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Abstract

Background: The key to effective stroke management is timely diagnosis and triage. Machine learning (ML) methods developed
to assist in detecting stroke have focused on interpreting detailed clinical data such as clinical notes and diagnostic imaging results.
However, such information may not be readily available when patients are initially triaged, particularly in rural and underserved
communities.

Objective: This study aimed to develop an ML stroke prediction algorithm based on data widely available at the time of patients’
hospital presentations and assess the added value of social determinants of health (SDoH) in stroke prediction.

Methods: We conducted a retrospective study of the emergency department and hospitalization records from 2012 to 2014
from all the acute care hospitals in the state of Florida, merged with the SDoH data from the American Community Survey. A
case-control design was adopted to construct stroke and stroke mimic cohorts. We compared the algorithm performance and
feature importance measures of the ML models (ie, gradient boosting machine and random forest) with those of the logistic
regression model based on 3 sets of predictors. To provide insights into the prediction and ultimately assist care providers in
decision-making, we used TreeSHAP for tree-based ML models to explain the stroke prediction.

Results: Our analysis included 143,203 hospital visits of unique patients, and it was confirmed based on the principal diagnosis
at discharge that 73% (n=104,662) of these patients had a stroke. The approach proposed in this study has high sensitivity and is
particularly effective at reducing the misdiagnosis of dangerous stroke chameleons (false-negative rate <4%). ML classifiers
consistently outperformed the benchmark logistic regression in all 3 input combinations. We found significant consistency across
the models in the features that explain their performance. The most important features are age, the number of chronic conditions
on admission, and primary payer (eg, Medicare or private insurance). Although both the individual- and community-level SDoH
features helped improve the predictive performance of the models, the inclusion of the individual-level SDoH features led to a
much larger improvement (area under the receiver operating characteristic curve increased from 0.694 to 0.823) than the inclusion
of the community-level SDoH features (area under the receiver operating characteristic curve increased from 0.823 to 0.829).

Conclusions: Using data widely available at the time of patients’ hospital presentations, we developed a stroke prediction model
with high sensitivity and reasonable specificity. The prediction algorithm uses variables that are routinely collected by providers
and payers and might be useful in underresourced hospitals with limited availability of sensitive diagnostic tools or incomplete
data-gathering capabilities.
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Introduction

Background
Diagnostic errors have emerged as a major public health
problem, contributing to preventable patient harm and excess
health spending. A recent US National Academies report titled
“Improving Diagnosis in Healthcare” suggested that medical
misdiagnosis is likely to affect almost everyone at least once in
their lifetime, sometimes with devastating consequences [1].
Misdiagnosis accounts for at least 40,000 to 80,000 hospital
deaths and probably a comparable amount of disability annually
in the United States [2]. Physician-reported errors and closed
malpractice claims indicate that stroke is among the most
common and dangerous misdiagnosed medical conditions [3-5].
Preventable deaths from stroke due to diagnostic errors occur
≥30 times more often than deaths from myocardial infarction
[6,7].

The diagnosis of stroke is complicated by the abundance of
stroke mimics and stroke chameleons. Approximately 30% of
patients admitted to hospitals with typical stroke symptoms
ended up having nonstroke conditions (ie, stroke mimics) [8].
A wide range of other medical conditions can exhibit symptoms
that mimic strokes, such as seizures, migraines, psychiatric
disorders, and drug or alcohol intoxication [8,9]. Mistaking a
mimic for acute stroke may expose patients to unnecessary
diagnostics and therapy, waste limited resources, and incur
additional costs. Conversely, and more dangerously, stroke
chameleons are actual stroke conditions presenting with atypical
or underrecognized stroke symptoms and masquerading as
nonstroke medical conditions. Approximately 25% of patients
who had a stroke do not present with typical “face, arm, speech”
symptoms at onset, and it is challenging for emergency medical
services to identify stroke in such patients [10]. Misdiagnosis
of chameleons can lead to significant delays in identifying and
treating patients with actual strokes. Approximately one-third
of potentially eligible patients failed to receive alteplase (tissue
plasminogen activator), the gold-standard treatment for acute
ischemic stroke [10]. This is because of either the lack of
available specialists to perform appropriate clinical assessments
or delays in the process of referring to health care facilities with
the required stroke-handling capabilities [11]. In particular,
Black people, Hispanic people, women, older people on
Medicare, and people in rural areas are more prone to
misdiagnosis and delay in receiving tissue plasminogen activator
after having a stroke [10]. Furthermore, it is particularly
challenging to accurately diagnose stroke in emergency
departments (EDs) because of the time-sensitive and dynamic
nature of emergency conditions, the fast-paced environment,
frequent interruptions, the prevalence of information gaps, and
high workload [12-15]. An automated screening tool that can
be seamlessly integrated into the clinical workflow to quickly
analyze the available information and suggest a diagnosis of
stroke (“Stroke Alert” pop-up) could be very helpful [16].

Machine learning (ML), a crucial branch of artificial
intelligence, has the potential to identify hidden insights from
a large volume of data and generate predictions on unseen data
(ie, test data) by iteratively learning from example inputs (ie,
training data). ML problems can generally be divided into 3
main types: classification and regression, which are known as
supervised learning, and unsupervised learning, which in the
context of ML applications often refers to clustering. In the
literature on stroke research, ML algorithms have been applied
in different tasks, such as identifying factors associated with
future stroke risk [17-19], developing stroke severity measures
[20,21], and predicting stroke outcomes [22,23]. To improve
diagnosis, researchers have focused on developing (electronic
health record [EHR]–based) algorithms to determine stroke
subtypes [24-26] and applying deep learning methods to
facilitate imaging evaluation [27,28]. The recent advances in
phenotyping algorithms and deep learning models have
significantly improved the prediction for stroke by using
multiple types of EHR data, especially clinical notes and
advanced diagnostic tests. However, only a few investigations
have focused on the application of diagnostic algorithms using
ML in emergency triage when detailed clinical assessments and
diagnostic tests are not readily available.

The first brain imaging for most patients with suspected stroke
is a noncontrast computed tomography (CT) scan, which is
completed within minutes of the arrival of the patient to the ED.
However, a noncontrast CT scan is not sufficient to diagnose
acute stroke, as the head CT test cannot reveal a hyperacute
stroke in most cases, and it has reduced sensitivity for lacunar
strokes [29]. More sensitive diagnostic tools such as
diffusion-weighted magnetic resonance imaging can show
ischemic changes very early. Despite the recent increase in the
use of advanced neuroimaging, the use of magnetic resonance
imaging to diagnose stroke in ED is still limited, especially
when diagnosis is urgently required [30]. Moreover, patients
who present to EDs can be susceptible to having information
gaps because they are usually acutely ill, report quickly to the
hospital at irregular hours, and often go to the ED without their
primary physician’s knowledge. These factors make it difficult
for the attending emergency physician to obtain all the
information (eg, clinical notes, reports, and diagnostic test
results) needed for making a timely and accurate diagnosis.

Besides medical risk factors, social determinants of health
(SDoH) have been shown to be associated with the risk of stroke
and many other diseases [31,32]. SDoH include various
community and social factors, such as “conditions in which
people are born, grow, work, live, and age” and “the
fundamental drivers of these conditions” [33]. According to a
widely used population health model, only 20% of an
individual’s health is tied to clinical care, which includes access
to care and the quality of health care services. The other 80%
of an individual’s health is tied to their physical environment,
social determinants, and behavioral factors such as exercise or
smoking [34,35]. In recent years, the increasing focus on
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population health has led to efforts to address upstream SDoH
factors such as access to healthy food and viable transportation
options. There is a substantial body of literature devoted to
investigating the correlation between various SDoH factors and
stroke risk, which has been well documented [36-39]. However,
only a few studies have incorporated SDoH information into
their prediction model and explicitly evaluated the added value
of SDoH information for stroke diagnosis and triage [40]. There
is a call, both in the literature and in the practitioner community,
to explicitly evaluate whether and how SDoH data can contribute
to improving patient risk stratification and prediction [40,41].

Goal of This Study
In this study, we aimed to develop an ML stroke prediction
algorithm based on data widely available at the time of patients’
hospital presentations and to assess the added value of SDoH
in stroke prediction. Because the prediction model does not
require clinical notes or diagnostic test results, it might be
particularly useful in addressing the misdiagnosis challenges
faced when dealing with walk-in patients with stroke with milder
and atypical symptoms; in low-volume or nonstroke centers’
EDs, where emergency providers have limited daily exposure
to stroke [16]; and in rural areas and small communities where
there is limited availability of sensitive diagnostic tools and
incomplete or unreliable data-gathering capabilities [3,5]. The
model could also be applied in emergency medical services and
telemedicine to seamlessly triage patients in real time and alert
the provider and care team. In addition, we analyzed the most
influential driving features helping the diagnosis of each patient
and, specifically, the role of SDoH in prediction. The findings
can provide insights into the value of prediction models in this
critical setting and ultimately assist emergency care providers
in making more informed decisions.

Methods

Ethics Approval
The secondary hospital discharge data this study examined was
from the Healthcare Cost and Utilization Project State-specific
databases, Agency for Healthcare Research and Quality.
Healthcare Cost and Utilization Project databases conform to
the definition of a limited data set, and review by an institutional
review board is not required for use of limited data sets [42].

Data Sources
Our data were obtained from 2 primary sources. We obtained
longitudinal administrative data that contained encounter-level
information on inpatient stays and ED visits from hospitals in
the state of Florida. The second data source was the American
Community Survey (ACS) conducted by the US Census Bureau
[43]. The ACS data offered zip code–level SDoH information,
such as demographic, social, housing, transportation, and other
socioeconomic factors.

Data Extraction and Synthesis

The Stroke and Stroke Mimic Cohorts
We adopted a case-control design, and the initial phase of our
approach was to create representative examples for model
training and ensure that stroke cases and controls have clear

separation. We retrospectively extracted 127,114 hospitalization
records from 2012 to 2014 with a principal diagnosis of acute
cerebrovascular disease in Florida using the clinical
classification tool developed by the Agency for Healthcare
Research and Quality [44]. Because we wanted to provide timely
prediction of the likelihood of a patient’s condition being stroke
at the time of hospital presentation, we restricted attention to
those variables that care providers can garner when patients
first arrive at the hospital (eg, age, gender, race, admission time,
primary payer, the number of chronic conditions on admission,
etc). Thus, we excluded additional information that can be
acquired only during hospitalization or at discharge (eg,
procedures performed, length of stay, and total charges).

The key for a model to accurately predict stroke is to distinguish
between stroke and stroke-like conditions (“stroke mimics”).
We carefully created a stroke mimic data set to simulate tricky
diagnostic decision-making and distinguish between actual
stroke events and stroke-like events. Using all the records
involving patients with nonstroke conditions to construct a
prediction model will result in the inclusion of completely
irrelevant cases, such as childbirth and hip replacement, and
create a highly unbalanced data set. Hence, we consulted
physicians about what conditions may show initial symptoms
similar to those of a patient with stroke. On the basis of their
suggestions, we obtained a list of conditions using Epocrates,
a mobile app that health care providers use at the point of care
for clinical reference information [45]. The stroke mimics
included in the list were brain tumors, conversion and
somatization disorders, Wernicke encephalopathy, seizure and
postictal deficits, complicated migraines (hemiplegic migraines
and migraines with aura), hypoglycemia, and hypertensive
encephalopathy. Next, we searched the medical literature to
confirm the validity of the list of stroke mimics and built a
crosswalk between each stroke mimic and its corresponding
International Classification of Diseases, ninth revision, codes.
We then used the crosswalk to extract patients whose reasons
for visits were one or more of the stroke mimics but subsequent
discharge diagnoses were not stroke.

We pooled the stroke and stroke mimic data sets and retained
only the data collected during the first admission of the patients.
We performed data deduplication once again after combining
stroke data and stroke mimic data because a patient may have
been first admitted with stroke and readmitted with a stroke
mimic condition and vice versa. If a patient appeared in both
data sets, we kept only the first occurrence. Because patients
may have returned to the hospital multiple times, providers may
have obtained more information about patients who are
readmitted. Retaining only the index encounter of the patients
ensures that our models predict stroke based solely on the
information available at the time of a patient’s initial
presentation at the hospital. We obtained data from 2010 to
2014, and hence we have 2 years before 2012 as our “cushion
period.” The patients included in the analysis were those with
no records in 2010 or 2011. The “confirmed stroke” data set
contains all the patients whose hospital discharge records
confirmed that they had a stroke; thus, it includes not only
patients with typical stroke symptoms but also those with mild
and atypical symptoms. The stroke mimic data set includes
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patients with general presentations similar to those of patients
with actual stroke, including patients with a discharge diagnosis
of epilepsy, diabetes, alcohol, and drug withdrawal. Multimedia
Appendix 1 lists the distribution of the top 20 principal
diagnoses in the final analysis data set.

Feature Extraction and Selection From SDoH Data
The original SDoH data we extracted from the ACS contained
a large number of features. We adopted several methods to
reduce noise and dimensionality and avoid overfitting. First,
we conducted exploratory data analysis such as the principal
component analysis to understand the feature distribution and
identify patterns and multicollinearity among features. We then
combined domain knowledge and a sparse regression method
(least absolute shrinkage and selection operator) to remove
irrelevant features and merge highly sparse features.

Overall, 4 categories were constructed from a large set of 431
variables in the ACS data for the 983 zip codes in Florida. These
categories represent social, economic, housing, occupation,
health insurance, and demographic characteristics referenced
in the literature as being associated with stroke-related and
cardiovascular health status (Multimedia Appendix 2). For
example, low income, low education, and poverty have been
shown to result in a higher risk of stroke [31,46,47], and low
income and low education have been associated with lower
heart health and higher risk of heart failure and death [48,49].
Occupation type and education level have been linked to the
risk of heart disease [50]. Health insurance status and type have

also been linked to cardiovascular health [51,52]. Together,
these interlinked socioeconomic factors determine a person’s
overall socioeconomic status and, unsurprisingly, have a
relationship with health over time. Some of the ACS variables
included in the analysis are direct representations of
socioeconomic status (eg, average household income and
percentage of the population with at least high school–level
education), whereas others serve as proxies (eg, percentage of
housing units with no vehicles and percentage of the population
with a non-English language spoken at home).

We also performed a Markov blanket feature selection method
to determine a minimal subset of relevant features that yields
the optimal classification performance [53]. Note that tree-based
ML algorithms (eg, random forest [RF]) have a built-in feature
selection function and inherently eliminate irrelevant features
during model training.

The final analysis data set was formed by merging the
patient-level data with the community-level ACS data based on
the patients’ zip code information. Figure 1 presents a flowchart
of the data processing pipeline. In our final input data set, the
number of stroke cases was significantly larger than the number
of controls (ie, 73% of the patients were discharged with a
confirmed stroke diagnosis, and 27% of the patients ended up
having stroke mimics). To address the unbalanced distribution
of stroke events in the real-world data, we adopted adaptive
synthetic sampling, an oversampling technique for minority
class (eg, nonstroke “control”) in the training data [25,54-56].

Figure 1. Data processing pipeline. ACS: American Community Survey; NA: not available; SDoH: social determinants of health; SID: State Inpatient
Database.

Data Modeling and Validation
We started by using the patient-level information available at
the time of hospital presentation to predict a binary outcome

that indicates whether the patient’s final diagnosis at discharge
is stroke. We ran three different models that are well established
in the literature for the training process: (1) logistic regression,
(2) RF, and (3) gradient boosting machine (GBM). Each model
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was run with different combinations of predictor variables to
assess the added predictive value of the different variables.

Logistic regression is a popular method for modeling the
relationship between a set of predictor variables and a binary
outcome variable and for benchmarking [57]. RF is a supervised
learning algorithm that fits multiple decision trees on different
subsamples of data to classify outcomes to prevent the issue of
overfitting [58,59]. The predictive accuracy is the average of
all the decision trees. It also provides insights into relative
feature importance. Parameter tuning helped identify the number
of trees and the allowed depth for each tree in the RF that
provided the best performance. GBM is similar to RF, as it also
constructs multiple decision trees for prediction; however, the
difference lies in the way GBM builds the trees and the way it
combines the results from the decision trees [60].

We first tuned the hyperparameters of all 3 models to find the
optimal configurations using a grid search and 5-fold
cross-validation on the entire data set. The evaluation metric
used in the cross-validation was the area under the receiver
operating characteristic curve (AUC). We used an 80-20 random
split on the data set because this is a standard split method used
in ML models and is typically performed to test the model
performance in designing the ML-enabled diagnostic tool for
providers in EDs [16]. We adopted the adaptive synthetic
sampling technique to generate synthetic data for the minority
class (eg, nonstroke “control”) in the training data to address
the unbalanced distribution of stroke events in the real-world
data. Using the optimal configurations of hyperparameters, we
then developed and assessed our models using a balanced
training data set with repeated 5-fold cross-validation and
cost-sensitive classification to avoid overfitting. For each fold,

the models were evaluated on the performance metrics, including
AUC, accuracy, precision, sensitivity or recall, specificity, and
F1-score, using the test data set. The logistic regression and RF
models were implemented in Python (version 3.9.12, Python
Software Foundation) using scikit-learn (version 1.0.2; David
Cournapeau). GBM was implemented in Python 3.9.12 using
CatBoost (version 1.0.6, Yandex LLC). The configurations of
the key hyperparameters for each of our ML models are listed
in Multimedia Appendix 3.

As a robustness check, we adopted an alternative data split
method by using historical 2012 data to predict for 2013 and
using both 2012 and 2013 data to predict for 2014.

Although ML models can produce accurate predictions, they
are often treated as black-box models that lack interpretability.
This is an important problem, especially in medical care because
clinicians are often unwilling to accept machine
recommendations without clarity regarding the underlying
reasoning [57]. However, according to a recent review, the
number of ML studies in the medical domain that addressed
explainability is very limited [58]. In this study, we followed
the approach outlined by Saarela and Jauhiainen in their 2021
paper [59] to conduct a comparison of feature importance
measures to enhance the interpretability or explainability of our
models’ results. To provide insights into prediction and
ultimately assist care providers in decision-making, we used
TreeSHAP for tree-based ML models to explain the stroke
prediction for each patient (refer to the details provided in the
Results section). Figure 2 demonstrates the investigation path
followed to develop our models based on the synthesized data
and compare and interpret the models to derive the best
pretrained ML model for stroke prediction.

Figure 2. Analysis pipeline. ACS: American Community Survey; GBM: gradient boosting machine; LR: logistic regression; RF: random forest; SDoH:
social determinants of health; SID: State Inpatient Database.

Results

Descriptive Statistics of the Data Set
In the final data set, there were 143,203 hospital visits of unique
patients, and it was confirmed based on the hospital discharge
records that 73% (n=104,662) of them had a stroke. The
prediction models included 12 patient-level features from the
hospital administrative data set, joined by 16 community-level

features from the ACS data set. We summarized the patient-level
predictors into 3 categories: patient demographics, visit-level
features, and individual-level SDoH; their summary statistics
are presented in the following table (Table 1). Patients who
ended up being diagnosed with stroke tended to be older, have
more chronic conditions, and have Medicare as the primary
payer. The results of 2-sample t tests (2-tailed) with Bonferroni
correction showed that all the patient-level predictors were
statistically different at a significance level of .05 between the
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patients with stroke and those with stroke mimics (indicated by
the P values in the last column of Table 1). The 16
community-level SDoH features were summarized into
categories: area demographics, socioeconomic status,

occupation, and health insurance coverage at the population
level. Multimedia Appendix 2 contains detailed information on
the community-level predictors.

Table 1. Descriptive statistics of the patient-level predictors.

P valueStroke mimic cohort
(n=38,541), mean (SD)

Stroke cohort (n=104,662),
mean (SD)

Total sample (n=143,203),
mean (SD)

Features

Patient demographics

<.00149.4207 (23.49)71.1259 (14.68)65.2843 (19.97)Age (years)

.030.5031 (0.50)0.5014 (0.50)0.5019 (0.50)Sex (female)

<.0014.8410 (3.17)7.1200 (3.00)6.5066 (3.21)Number of chronic conditions

Race and ethnicity

<.0010.6209 (0.49)0.6736 (0.47)0.6594 (0.47)White

<.0010.2064 (0.40)0.1706 (0.38)0.1802 (0.38)Black

<.0010.1472 (0.35)0.1302 (0.34)0.1348 (0.34)Hispanic

.040.0255 (0.16)0.0257 (0.16)0.0256 (0.16)Other races

Visit-level features

<.0010.8859 (0.32)0.9094 (0.29)0.9030 (0.30)Emergency admission

<.0010.0914 (0.29)0.0214 (0.14)0.0403 (0.20)Elective admission

<.0010.0869 (0.36)0.0929 (0.37)0.0913 (0.37)Transfer in indicator

<.0010.3821 (0.49)0.3257 (0.47)0.3409 (0.47)Night shifta

<.0010.2496 (0.43)0.2581 (0.44)0.2558 (0.44)Weekend indicator

Individual-level SDoHb

<.0010.9567 (0.20)0.9515 (0.21)0.9529 (0.21)Urban residence

Primary payer

<.0010.4099 (0.49)0.7027 (0.46)0.6239 (0.48)Medicare

<.0010.2159 (0.41)0.0714 (0.26)0.1103 (0.31)Medicaid

<.0010.1980 (0.40)0.1331 (0.34)0.1505 (0.36)Private insurance

<.0010.1762 (0.38)0.0929 (0.29)0.1153 (0.32)Other payers

Median household income

<.0010.4134 (0.49)0.3984 (0.49)0.4025 (0.49)0-25th percentile

<.0010.3186 (0.47)0.3289 (0.47)0.3261 (0.47)26th-50th percentile

.040.1986 (0.40)0.1994 (0.40)0.1992 (0.40)51st-75th percentile

<.0010.0694 (0.25)0.0733 (0.26)0.0722 (0.26)76th-100th percentile

aAdmission between 7 PM and 7 AM.
bSDoH: social determinants of health.

Model Performance and Selection
Table 2 shows the algorithm performance measured on the test
set for the 9 models run on 3 input combinations and 3 classifiers
(logistic regression, RF, and GBM). ML classifiers consistently
outperformed the benchmark logistic regression in all 3 input
combinations. More specifically, the GBM classifier consistently
outperformed logistic regression and RF in the first 2 input
combinations (ie, when patient- and visit-level feature sets were
used). When the patient-, visit-, and community-level variables
were included as inputs (ie, the most complete input

combination), ML models dominated the logistic regression.
Inclusion of the individual-level SDoH features improved the
performance for all 3 classifiers, especially the GBM model,
where AUC increased from 0.694 (model 3) to 0.823 (model
6). Further inclusion of the community-level SDoH features
improved the overall predictive performance measures, AUC,
sensitivity, and specificity of the 2 ML models (models 8 and
9).

We based our model selection on both the performance metrics
and the clinical needs in actual care settings. Note that the cost
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of misdiagnosis is asymmetrical. Misdiagnosis of a stroke
(labeling a true stroke as a nonstroke condition) might have
more severe adverse consequences for both patients and
providers than overdiagnosis (ie, false-positive stroke diagnosis).
Hence, the selected model should provide high sensitivity while
maintaining specificity within a reasonable range. Both ML
models (RF and GBM) correctly detected at least 97%
(101,522/104,662) of all the patients that did have a stroke and
thus significantly outperformed the prehospital stroke prediction
scales (ranging between 0.38 and 0.62) [61] by a large margin.
The Youden index, calculated by deducting 1 from the sum of
the test’s sensitivity and specificity, was used to evaluate the
overall discriminative power of the diagnostic test. The Youden

index was not included in Table 2 because of space limitations;
however, it can be easily calculated using sensitivity and
specificity, both of which are included in the table. According
to several recent literature reviews, the Youden index of the
stroke prediction scales used in the emergency medical services,
ambulances, and emergency room settings ranged from 0.30 to
0.54 [61,62], whereas that of our stroke prediction models
ranged from 0.56 to 0.62.

Multimedia Appendix 4 presents the results of using the
alternative data split method by using the historical 2012 data
to train the model. Our model still demonstrated good overall
performance with a high sensitivity rate of >90% and F1-score
in the range of 0.83 to 0.88.

Table 2. Performance of stroke prediction models.

F1-scoreSpecificitySensitivityAUCaAccuracyClassifierInput combinations and model number

Patient demographics and visit information

0.8930.6260.9600.6930.828Logit1

0.8770.632 c0.9280.6800.804RFb2

0.8960.6190.9680.6940.832GBMd3

Patient demographics, visit information, and individual SDoHe

0.8950.6300.9600.8100.830Logit4

0.8680.6560.8990.7240.794RF5

0.8980.6310.9650.8230.835GBM6

Patient demographics, visit information, individual SDoH, and community-level SDoH

0.8910.6290.9670.8100.822Logit7

0.8960.6260.9720.8280.831RF8

0.8980.6470.9700.8290.834GBM9

aAUC: area under the receiver operating characteristic curve.
bRF: random forest.
cFor each input combination, the best performance among the 3 classifiers has been italicized.
dGBM: gradient boosting machine.
eSDoH: social determinants of health.

Feature Importance Analysis
We found consistency across the 3 models in the most important
features that explain their performance (Figure 3; glossary of
the terms used as well as the variable definitions can be found
in Multimedia Appendix 5). The top 5 features deal with age,
the number of chronic conditions on admission, and primary
payer (eg, Medicare or private insurance). The top 2 features
were age and the number of chronic conditions across all 3
models. Both the RF and GBM models identified patients’ age
as one of the most important features. This is consistent with
the findings of a recent study that used a new hybrid feature
selection model that integrated various filter and wrapper
methods to detect stroke risk [63]. Older age increases the
predicted stroke probability, and younger age decreases the
predicted probability. The second most important feature
contributing to the models’ performance was the number of
chronic conditions on admission. A higher number of chronic

conditions on admission increases the predicted stroke
probability.

It is interesting to note that the patients’ admission type (eg,
whether it is an emergency or elective admission) and timing
of admission (ie, whether they were admitted during the night
shift) contributed to the accuracy of stroke prediction. Existing
studies have investigated the presence of a “weekend effect”
on mortality [64-66] and the differences in the quality of
treatment that patients receive based on their time of hospital
arrival or admission [67,68]. In general, these studies primarily
focused on emergency admissions. If adverse patient outcomes
such as mortality are related to different work practices and
staff availability during off-hour periods, then the diagnosis of
acute conditions is likely to be similarly affected, and our current
findings confirm this hypothesis.

In addition to age, other patient-level demographic and
socioeconomic factors, including gender, race, and primary
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payer (ie, whether the medical expenses were covered by
Medicare, Medicaid, private insurance, or other payers),
contribute to the models’prediction. These findings complement
the recently observed diverging stroke risk patterns among
different racial and gender groups [69,70]. For instance, Howard
et al [69] found that when aged between 45 and 74 years, White
women were less likely to have a stroke than White men;
however, there was no difference in stroke risk between White
men and women when the latter were aged ≥75 years. By
contrast, they found that Black women were at a lower risk of
stroke than Black men when they were aged ≤64 years and

experienced a similar stroke risk thereafter [69]. Another study
found that Black women had a greater risk of stroke than White
women, and the racial disparities were greatest among women
aged 50 to 60 years [70]. In addition, our findings revealed that
health insurance status is not only associated with health care
use but also an important predictor of stroke. These findings
have important implications and suggest that a cookie-cutter
approach may not work well for stroke prevention. For instance,
interventions targeting socially disadvantaged individuals
without Medicare coverage may provide the greatest benefit in
reducing disparities.

Figure 3. Comparison of feature importance: 20 most important features for gradient boosting machine (GBM; upper left), random forest (upper right),
and logistic regression (bottom). ACS: American Community Survey; Qrtl: quartile.

Some community-level SDoH variables (eg, percentage of single
women; percentage of people with occupations closely related
to finance, retail, and manufacturing industries; and mean travel
time to work) were also among the top 20 features. However,
the magnitude of their impact on stroke prediction was much
less than that of patient-level demographic and socioeconomic
features. This is consistent with the literature [40] and with the
predictive performance reported in Table 2. Although both the
individual- and community-level SDoH features helped improve
the predictive performance, the inclusion of the individual-level
SDoH features led to a much larger improvement (AUC
increased from 0.694 to 0.823) than the inclusion of the
community-level SDoH features (AUC increased from 0.823
to 0.829). Only adding the community-level SDoH features to
the visit-level data (in the absence of individual-level SDoH
features) increased the AUC from 0.694 to 0.724.

Ablation studies are commonly used for assigning importance
scores to features [71-73]. In this method, the importance of a
feature is decided based on the reduction in performance that
its removal causes. We performed the ablation analysis as
follows. First, we trained the GBM model on the training data
set and calculated the base score on the testing data set using
the accuracy metric. Second, we removed one feature from the
training data set, trained the GBM model again, and then
calculated the score of the model on the testing data set. This
was repeated for each feature included in the model. Finally,
we ranked the features based on the difference between the
score calculated in their absence and the base score (calculated
when all the features were present). Consistent with the findings
from the feature importance comparison analysis, the top 2
highest-ranked features based on the ablation analysis were age
and the number of chronic conditions, followed by the
individual-level SDoH features and then the community-level
SDoH features (Multimedia Appendix 6).
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Individual Prediction Explanations
To provide insights into prediction and ultimately assist care
providers in decision-making, we sought to explain the stroke
prediction model using TreeSHAP [74], a variant of Shapley
Additive Explanations (SHAP) for tree-based ML models. The
SHAP method computes Shapley values from the coalitional
game theory to quantify the contributions of each feature to the
prediction [75-77]. TreeSHAP uses conditional expectation to
estimate the effects for a single tree, and the Shapley values of
a tree ensemble are the weighted average of the Shapley values
of the individual trees.

Figure 4 shows SHAP values to explain the stroke prediction
of 2 example cases (glossary of the terms used as well as the
variable definitions can be found in Multimedia Appendix 5).
We visualized feature attributions as “forces,” and each feature
value is a force that either increases or decreases the prediction
starting from the baseline. The base value or the expected value
is the average of the model output over the training data and
equals 1.084 [75]. Features that push the prediction higher (to

the right) are shown in red, and those pushing the prediction
lower are in blue. The first example (prediction demonstration
example 1) obtained an output value (ie, prediction for this
observation) of 1.96, higher than the base value and hence, this
example was labeled by the prediction model as stroke. Being
Black, having 10 chronic conditions on admission, and having
private insurance as the primary payer pushed the stroke
prediction higher. This is consistent with the literature
suggesting that the odds of a probable misdiagnosis of a stroke
in the EDs were lower among Medicare or Medicaid recipients
than among privately insured patients [7]. In comparison, we
also looked at the SHAP values for another example (prediction
demonstration example 2), where the model successfully
predicts a stroke mimic. This second example obtained a low
output value of −0.27. Similar to demonstration example 1,
demonstration example 2 was aged 50 years; however, being
White person, having 3 chronic conditions on admission, and
being admitted during a night shift pushed the stroke prediction
lower.

Figure 4. Shapley Additive Explanations values for example patients. ACS: American Community Survey.

These examples demonstrate that individual-level predictors of
stroke can differ significantly from one case to another and can
be used for personalized diagnostic and treatment decisions at
the point of care, whereas the population-level analysis provides
an overall ranking of the important predictors of stroke at
hospital presentation and can be used to develop best practice
guidelines and patient management programs.

Discussion

Principal Findings
In this study, we developed an ML-based approach using
routinely collected administrative data to help reduce stroke
misdiagnosis. Our findings suggest that before obtaining
diagnostic imaging or laboratory test results, it is possible to
predict stroke based on patients’ demographics and SDoH

information available at the time of hospital presentation. The
algorithm had an AUC of 83%, provided accurate results (high
precision of 84%), and returned a supermajority
(101,522/104,662, 97%) of all positive results (high sensitivity).

This study fills a critical gap in the current efforts to support
stroke triage, which either focuses on improving specificity in
the prehospital setting or requires detailed neurological
assessments and imaging results. On the one hand, advanced
ML techniques have been applied to assist in automatically
interpreting clinical notes and imaging, but this is based on the
availability of these information sources. On the other hand,
because emergency medical service personnel lack the necessary
time and training to perform detailed neurological assessments,
short and simple clinical methods known as prehospital stroke
scales have been developed to support the initial triage in the
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field, such as the Cincinnati Prehospital Stroke Scale, Los
Angeles Prehospital Stroke Scale, and Conveniently Grasped
Field Assessment Stroke Triage. These scales have demonstrated
wide performance variability in clinical practice; however, in
general, they were found to have acceptable-to-good specificity
but low sensitivity [62,78-80]. Literature reviews that compared
studies with different prehospital stroke scales found that these
scales varied in their accuracy and misdiagnosed up to 30% of
acute strokes in the field. Depending on the sample and study
site, Los Angeles Prehospital Stroke Scale and Cincinnati
Prehospital Stroke Scale had similar diagnostic capabilities with
sensitivity ranging from 0.79 to 0.91, and the sensitivity of using
the Conveniently Grasped Field Assessment Stroke Triage in
detecting large vessel occlusion stroke was 0.62. This means
that these scales help detect false positives and thus reduce the
wasteful use of medical resources. However, their low sensitivity
has led to concerns that these scales will miss a substantial

percentage of people with stroke. Hence, it is important to have
an additional screening or decision support tool to supplement
clinical assessment and provide valuable information to increase
the sensitivity in detecting stroke at hospital presentation and
thus reduce missed diagnoses [81]. In crowded hospitals, and
with shortage of medical resources and clinical staff, the
ML-based model we proposed can help quickly prioritize
patients for appropriate intervention. If a patient presents with
stroke or stroke-like symptoms, an automated, computer-assisted
screening tool will be triggered to quickly analyze all the
patient’s information available at the time of hospital
presentation and suggest a diagnosis based on the best pretrained
ML model for stroke. If the model predicts that the patient is at
a high risk for stroke, a stroke pop-up will be triggered to alert
the ED team. Figure 5 illustrates when and how this decision
support prediction can be implemented in the field.

Figure 5. Decision support for stroke prediction. ED: emergency department.

This model can be integrated with other AI-enabled prediction
or decision support systems based on EHRs in the ED to further
improve stroke triage and diagnosis. Although EHR data contain
rich and detailed clinical information, certain social and
behavioral determinants that can also be important risk factors
(eg, race) are both poorly represented (including a category for
“Unknown”) and inadequately characterized in the EHR [82].
Furthermore, various obstacles such as the lack of
interoperability have limited the full use of EHR data to improve
the delivery of care. Consequently, existing studies are mostly
based on patient data confined to a single EHR system within
a single geographic area [83]. By contrast, administrative data,
such as claims data, follow specific standards for both the
structure and meaning of the variables contained within a claim,
and nearly every health care provider must submit electronic
claims in the same format to their payers or clearinghouses.
Hence, such administrative data provide an efficient way to
complement EHR data in measuring many important aspects

of health care delivery and provide solutions. We obtained the
best of both worlds by leveraging the widely available
administrative data with SDoH information to screen and
quickly prioritize patients at hospital presentation and then using
EHR data with rich clinical documentation and diagnostic test
results to further assess and stratify patients based on risk.

Comparison With Prior Work
It is important to consider specific clinical needs and care
settings when comparing the various forms of performance
measures reported across studies. In the case of strokes,
misdiagnosis of a stroke (labeling a true stroke as a nonstroke
condition) usually leads to more severe adverse patient outcomes
than overdiagnosis. Although false-positive stroke mimics rarely
lead to legal consequences, false negatives can cause delays in
critical treatments and often give rise to accusations of medical
errors. Moreover, given the inherent trade-off between
sensitivity and specificity, the prehospital stroke scales’ focus
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on specificity (ie, reducing overdiagnosis) may result in a
substantial number of misdiagnoses of strokes that need to be
addressed at patients’ hospital presentations. Therefore,
minimizing the false-negative rate or maximizing the sensitivity
is paramount in acute care settings for both patients and
providers. Several recent studies have compared the currently
available clinical assessment tools such as the field stroke triage
scale, National Institute of Health Stroke Scale, Los Angeles
Motor Scale, and Rapid Arterial Occlusion Evaluation, which
incorporate cortical signs (eg, gaze deviation, aphasia, and
neglect) as well as motor dysfunction, and found that these tools
had better diagnostic accuracy for detecting patients with large
vessel occlusion than for distinguishing between acute stroke
and stroke mimics [81]. Many studies were designed such that
patients with hemorrhage or stroke-mimicking conditions were
excluded [81]. Clinical assessment tools aimed at distinguishing
between acute stroke and stroke mimics demonstrated modest
diagnostic accuracy with low sensitivity, ranging from 38% to
62%, in the prehospital setting [61]. The stroke diagnostic tools
designed for ED settings, such as the Recognition of Stroke in
the Emergency Room scale and the FABS scoring system, are
found to have a higher sensitivity than the prehospital scales
(up to 93%), and they require clinical assessments from
neurologists, brain CT findings, or additional clinical
information, such as atrial fibrillation [81,84]. To our
knowledge, the sensitivity of the algorithms in this study,
without relying on the availability of additional clinical
information or imaging findings, outperforms any scoring scales
used in the prehospital or ED settings.

This study is also one of the first large-scale studies to
systematically assess the added value of SDoH information in
a population-based risk-prediction setting using administrative
data. Although many studies have shown that various social or
behavioral factors are associated with health outcomes, very
few have explicitly examined whether the knowledge of these
factors improves the prediction of clinical events or health
outcomes. Our results are consistent with the findings of nascent
studies that link SDoH data with EHR data to predict ED visits
[85] or the need for various social service referrals [86].
However, because EHR systems have not achieved full
interoperability yet, these studies are mostly confined to patient
data from a single EHR system within a single geographic area.
This study extends the literature by leveraging the routinely
collected data that span different health care systems and regions
to complement some of the necessary first steps associated with
population health analytics. Moreover, the development of
electronic health information exchanges helps bring together
information from multiple sources and combine administrative
claims data with clinical data. Such progress makes it possible
to create an integrated profile of a patient at the time of hospital
presentation and further empowers our predictive analytics.

Limitations and Future Research
This study has room for further improvement, which is left for
future research. First, this was a retrospective study, and
confirmation of stroke cases relied on International
Classification of Diseases codes. It is desirable to have patients’
complicated medical records reviewed to ascertain stroke
diagnosis; however, this process is labor intensive and

expensive, especially when it is a large-scale study with
hundreds of thousands of patients across different health
systems. Our results require further validation but have the
potential for improving stroke triage and diagnosis.

Second, the algorithm we proposed should not be considered
as the gold standard for stroke diagnosis. Rather, we believe
that the algorithm complements the existing stroke scoring
systems used in the prehospital or emergency room settings and
can be integrated into ML-enabled decision support systems
that combine patients’medical history, SDoH, and clinical data.
Such a decision system would have the advantage of being agile
and iterative, in the sense that the model outcome can be
reassessed at regular intervals as more data are collected in the
ED, as well as the integration of variables with the most
promising relevance.

Third, the focus of this study was to predict stroke solely based
on the information available at the time of a patient’s initial
presentation at the hospital. This is because first-time or new
patients with stroke make up the supermajority (77%) of the
yearly US patient population with stroke [87], and it is more
challenging to make stroke predictions accurately for those
patients who show up at the ED for the first time with no
historical data. Patients with repeated readmissions and
single-visit patients may follow different trajectories with
different underlying social and behavioral determinants [88].
Future research may continue to explore how to best incorporate
past information to improve prediction and identify key risk
factors for repeated patients.

Finally, our findings are limited to the SDoH variables available
in administrative data, suggesting the importance of developing
standards and tools to routinely collect and screen
individual-level SDoH data and effectively integrate them into
both EHR and structured claims data. Our current prediction
does not require any additional effort to collect additional
individual-level SDoH. The community-level ACS variables
have already been incorporated as part of the best pretrained
model. The patient-level details used in our prediction are (1)
basic demographics including age, gender, race and ethnicity,
and primary payer (ie, Medicare, Medicaid, private insurance,
or others); (2) arrival information (eg, whether it was an
emergency or elective admission and whether the patient was
admitted during a weekend or night shift); and (3) whether the
patient resided in an urban or a rural area and the quartile in
which their median household income fell (Table 1), both of
which are based on the zip code variable. All 3 categories of
information are routinely collected by triage nurses at hospital
EDs during the initial triage. For instance, the zip code can be
obtained from the patient’s home address, and the primary payer
can be identified from the insurance information. Hence, patients
do not need to answer any additional SDoH-related questions
for the currently proposed prediction. To include more
patient-level SDoH and further improve the predictive
performance, more efforts are needed to develop SDoH
screening and collection tools. National efforts are underway
starting with primary care, such as the Protocol for Responding
to and Assessing Patients' Assets, Risks, and Experiences survey,
a standardized patient risk assessment tool consisting of a set
of national core measures for addressing patients’SDoH. Future

J Med Internet Res 2023 | vol. 25 | e36477 | p. 11https://www.jmir.org/2023/1/e36477
(page number not for citation purposes)

Chen et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


research can also leverage more advanced ML algorithms (eg,
deep learning) to facilitate a more comprehensive and efficient
analysis of the large, high-dimensional data sets with claims,
EHR, and SDoH data.

Conclusions
Stroke is among the most common and dangerous misdiagnosed
medical conditions. Black people, Hispanic people, women,
older people on Medicare, and people in rural areas are less
likely to be diagnosed in time for treatment after having a stroke.
Timely detection is the key to effective management and
improved patient outcomes.

We developed a high-performance ML-based stroke prediction
algorithm that outperforms the existing early warning scoring

systems. The algorithm is based on variables routinely collected
and readily available at the time of patients’ hospital
presentations and may provide an opportunity for enhanced
patient monitoring and stroke triage and improved health
outcomes. Because the prediction model does not require clinical
notes or diagnostic test results, it can be particularly useful in
underresourced EDs in rural and underserved communities with
limited availability of sensitive diagnostic tools and incomplete
data-gathering capabilities. Moreover, the algorithm can be
incorporated into an automated, AI-enabled decision support
system that combines administrative data widely available at
the time of ED presentation and subsequently available clinical
notes and diagnostic test results to further improve stroke
diagnosis, triage, and management.
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