)1960.32−975.160.37Bedtime

<.00197.61 (2)1873.18−931.590.35Try-to-sleep time

<.001102.04 (2)1817.83−903.920.34Sleep onset

Midpoint KAPd

<.00140.53 (2)1366.14−678.070.25Midsleep time

First keystroke

<.001117.72 (2)1879.11−934.550.36Sleep offset

<.001103.12 (2)1978.06−984.030.39Out-of-bed time

KAP

<.00169.18 (2)2156.73−1073.360.32Total sleep period

<.00136.87 (2)2283.45−1136.720.32Total bed period

aKeyboard-derived estimates refer to the cluster mean centered scores. Statistics represent the slope variation (displayed in SDs) and the likelihood ratio
tests of the multilevel model in which the random slope for the cluster mean centered score is reduced. A significance test indicates that the model
becomes significantly better if the random slope for the keyboard-derived metric is included.
bAIC: Akaike information criterion.
cLRT: likelihood ratio test.
dKAP: keystroke-absence period.
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Figure 4. Scatterplots with fixed and random slopes for the associations between the keyboard-derived and self-reported estimates. KAP: keystroke-absence
period.

Second-Level Moderators: Chronotype, General Sleep
Quality, and Trait Self-control
Cross-level interactions between the keyboard-derived metrics
and chronotype, general sleep quality (PSQI score), and trait
self-control revealed that only general sleep quality was a
significant or near-significant moderator for the relationship
between the keyboard-derived and self-reported estimates of
the timing of the onset of the rest and active periods and the
midpoint of the rest period (Tables S12-S17 in Multimedia
Appendix 1). The relational strength between the timing of the
last keystroke and self-reported bedtime was lower among
students with a higher PSQI score (indicating more disturbances
in general sleep quality). The associations between midpoint
KAP and midsleep time and between the timing of the first
keystroke and self-reported sleep offset were also less strong
among students who reported more disturbances in general sleep
quality. Similar, but nonsignificant, trends were observed for
the predictions of self-reported try-to-sleep time, sleep onset,
and out-of-bed time (P=.03, P=.05, and P=.03, respectively).
Chronotype and trait self-control did not significantly moderate
the predictions of self-reported timing of the onset of the rest
and active periods by the corresponding keyboard-derived

metrics (see Tables S12-S17 in Multimedia Appendix 1).
Inspection of the “main effects” of these second-level predictors
revealed that chronotype was a statistically significant predictor
of try-to-sleep time, sleep onset, midsleep time, sleep offset,
and out-of-bed time, with, as expected, later timings among
later chronotypes (see Tables S13-S17 in Multimedia Appendix
1). A similar nonsignificant trend was observed for the
association between chronotype and self-reported bedtime
(P=.04). Trait self-control was not significantly related to any
of the timing-related self-reported estimates but showed a
nonsignificant trend for an earlier bedtime, try-to-sleep time,
and sleep onset among students with a higher trait self-control
(P=.04, P=.01, and P=.01, respectively). There was also a
significant association between sleep onset and the PSQI score,
indicating a later self-reported sleep onset among students
experiencing more disturbances in sleep quality (P=.01).

The results for the duration-related estimates revealed no
statistically significant moderations in the relationship between
KAP and the self-reported estimates as a function of chronotype,
general sleep quality, and trait self-control (see Tables S18 and
S19 in Multimedia Appendix 1). The relationship between KAP
and both total bed period and total sleep period did show a
nonsignificant trend for a stronger association among later
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chronotypes (both P=.01). The “main effects” of chronotype
and general sleep quality on self-reported total sleep period and
total bed period were not statistically significant (see Table S18
and Table S19 in Multimedia Appendix 1). Trait self-control
was not significantly related to the self-reported total bed period
but showed a nonsignificant trend for a longer total sleep period
among students with higher trait self-control (P=.03).

The results of the MLMs inspecting the time differences between
the keyboard-derived and self-reported estimates regressed on
chronotype, general sleep quality, and trait self-control showed
that general sleep quality was a significant or near-significant
predictor of the magnitude, but not the direction, of these
differences (Tables S20 and S21 in Multimedia Appendix 1).
Chronotype and trait self-control were not significantly
associated with the time difference scores between the estimates
obtained from keyboard interactions and those obtained from
the sleep diary (Table S20 in Multimedia Appendix 1).

Discussion

Principal Findings and Comparison With Prior Work
This study replicated earlier research findings [29-31], showing
that the timing of the last keystroke and the first keystroke
surrounding the nocturnal prolonged keyboard inactivity period
on the smartphone can serve as good predictors of the
self-reported timing of the rest and active period onsets. These
findings also complemented the associations between
smartphone interactions and putative sleep-wake timing derived
from actimetry [29,31]. Together, these studies support the
potential of smartphone keyboard monitoring as an unobtrusive
method for obtaining a behavioral proxy for rest-activity
patterns.

Despite the substantial agreement between the assessment
methods, the results of this study and earlier studies showed
that the mapping of the estimates obtained with the different
assessment modalities is not perfect. In fact, deviations, reflected
in both overestimations and underestimations, rendered
informative insights for the monitoring of rest-activity patterns
and perhaps even the diagnosis and treatment of disturbances
in these patterns.

Inspection of the associations between the various
keyboard-derived and self-reported estimates showed
metric-specific variation in the agreement between the 2
assessment modalities. First, the associations were slightly
stronger for the timing of the onset of the rest period than for
the timing of the onset of the active period. Moreover, although
the timing-related estimates showed moderate to strong
relationships, the associations between KAP and the
self-reported total bed period and total sleep period were
substantially weaker. In fact, the findings suggested that
approximately 75% of the variance in the total bed or sleep
period remained unexplained. Earlier studies also revealed lower
explained variances in the putative duration of the rest period,
with similar percentages [29,30]. A potential explanation for
these weaker associations is that the duration-related estimates
are based on 2 events surrounding the prolonged inactive period,
which are both likely prone to inaccuracies in the approximation.

Nevertheless, although the estimates for the midpoint of the rest
period were also based on both events, the strength of the
association between midpoint KAP and midsleep time was
similar to the strength of the associations for the rest onset
period. This might be explained by the fact that potential
inaccuracies in the estimates for both events are added in the
computation of the duration-related metrics but divided to
determine the timing of the midpoint of the rest period.

The differences in the strength of the associations between the
timing-related and duration-related estimates were not reflected
in the deviations between the keyboard-derived and self-reported
estimates. In fact, the metric-specific variations in the deviations
suggested smaller discrepancies between the bed-related versus
the sleep-related estimates. Similar to the findings of Druijff-van
de Woestijne et al [30], the keyboard-derived estimates of the
timing of the onset of the rest and active periods and the duration
of the rest period were, on average, closer to the bed-related
estimates (self-reported bedtime, out-of-bed time, and total bed
period) than to the sleep-related estimates (self-reported
try-to-sleep time, sleep onset, sleep offset, and total sleep
period). For all comparisons, except the comparison between
the timing of the last keystroke and self-reported bedtime, the
null hypothesis that the values were similar was rejected. This
suggests that, on average, there were statistically significant
discrepancies between the observations from the keyboard
interactions and those from the sleep diary. It is important to
note that owing to the high number of observations, rather small
differences could be detected using null-hypothesis testing.
Therefore, these tests were complemented with equivalence
tests, which indicated that the estimates obtained from the 2
modalities were, on average, equivalent when accepting an
inaccuracy of 1 hour for all comparisons, except for the
comparison between KAP and the self-reported total sleep
period. Inspection of the descriptive statistics for the difference
scores revealed that the inactive period determined by the
absence of smartphone keyboard interactions was, on average,
approximately 1 hour longer than the self-reported total sleep
period. The findings by Druijff-van de Woestijne et al [30] also
revealed a substantially longer KAP than the self-reported total
sleep period (with an average of approximately 1.5 hours)
among students. Interestingly, Borger et al [29] revealed a
shorter rest period when estimated using smartphone touchscreen
interaction monitoring than when estimated using self-reported
sleep duration or actigraphy among young adults.

In this study, in contrast to the relatively large discrepancy
between KAP and the self-reported total sleep period, the
equivalence tests revealed that equivalence was not rejected
with a margin of +30 or −30 minutes for most of the other
comparisons (except for the difference between the timing of
the last keystroke and self-reported try-to-sleep time and sleep
onset). Earlier studies also reported average discrepancies of
<30 minutes between smartphone-based estimates and
self-reported or actimetry-based proxies of sleep-wake timing
[29-31,56]. This suggests that the approximations of rest-activity
timing rendered by smartphone interaction monitoring are very
similar to those rendered by commonly used methods among
free-living persons in naturalistic settings when inspecting
aggregated, mean-level data. Despite the similarities on an
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aggregated level, this study as well as previous studies
[29-31,56] also registered quite some nights that showed rather
large discrepancies across the assessment modalities used,
suggesting that different monitoring methods may provide rather
distinct, and informative, approximations when inspecting
rest-activity patterns on a day-to-day basis within persons.

Although the findings reported by Massar et al [31] showed
trait-like profiles in the deviations across different assessment
modalities, the ICCs in this study suggested a rather low
consistency in the keyboard-derived and self-reported estimates
and the deviations between these estimates across days within
participants. This was particularly the case for the self-reported
rest duration–related estimates, the time difference between
midpoint KAP and self-reported midsleep time, and the time
lag between the first keystroke and self-reported out-of-bed
time, which all showed that only <20% of the variance could
be explained at the person level. Day-to-day variations could
not be explained by systematic differences as a function of type
of day. First, the duration-related estimates did not significantly
differ between weekdays and weekend days, in contrast to the
timing-related estimates. Moreover, there were no systematic
differences between weekdays and weekend days in the
magnitude of the time differences between the keyboard-based
and self-reported estimates. Interestingly, none of the
associations were moderated by type of day, in contrast to the
findings of the exploratory analyses reported by Druijff-van de
Woestijne et al [30]. It is important to mention that this study
was, in contrast to the earlier study [30], performed during the
COVID-19 pandemic, and research has shown smaller
distinctions in sleep timing and duration between work and
work-free days because of the COVID-19–related social
restrictions [57,58]. We did replicate earlier findings indicating
stronger associations between the estimates obtained from
smartphone interactions and those obtained from sleep diaries
or actimetry on days with more regular smartphone use [29,30].
Our findings also suggested that the magnitude of the deviations
for most of the sleep-related estimates as well as the time lag
between the first keystroke and out-of-bed time was smaller
when the keyboard was used for more hours on the previous or
following day. Together, these findings suggest that the
behavioral proxies obtained from smartphone interactions might
be particularly powerful among persons using their smartphone
(keyboard) on a regular basis during the wake episode and on
days when individuals use their keyboard frequently throughout
the wake episode preceding or following the rest period.

At the person level, there was quite some variation in the degree
to which the keyboard-derived estimates predicted the
corresponding self-reported estimates, as indicated by the
random slopes. Intriguingly, the magnitude of the slope
variations across students was comparable for the various
associations and did not show clear metric-specific differences,
except for a somewhat lower slope variation for the relationship
between midpoint KAP and self-reported midsleep time.
Examination of the extent to which these interindividual slope
variations were dependent on chronotype, general sleep quality,
and trait self-control demonstrated that general sleep quality
was the most prominent moderator of the associations between
the keyboard-derived and self-reported timing-related estimates.

The strength of the associations between the 2 assessment
modalities was lower among students who reported more
disturbances in their general sleep quality. These moderations
were (near) statistically significant for all associations between
the keyboard-derived and self-reported timing-related markers
but not for the associations between KAP and the self-reported
duration-dependent markers. Research has shown that people
with a lower general sleep quality are more likely to experience
smartphone use addiction and show unhealthy sleep hygiene
behaviors [40,41,43-45,59], including smartphone use
surrounding and during sleep episodes. Although more frequent
smartphone use during wake episodes could render stronger
associations, as shown in this study and earlier studies [29,30],
active smartphone use during sleep episodes because of
fragmented sleep might underestimate the duration of the rest
period and hence overestimate the timing of the rest period onset
and underestimate the timing of the active period onset. Yet,
inspection of the relationship between general sleep quality and
KAP showed no clear relationship between the degree to which
participants experienced disturbances in their general sleep
quality and the duration of the prolonged keyboard inactive
period at night (Multimedia Appendix 1). For most of the nights
(approximately 75%), no keystrokes were registered during the
self-reported sleep period, and the likelihood of keystrokes
occurring during this time interval was not significantly
moderated by the participants’ PSQI scores (Multimedia
Appendix 1).

Chronotype did not moderate the associations between the
keyboard-derived and self-reported timing-related estimates in
this study. This contrasts with earlier findings, indicating
stronger predictions of sleep offset by the first keystroke timing
among late chronotypes than among intermediate and early
chronotypes [30]. Although both samples consisted of students
and had a similar chronotype range, this study was performed
when COVID-19–related mandated social restrictions were in
force. This might have reduced the chronotype-dependent
moderations because of fewer social obligations (and the
corresponding need to use an alarm) on the one hand and more
mediated social interactions on the other. Intriguingly, there
was a nonsignificant trend for chronotype-dependent moderation
in the strength of the relationship between KAP and the
self-reported total bed and total sleep periods, suggesting
stronger predictions among later chronotypes. To our
knowledge, this is the first time that chronotype-specific
variations in the associative strength between smartphone-based
estimates of the nocturnal rest duration and commonly used
methods for field assessments were investigated. Replication
of these findings is required, and the underlying processes and
consequences need further exploration.

Although trait self-control has also been related to sleep and
sleep habits, none of the associations investigated in this study
were significantly moderated by trait self-control. Perhaps more
interestingly, the magnitude of the deviations also showed no
statistically significant associations with trait self-control,
suggesting that there were no systematic variations in the timing
of the last and first keystrokes surrounding KAP or the duration
of KAP relative to the corresponding self-reported estimates as
a function of trait self-control in the current sample. Hence, the
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general degree to which the students were able to inhibit their
impulses and execute behaviors to achieve personal standards,
adhere to social norms, and support the pursuit of their long-term
goals [33,47,60] did not, on average, result in longer latencies
between the last smartphone keyboard interaction and the
self-reported bedtime, try-to-sleep time, and sleep onset or a
longer KAP relative to the self-reported total bed period and
sleep period. Chronotype also did not show statistically
significant associations with the magnitude of the differences
computed for the timing-related and duration-related estimates,
but the magnitude of the time differences did vary as a function
of general sleep quality. All comparisons showed significant or
near-significant deviations, with larger discrepancies (in both
directions) between the keyboard-derived and self-reported
estimates. This suggests that students experiencing disturbances
in sleep quality might display different behavioral strategies,
ranging from avoiding active smartphone use during the period
surrounding sleep to the use of the smartphone keyboard during
sleep episodes. This could also explain why the likelihood of
keyboard interactions occurring during sleep episodes was not
significantly related to students’ general sleep quality (as
assessed by the PSQI).

Strengths, Limitations, and Implications for Future
Research
In this study, we approximated the timing of the sleep and wake
periods and duration of the sleep period by leveraging keyboard
use behavior to estimate rest-activity patterns and compared the
keyboard-derived metrics with self-reports provided the morning
after the sleep episode. Although sleep diaries are a common
method to monitor sleep-wake timing, subjective assessments
are prone to respondent errors such as recall biases, faulty
entries, and misperception. Monitoring behavior using
smartphone sensors might prevent these biases [61]. Earlier
studies also associated smartphone activity–based estimates
(based on touchscreen interactions) with rest-activity estimates
based on actimetry [29,31] and reported similar or even stronger
relations. Validation of smartphone keyboard- or
touchscreen-based metrics for rest-activity monitoring against
polysomnography (preferably obtained in the field), the
gold-standard technique to study sleep [28], would be an
important next step. Although the use of the CSD enabled us
to distinguish between different bed-related and sleep-related
metrics of the onset of the rest and active periods,
polysomnography could more accurately classify events as sleep
or wake and would allow the inspection of the occurrence of
smartphone interactions during different sleep stages. In fact,
there were quite some nights on which keyboard interactions
occurred after self-reported sleep onset and before self-reported
sleep offset (approximately 25% of the nights), which questions
the accuracy of these self-reported estimates. The likelihood of
touchscreen interactions occurring after sleep onset and before
sleep offset might be even higher [29].

The monitoring of keyboard use behavior enables the
unobtrusive monitoring of cognitively engaging events
surrounding sleep but does not monitor more passive smartphone
use (such as watching movies). This might have resulted in an
underestimation of the timing of the rest period onset and an
overestimation of the active period onset, as reflected in the

average deviations. As indicated earlier, KAP was larger than
the self-reported total sleep period for the vast majority of the
nights. This finding contrasts with the underestimation of sleep
duration based on touchscreen interaction monitoring versus
self-reports [29]. The extent to which these different findings
can be attributed to the method used to monitor smartphone
interactions (keyboard interactions vs touchscreen interactions)
as well as the algorithm to determine the onset of the rest and
active periods remains to be tested. Similar to the method used
by Druijff-van de Woestijne et al [30], we used a simple
algorithm to estimate rest based on prolonged keystroke
inactivity. Future research could consider more advanced
modeling of keyboard interactions to further improve the
predictions or integrating multisensor data to include additional
behavioral markers and features of the ambient environment to
facilitate rest period detection [62,63]. Nonetheless, the current
and earlier findings [30] showed that a single event, such as the
last keystroke before a prolonged period of keyboard inactivity,
can explain a rather large part of the variance in the self-reported
onset timing of the rest and active periods.

The current research outcomes replicated the association
between keyboard interactions and self-reported rest and activity
onset timing [30] in a relatively large sample. An innovation of
this study is that we also inspected interindividual differences
in the associations and deviations between these 2 assessment
modalities as a function of person-level variables related to
sleep and sleep habits. Similar to a previous study [30], the
current sample consisted of first-year students. This is an
important target population to consider, as young adults are
particularly susceptible to sleep disturbances, including circadian
rhythm disorder [20]. However, the recruitment of young adults
in higher education with a restricted age range may also question
the generalizability and sustainability of the prediction when
applying the same method among the general population or
specific groups such as clinical populations. The extent to which
the results can be translated to a more heterogeneous sample
with stronger variability in demographics and contextual factors
remains to be investigated in future research.

There are considerable differences between adolescents and
older adults. Whereas the younger generations are digital
natives, older adults have only learned to use smartphones in
adulthood. However, from the few statistics that do report on
phone use among older populations, it appears that although
smartphone use decreases with age, this negative trend is rather
subtle [64-66]. Hence, the usability of these metrics may also
be substantial for older adults. However, it is important to note
that although the decrease in smartphone use might be small,
app use and dynamics in smartphone use likely differ to a larger
extent as a function of age [64-66]. A large-scale study using
sleep-tracking app data also revealed shorter sleep duration and
lower sleep quality among younger individuals than among
older individuals [67]. Moreover, earlier findings revealed
distinct sleep and perisleep smartphone use patterns among a
subgroup of participants that was characterized by young adults,
mainly students [31], compared with, for example, somewhat
older participants. The investigation of interindividual variability
in the current student sample suggested that the estimation of
rest-activity cycles by means of keyboard interaction monitoring
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might render slightly less accurate results for students with
disturbances in sleep quality, at least when compared with
self-reported estimates. The replication of the current results
among a larger sample with a more diverse age range and
including clinical patients with sleep disorders is needed to
increase the generalizability of the findings.

It should be noted that, to our knowledge, this is the first time
that the associations and deviations between estimates of
rest-activity patterns obtained from smartphone interaction
monitoring and those obtained from sleep diaries are contrasted
between individuals as a function of their general sleep quality
and trait self-control. More research is needed to further
elucidate the role of general sleep quality in the associations
between smartphone interaction monitoring and commonly used
methods. However, the current findings do suggest that
person-tuned instead of population-based models for predicting
rest-activity patterns based on smartphone interactions are likely
more accurate. It should also be acknowledged that the method
adopted is suitable only for daytime active persons and cannot
detect daytime naps. The translation of the findings to night- or
rotating-shift workers and older or clinical populations requires
further consideration.

Another important consideration is the fact that the use of screen
technology (including smartphones) in the late subjective
evening has been linked to disturbances in sleep [68-71],
suggesting that we may not want to strive to minimize deviations
as smartphone use may hinder a good night of sleep. Most
studies investigating the association between smartphone use

and sleep used self-reports to monitor smartphone use and,
hence, are vulnerable to respondent errors [72,73]. Moreover,
most studies assessed associations between smartphone use and
sleep-related markers cross-sectionally, hindering insights into
variances within participants over time and limiting the
establishment of causal relationships [72]. Although used as a
monitoring tool to approximate rest-activity patterns in this
study, smartphone interaction monitoring would also allow for
fine-grained assessment of the use of digital media surrounding
sleep. In fact, insights into the interference of smartphone use
with sleep and rest-activity patterns might inform the
development of person-tuned strategies to promote a healthy
sleep hygiene. Moreover, low-cost tools for fostering long-term
rest-activity pattern monitoring could serve as a preventive
strategy and an early-warning system in the domains of sleep
and health. Yet, generalization of the current and previous
findings as well as optimization of the accuracy of the estimates
across a wide variety of potential users would benefit large-scale
adoption.

Conclusions
In summary, we replicated earlier findings on the potential of
smartphone interaction monitoring to serve as a method for
deriving behavioral proxies to approximate rest-activity patterns
among students. This study complemented these earlier findings
by suggesting that the accuracy of the behavioral proxies might
be lower among students with disturbances in their general sleep
quality. The generalization and underlying process of these
findings require further investigation.
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