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Abstract

Background: Assessment of the quality of medical evidence available on the web is a critical step in the preparation of systematic
reviews. Existing tools that automate parts of this task validate the quality of individual studies but not of entire bodies of evidence
and focus on a restricted set of quality criteria.

Objective: We proposed a quality assessment task that provides an overall quality rating for each body of evidence (BoE), as
well as finer-grained justification for different quality criteria according to the Grading of Recommendation, Assessment,
Development, and Evaluation formalization framework. For this purpose, we constructed a new data set and developed a machine
learning baseline system (EvidenceGRADEr).

Methods: We algorithmically extracted quality-related data from all summaries of findings found in the Cochrane Database of
Systematic Reviews. Each BoE was defined by a set of population, intervention, comparison, and outcome criteria and assigned
a quality grade (high, moderate, low, or very low) together with quality criteria (justification) that influenced that decision.
Different statistical data, metadata about the review, and parts of the review text were extracted as support for grading each BoE.
After pruning the resulting data set with various quality checks, we used it to train several neural-model variants. The predictions
were compared against the labels originally assigned by the authors of the systematic reviews.

Results: Our quality assessment data set, Cochrane Database of Systematic Reviews Quality of Evidence, contains 13,440
instances, or BoEs labeled for quality, originating from 2252 systematic reviews published on the internet from 2002 to 2020.
On the basis of a 10-fold cross-validation, the best neural binary classifiers for quality criteria detected risk of bias at 0.78 F1

(P=.68; R=0.92) and imprecision at 0.75 F1 (P=.66; R=0.86), while the performance on inconsistency, indirectness, and publication
bias criteria was lower (F1 in the range of 0.3-0.4). The prediction of the overall quality grade into 1 of the 4 levels resulted in
0.5 F1. When casting the task as a binary problem by merging the Grading of Recommendation, Assessment, Development, and
Evaluation classes (high+moderate vs low+very low-quality evidence), we attained 0.74 F1. We also found that the results varied
depending on the supporting information that is provided as an input to the models.

Conclusions: Different factors affect the quality of evidence in the context of systematic reviews of medical evidence. Some
of these (risk of bias and imprecision) can be automated with reasonable accuracy. Other quality dimensions such as indirectness,
inconsistency, and publication bias prove more challenging for machine learning, largely because they are much rarer. This
technology could substantially reduce reviewer workload in the future and expedite quality assessment as part of evidence
synthesis.
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Introduction

Background
Systematic reviews, which aim to summarize the entirety of the
available evidence on a specific clinical question, are the
cornerstone of evidence-based decision-making in medicine.
They are considered the strongest form of evidence because
they analyze, aggregate, and critically appraise all relevant
published evidence according to strictly defined protocols [1,2].
However, many factors impact our confidence in the overall
effect estimate of that body of evidence (BoE), both at the level
of individual primary studies (eg, limitations in design or
conduct of a given study) and in aggregate across multiple
studies (eg, the resulting sample size and number of events
across studies, consistency of effects between studies, and
amount of overlap between the study criteria and those specified
in the clinical question). Given the role that systematic reviews
play in shaping health policy guidelines and informing patient
care, such limitations may ultimately be harmful and should,
therefore, degrade our confidence in an intervention strategy.
Thus, assessing the quality of evidence represents a critical step
in the preparation of a systematic review and should be
considered by downstream users of that evidence [3,4].

The construction of a systematic review is a complex and
arduous process. Estimates of the time needed to complete a
systematic review vary but can easily reach 1000 hours of
(highly skilled) manual labor [5,6]. One component of this is
the significant time needed to perform a quality assessment,
with the assessment of risk of bias (RoB) alone (as one of
several quality criteria) requiring >20 minutes per study [7].
Timeliness, cost of production, and availability of required
expertise are the biggest obstacles to authoring systematic
reviews to adequately support clinical practice and keeping
them up to date [8-10].

Because of this inability to scale, further compounded by the
ever-growing number of published medical studies [11],
researchers have proposed to automate different steps of the
reviewing process, including the automation of article
classification, screening for primary studies, data extraction,
and quality assessment [10,12]. In quality assessment,
specifically, approaches that fully or partially automate the RoB
estimation of individual studies included in a review have
predominated [13-15]. These methods have used natural
language processing (NLP) to extract the data elements from
article text (typically the abstract) that are relevant to the review
and that pertain to different bias criteria and then to classify the
article as being either at low or high RoB. Such approaches

have been shown to effectively speed up bias assessment in
semiautomated settings, where humans are tasked with
validating suggestions from machine learning (ML) models
[16]. In this work, we address 2 limitations of the existing
approaches and focus on the following:

1. Multiple aspects of the quality of medical evidence, instead
of only the RoB.

2. Provision of a quality score for the entire BoE available for
a specific clinical question, rather than rating the studies in
isolation.

Use Case
We set out to fill these gaps by introducing a data set for
generalized quality assessment in systematic reviews and
proposing ML methods to rate the quality and its associated
components (criteria) for the entire BoE. We illustrate this task
in Figure 1 [17]. From the automation perspective, different
supporting data can be fed to the assessment tool, depending
on their availability and the stage in the reviewing workflow at
which the system is deployed. For example, a large part of the
work done by the reviewers concerns meta-analysis, in which
the collected data are summarized using statistical methods. At
this stage, before the reviewers validate the quality of the
evidence and prepare a narrative (which ultimately constitutes
the main body of the review), an ML system can reach a
(preliminary) quality judgment based on the clinical question
and the available BoE. The predicted judgment and its
justification can then support the reviewers in reaching a final
decision. Our proposed model incorporates different sources of
support data. In the empirical analysis, we inspect how the
predictive performance is affected by removing a class of
features (or a source of data), such as all textual features that
represent the summarized narrative. With this, our goal is to
better understand how the system would perform at a specific
stage in the reviewing process when restricted support data are
available to the system. We further reflect on this in Implications
for the preparation of systematic reviews section.

As argued for in the context of RoB analysis [13], an accurate
system for automated grading could expedite and enhance the
critical appraisal of medical evidence, freeing up researcher
time to concentrate on thoughtful evidence synthesis, and
ultimately would help keep systematic reviews up to date. Our
work expands the scope of quality-of-evidence assessment
automation to consider a fuller range of quality criteria and
their synthesis across multiple studies. We implemented
EvidenceGRADEr available in the study by Soboczenski et al
[16].
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Figure 1. Assessment example, based on the systematic review Mediterranean-style diet for the primary and secondary prevention of cardiovascular
disease [17]. Given a clinical question together with a specific outcome (Q), the task consists of making a quality assessment (A) by using the various
data fields, as support (S), from the systematic review. GRADE: Grading of Recommendation, Assessment, Development, and Evaluation; HR: hazard
ratio.

Methods

Background

Cochrane Reviews
Cochrane reviews are high-quality, independent systematic
reviews of research in health care and health policy that are
published in the Cochrane Database of Systematic Reviews
(CDSR) [18]. They focus on synthesizing the evidence as found
in randomized controlled trials. The format of Cochrane reviews
is to a large extent standardized [19] and is described in detail
in the reporting guidelines [2].

Grading of Recommendation, Assessment, Development,
and Evaluation Quality Assessment Framework and Its
Place in Cochrane Reviews
Various frameworks have been used to appraise the quality of
a BoE in systematic reviews [20]. Perhaps, the most popular
scheme that supports systematic appraisal is Grading of
Recommendation, Assessment, Development, and Evaluation
(GRADE) [3], which has been adopted by CDSR. A major
advantage of GRADE is that it leads to more transparent
judgments regarding the quality of evidence [21,22]. The quality
of evidence for individual outcomes according to GRADE is
scored based on the following five key quality criteria:

1. RoB (pertaining to study limitations).
2. imprecision of the estimated effect (risk of random errors,

especially in the presence of a small number of studies,
with a small effect size and large CIs).

3. inconsistency of evidence (unexplained dissimilarity of
point estimates between studies).

4. indirectness of evidence (uncertainty about the applicability
of the evidence to the relevant clinical question).

5. likelihood of publication bias (likelihood of missing
evidence, especially with many small, industry-funded
studies).

In GRADE, each BoE obtained from randomized control trials
starts with the highest certainty (high) in the quality of evidence
and remains as such, assuming there are no concerns in any of
the GRADE factors listed above. In contrast, the certainty can
be downgraded for any of the quality factors, and the overall
GRADE score can be adjusted correspondingly (from high to
moderate, low, and very low). Usually, the certainty rating falls
by 1 level for each factor, up to a maximum of 3 levels. If there
are very severe problems for any 1 factor (eg, when assessing
RoB, all studies were unconcealed, unblinded, and lost over
50% of their patients to follow-up), evidence may fall by 2
levels because of that factor alone.

In Cochrane reviews, the information about the quality of
evidence is presented in summary of findings (SoF) tables,
which summarize the main findings. Justifications for any
GRADE adjustments are typically provided in the SoF table in
the form of a footnote to the relevant entries. Apart from the
information related to the quality of evidence, the summaries
include the clinical question given as population, intervention,
comparison, and outcome (PICO) descriptors; quantitative data
pertaining to the studies constituting the BoE; and the magnitude
of effect of the interventions examined. The GRADE assessment
reported in SoF tables is outcome centric, that is, rating is
performed for each outcome deemed important for clinical
decision-making, and quality may differ from one outcome to
another. Most reviews contain a single SoF table, but in cases
where there is more than one major dimension of comparison,
or substantially different populations, there may be multiple
such tables. In addition to SoF tables, quality-related information
can be summarized in other parts of a systematic review,
normally as a narrative. According to Thornton et al [22],
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assessing the quality of evidence for one outcome takes a median
of 30 minutes for professional reviewers with several years of
experience. The GRADE assessment scheme subsumes the
standard RoB tool developed by Cochrane [7,23].

Consistency of GRADE Ratings
Because we approach the task of automated quality assessment
by constructing a data set from quality judgments and
justifications made by humans, it is important to understand the
reliability of those annotations. Several studies have investigated
the reliability of annotations using GRADE [20,21,24-28].
Overall, the reliability was found to be variable, depending on
factors such as the number of raters, their experience, and the
quality criterion evaluated (when the raters were asked to assign
not only the overall grade but also the downgrading reason).
We summarize the findings of these studies in Multimedia
Appendix 1 [20,21,24-28].

Briefly, the interrater reliability for assigning an overall quality
score according to GRADE in Cochrane reviews is likely to
range between fair and substantial, depending on criteria such
as the experience level of annotators. Few studies have
addressed the agreement for the individual quality criteria. On
the basis of the study by Thornton et al [22], imprecision and
RoB appear to be the 2 quality criteria that are most consistently
assigned, whereas indirectness requires the most judgment and
is hence elusive. High consistency among RoB annotations have
also been reported by Berkman et al [25]. Multimedia Appendix
2 and Multimedia Appendix 3 provide the analysis of RoB
consistency in our data [13].

Modeling: Prior Work
Efforts to automate the quality assessment of medical evidence
have largely been geared toward predicting the RoB, and there
has been little work on other quality components. We summarize
the existing work in the following sections.

A series of studies [13,14,29,30] have proposed an approach to
automating RoB assessment in systematic reviews, in which an
ML system determines whether the study results may be affected
by biases (eg, poor randomization or blinding) and provides
supporting sentences from the study abstract. The authors
adopted the standard Cochrane RoB Tool that formalizes 7
common types of bias. Their approach of obtaining data labels
is similar to ours; they refer to it as distant supervision, that is,
using data from CDSR to pseudoannotate a corpus of 2200
clinical trial reports. The RobotReviewer model developed on
this data achieves an accuracy of approximately 70% when
categorizing articles as at low or high and unclear RoB.

A corpus of approximately 1100 abstracts with metadata [31,32]
has been used to predict 3-tier quality grades and specify the
strength of recommendation of a BoE as strong, moderate, or
weak. The accuracy with fully automatic feature extraction
ranged between 51% and 60%, depending on the machine
learner, with a maximum of 64% when using a combination of
different models. However, on this data set, the human
annotators only achieved a Cohen κ agreement of approximately
0.5. Only publication metadata features (eg, type, year, venue,
and title) and word n-grams from abstracts were used in the
modeling. The authors adopted the Strength of Recommendation

Taxonomy framework for grading the strength of
recommendation [33], which does not offer rationales for the
overall quality decisions, unlike GRADE. The work frame
determines the strength of evidence as a simple sum of
individual scores assigned to primary studies based on attributes
such as journal type, publication type, and publication year. Our
work extends this by (1) performing an assessment using
synthesized data from systematic reviews and not only the
primary studies, (2) using features beyond publication metadata,
and (3) predicting the component quality criteria that give rise
to the overall rating.

Semiautomated Quality Assessment Tool [34] provides an
assessment of the overall quality of evidence by formalizing
the structure provided by the GRADE framework in a logic
model and by assigning a specific weight to each of the different
items considered by GRADE. This approach does not rely on
extracting source data from the reviews and using ML to predict
the quality of evidence but still expects that the checklist
questions that inform the GRADE quality criteria are answered
by humans.

Another related line of research [35-38] seeks to identify articles
containing high-quality clinical evidence based on the
annotations of scientific rigor from the study by Byczyńska et
al [38]. They created a collection of approximately 49,000
MEDLINE documents of which approximately 3000 were
identified as methodologically rigorous and the rest as
nonrigorous. It is unclear from the description of the data set if
the authors received any other guidance apart from the brief
description of the factors [39] that led to a positive evaluation
of methodological rigor. In contrast, GRADE offers substantial
guidance to authors performing quality assessments, as well as
continuous updates of their guidelines. The task of scientific
rigor classification assigns a single binary label to an article and
hence does not consider individual outcomes or the entire BoE
for a clinical question, as we do in this paper.

Data Set Construction and Quality Control

Overview
We built our data set from the snapshot of the CDSR on June
26, 2020, which contained 8034 reviews. We translated each
review into a JSON representation, with structured
representations of the review metadata, textual parts of the
review (abstracts and summaries), SoFs, and characteristics of
the primary studies. We decided to use JSON for its human
readability and the concise format, which has little boilerplate
content and therefore results in smaller file sizes compared with
other formats, such as XML.

Figure 2 provides an overview of the data construction process.
From this initial structured representation of Cochrane reviews,
we created our final data set in which all data fields
corresponding to individual features were included in a CSV
file. The complete list of data fields (that we also used in our
experiments) is shown in Table 1, and descriptive statistics of
the textual files are given in Multimedia Appendix 4. Although
the extraction of GRADE scores from SoFs is trivial,
justifications (reasons for downgrading) are not provided
consistently. We therefore had to search for these reasons in the
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footnotes of each SoF. As the authors used different terms to
refer to a particular downgrading category, we manually
constructed a simple mapping between a term and the triggered
downgrading category (eg, heterogeneity→inconsistency). Once
the criteria were extracted, we implemented a straightforward
filter to increase the accuracy of the quality-related labels in
our data set as follows. We kept track of the total number of
downgrading steps over all downgrading categories applicable
for each data instance and compared this count to the overall
GRADE quality score (0=high to 3=very low). Whenever the

2 did not match, we removed that data instance. For example,
if the authors discount for imprecision by 2 steps and for RoB
by 1, the expected GRADE score is very low because the level
of quality was downrated 3 times. Instances where misalignment
was observed were excluded. Finally, we skipped this check
for all high-quality evidence because, by default no reason exists
(or should exist) that could undermine the quality of evidence.
We refer to the resulting data as the CDSR Quality of Evidence
(CDSR-QoE).

Figure 2. Schematic of our data construction approach. GRADE: Grading of Recommendation, Assessment, Development, and Evaluation; ML:
machine learning; SR: systematic review.
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Table 1. Data fields in Cochrane Database of Systematic Reviews Quality of Evidence data set.

Data sourceTypeData field

Metadatacatreview type

Metadatacatmedical area (topics)

SoFacattype of effect

MetadatanumYear

SoFnum# of SoFs

SoFnum# of participants

SoFnumupper CI

SoFnumlower CI

SoFnum# of outcomes

SoFnumrelative effect

SoFnum# of studies

Metadatanum# of included studies

Metadatanum# of ongoing studies

Metadatanum# of other studies

Metadatanum# of additional studies

Metadatanum# of excluded studies

SoFtextoutcome

Body texttextabstract conclusion

Body texttextplain language summary

Body texttextfull abstract

Body texttextauthors’ conclusions

Primary studiescatmethodsb

Primary studiescatjudgement and justification for each RoBc componentb

Primary studiesnum# of “low,” “high,” or “unclear” for each RoB componentb

Primary studiesnumproportion of “high” for each RoB componentb

aSoF: summary of findings.
bItems represent additional support features derived from primary studies.
cRoB: risk of bias.

Supplementary Partially Labeled Data for Quality
Criteria
Although we filtered out instances in which there was a
misalignment between the overall GRADE and the total number
of downgrading steps, manual examination of the data suggested
that the issue occurred predominantly because of a failure on
the part of our extraction scripts to detect one or more reasons
(ie, because of the imperfect recall of our extraction
methodology). Nevertheless, in such cases, we have a subset of
the downgrading reasons that were detected. These instances
can be used as partially labeled data to model quality criteria.
That is, in addition to the fully labeled (in terms of overall BoE

and quality criteria) CDSR-QoE data set, D = {(xi, yi)}i=1
N ; y

∈ {0, 1}—where x indicates the vector of input features, y the
presence of a downgrading reason, and N the original number
of instances; we also include positive instances that are partially

labeled for quality criteria downgrades, DS = D ∪ D’ — where
D’ = {(x’i , y’i )}i∈I’, I’ := {i ∈ 1...K : y’i = 1}—from K instances
filtered out during the construction of the CDSR-QoE data set.
In doing so, we reduced the positive-negative label imbalance
for the less frequent classes (inconsistency, indirectness, and
publication bias). The resulting changes in the label distributions
are shown in Table 2. We only supplemented the training data
during each fold of the cross-validation trial, leaving the
development and test sets intact. We refer to this data set as
CDSR-QoE-supp.
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Table 2. The effect of data supplementation on the distribution of quality criteria. The number of positive instances introduced with supplementation
is contrasted to the number of positive and negative instances in Cochrane Database of Systematic Reviews Quality of Evidence (CDSR-QoE).

Positive (CDSR-QoE-supp)Negative (CDSR-QoE)Positive (CDSR-QoE)

901343366433RoBa

11,27347416028Imprecision

266490101759Inconsistency

207395991170Indirectness

88110,250519Publication bias

aRoB: risk of bias.

Alignment to Primary Studies
To explore the expected contribution of including low-level
study characteristics when assessing entire BoEs for quality,
we aligned the data set to the underlying primary studies. The
Cochrane reviews contain a list of all studies (together with
their characteristics) that form the basis for evidence synthesis
in that systematic review. However, the quality-evaluated
outcomes in SoFs lack alignment with the subset of included
studies that form the evidence base. Therefore, we retrieved the
relevant studies for each clinical question from the review
preparation software files (Rev Man; the Cochrane
Collaboration), which contained the original data pertaining to
the performed meta-analysis, including the relevant study
references. We then attempted to match these with those

included in the Characteristics section of the review. In cases
where we failed to find an exact match in the Characteristics
section, we performed minimum edit distance matching at the
character level while ensuring that certain other conditions
matched exactly (type and size of the effect and number of
studies). Using both exact and minimum edit distance matching,
we were able to retain 27% of the original data instances. We
provide a graphical representation of the alignment procedure
in Figure 3.

Broadly speaking, the alignment with the primary studies
provides 2 types of study characteristics: the method description
and the judgments and justification for the study-level RoB
(Table 1). We applied the alignment procedure to the
CDSR-QoE-supp data set and referred to it as
CDSR-QoE-aligned.

Figure 3. Diagram illustrating the procedure for obtaining studies relevant to a single body of evidence. These studies typically represent a subset of
all studies included in the review. BoE: body of evidence. SoF: summary of findings.
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Validation of Data Set Construction
To perform an external validation of our extraction procedures
used in data set construction, we used human annotations from
the small-scale study by Wilczynski et al [39], in which various
elements were manually extracted from SoFs. Although a larger
study was carried out by Conway et al [40], we were unable to
obtain their data. The data set in the study by Wilczynski et al
[39] contains 103 instances (reviews) on anesthesia, critical
care, and emergency medicine from the CDSR. For these, the
GRADE score existed for the first primary outcome reported
in the summary. We evaluated our extracted GRADE score,
reasons for downgrading, and the number of studies and
participants by performing exact matching against their data
set.

For extracting the number of studies, we initially observed an
accuracy of 0.69. Upon manually checking the cases believed
to be incorrect, we found that most of them were not errors but
resulted from different review versions or the inclusion of an
outcome that was not the first in the table. After correcting for
these issues, the estimated accuracy reached 0.94. We carried
out the same analysis for the number of participants, GRADE
score, and downgrading reasons, obtaining similar results (for
GRADE, 0.93 accuracy; for downgrading reasons, 0.96).

Importantly, the few mistakes that we encountered were the
results of failing to successfully extract a value (leaving an
empty field), so we excluded these instances from the final data
set.

Summary Statistics for the CDSR-QoE Data Set
Some statistics from the final CDSR-QoE data set are shown
in Table 3. One interesting observation is that among >13 k
instances (BoEs) making up the data set, most of the evidence
(54%) is of (very) low quality, and the quality is high (ie,
includes no apparent reason for downgrading) only 14% of the
time. For a single data instance, >1 downgrading reason can be
assigned (affecting the overall GRADE score proportionately,
as discussed in aforementioned sections). The 2 most frequently
co-occurring reasons were the RoB and imprecision, which
occurred together in 30% of all instances. We visualized the
relationship between the review area and the proportion of
evidence of higher quality (high or moderate) in Figure 4. The
percentage of higher-quality evidence is <50% for most medical
areas, and for some areas (eg, dentistry), it is <25% of all
evidence. This means that clinicians very often do not have firm
evidence to support the effectiveness of a large number of
interventions across these medical areas.

Table 3. Summary statistics for the Cochrane Database of Systematic Reviews Quality of Evidence data set.

ValuesData set

BoEa (N=13,440), n (%)

1909 (14.2)High quality

4232 (31.5)Moderate quality

4562 (33.9)Low quality

2737 (20.4)Very-low quality

Factors affecting quality, number of annotations, n

7969Risk of bias

7377Imprecision

2208Inconsistency

1388Indirectness

667Publication bias

2252Number of reviews, n

20 (25)Number of studies per review, mean (SD)

40,375Number of studies, n

2 (1.8)Number of summaries of findings per review, mean (SD)

aBoE: body of evidence.
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Figure 4. Distribution of quality of evidence (high- and moderate-quality vs all) across systematic-review areas. The number of data instances
characterized by each medical area varies (min=65, max=4526, mean=768), and is illustrated by color-coding the points. QoE: quality of evidence.

ML Approach
In this section, we introduce our approach for predicting the
quality of evidence. Our goal was to obtain a solid baseline
system for our task that has the flexibility to accommodate
heterogeneous inputs (numerical, categorical, and textual) and
can be used for different modeling subtasks (as explained at the
end of this section). Therefore, we implemented a neural model
that uses different encoders to represent the heterogeneous input
features, then aggregated these representations with a linear
layer, and finally predicted a label (Figure 5). Apart from the
output layer, we maintained the same model architecture for
both tasks, that is, predicting the downgrading reasons and
assigning an overall quality grade. All numeric inputs were
scaled using min-max normalization, and all encoder outputs
before linear aggregation were layer normalized (Ba, JL,
unpublished data, July 2016). The trainable parameters of the
model consist of the linear aggregation layer and 3 feature
encoders. The encoder for numeric inputs is a 3-layered
feedforward neural network; the categorical inputs were
embedded using randomly initialized vectors; and the
unstructured textual inputs were represented using SciBERT,
a pretrained transformer-based language model [41,42].
Although categorical inputs could be encoded in principle with
a pretrained language model, we considered such an approach
excessive. There is little need for context sensitivity within
categorical inputs, and the approach would lead to unnecessary
computational costs. By contrast, a simpler solution using sparse
or one-hot encoding might fall short of relating different but
related feature categories (eg, medical areas). For textual inputs,
our decision to use SciBERT over BERT was based on
preliminary experimentation, which showed better performance

of SciBERT on our development sets. This can be explained
by the fact that the model is trained largely on biomedical texts,
whereas BERT uses a general-domain corpus. More information
on the impact of specific language model instantiations can be
found at the end of the section titled Predicting individual
quality criteria. Our encoding approach using SciBERT works
as follows: it first tokenizes text into word pieces using a model
from HuggingFace's transformers library, encodes each text
sequence separately, updates SciBERT parameters, and finally
takes the hidden layer outputs at the sequence-level classification
level as the representations, which are then concatenated as the
output representation. We use the outcome specified in the SoF
to ground the BoE that is being assessed (quality is likely to
differ with respect to the outcome studied within the same
review).

The form of the output layer depends on the task, which is
detailed in Textbox 1.

In our comparison of results, we included various baselines.
The two trivial approaches include (1) a predictor that selects
a GRADE score or quality criterion at random using a discrete
uniform distribution, and (2) a majority-class baseline that
uniformly predicts the most frequent class. That is, for the
GRADE score, the model always predicts low, and for quality
criteria, the model outputs RoB+Imprecision (the most frequent
label combination in the training set).

In addition, we trained a logistic regression (LR) model with 3
different input representations: (1) numerical features; (2)
numerical and categorical features using bag-of-word counts;
and (3) numerical, categorical, and textual inputs represented
using bag-of-word counts. Note that at a high level, (3)
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resembles EvidenceGRADEr but represents the different input
features in a simpler way. We trained and evaluated the LR
models on the 2-tier (binary) quality-grading task.

We report the exact experimental settings for our models in
Multimedia Appendix 5 (Kingma DP, unpublished data,
December 2022).

Figure 5. Our feature-rich modeling approach to automated quality assessment. The actual form of the output layer depends on the task. The schematic
shows all possible task-specific heads, but we train and evaluate the model for each task (T1 [b], T1 [a], T2 [a], and T2 [b]) independently. FFNN:
feed-forward neural network. NUM: numerical. CAT: categorical.

Textbox 1. Overview of tasks.

• T1 downgrading reasons

• (a) Modeled as a series of independent binary classification problems, one for each quality criterion.

• (b) Modeled jointly as one 1 multilabel classifier for all quality criteria, in which each linear layer output that corresponds to a downgrading
reason is passed through the sigmoid function, and then the prediction corresponds to those units that fired. To counteract the class imbalance
in this case, we weight the examples inversely proportionally to their class frequency when calculating the binary cross-entropy loss.

• T2 overall quality grading

• (a) Modeled as multiclass classification using cross-entropy loss during training.

• (b) Modeled as regression, in which the model assigns a scalar corresponding to the quality grade, with 0 corresponding to very low, 1 to
low, 2 to moderate, and 3 to high quality. In this case, we use the mean-squared error loss.

Evaluation Details
We trained and evaluated our models using 10-fold
cross-validation, keeping one-tenth of the data for validation,
one-tenth for testing, and the rest for training. When splitting
into different folds, we ensured that all BoEs pertaining to the
same systematic review were kept within the same fold to
prevent any leakage of similar instances between training and
testing partitions [43].

During the evaluation, we reported per-class F1-scores, as well
as the macroaverage over those scores by simply averaging
them with equal weight. The reported precision and recall values

for all classes were calculated analogously. All scores represent
the averages over the 10 trials of cross-validation.

We used a single set of hyperparameters across all
cross-validation iterations. Although the textual encoder used
the default BERT settings, the remaining hyperparameters of
the model architecture (Multimedia Appendix 5) (Kingma DP,
unpublished data, December 2022) were tuned on the
development set of the first cross-validation fold.
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Results

Predicting Individual Quality Criteria (T1)
The overall quality of evidence according to GRADE represents
a single, discrete categorization of the quality per outcome,
informed by the underlying quality criteria. Although the
GRADE score should follow these criteria in a straightforward
manner, it represents an additional abstraction and potentially
another source of arbitrariness. Therefore, we focus our
discussion first on the results obtained for individual quality
criteria. Table 4 summarizes the results for binary classifiers
(T1 [a]), trained and evaluated separately for each quality
criterion, and for a multilabelling approach (T1 [b]). With the
full model using all the input features listed in Table 1 on
CDSR-QoE, the performance is >0.7 F1 for 2 criteria: RoB and
imprecision. We note that our RoB results are comparable to
the accuracy observed for RobotReviewer (around 70%) [14].

The remaining GRADE criteria proved more elusive to the
model, with especially low recall. Note that these classes
represent the least frequently applied downgrading reasons in
our data set; hence, the relative sparsity of the positive instances
is the greatest. We would expect the performance to improve
in situations where more positive instances are available. Indeed,
we see that when supplementing our data set with partially
labeled data (CDSR-QoE-supp), the performance improves
across the board, with increased precision and recall. The results
described so far concern the full use of the support data. If we
remove all textual inputs (“−txt”), and preserve the numerical
and categorical features, the performance drops for all criteria,
meaning that the different textual summaries included in our
predictor play an important role, most notably for indirectness
and publication bias. This means that the reviewers encode
information in the narrative that is otherwise not present in a
structured form and that this complementary signal in the textual
inputs can be picked up effectively by the classifier to inform

its decision. That said, the model that is deprived of any textual
inputs performs reasonably well and could be actionable in
practice, especially for the most common quality criteria, that
is, the RoB and imprecision.

As a side effect, we explored the importance of choosing a
particular instantiation of a pretrained language model as our
text encoder. Therefore, we replaced the pretrained SciBERT
language model with two alternatives: (1) a general BERT model
(BERT-base-uncased) [42] and (2) a BioMed-RoBERTa-base
model [44], which is based on the RoBERTa-base architecture
(Liu, Y, unpublished data, July 2019) and pretrained on full
scientific papers from the Semantic Scholar corpus [45]. We
found that using the general BERT model resulted in slightly
decreased F1-scores for the quality criteria, whereas
BioMed-RoBERTa-base improved over SciBERT for RoB,
indirectness, and inconsistency, but not for imprecision and
publication bias. The overall differences in the scores were
small, as shown in Multimedia Appendix 6 [20,21,24-28].

We observed some variation in results between different
cross-validation trials (shown in the subscript in Table 4), which
tended to be smaller for the classes with more data (RoB and
imprecision) and larger for the 3 less frequent classes.

As a single data instance can be characterized according to
multiple downgrading criteria, we also evaluated the
multilabelling performance on the predictions of all binary
models. We find that the exact match accuracy in this case is
0.29 (for the model using supplementary data from
CDSR-QoE-supp), counting as correct only those instances in
which all reasons were correctly predicted. This corresponds to
a microaveraged F1-score of 0.68 (0.53 when macroaveraging).
These results are superior when compared with the
multilabelling approach (multilabeller in Table 3), which, despite
the ability to capture interactions between the labels, achieves
an overall accuracy of 0.27 (0.56 micro- F1; 0.48 macro- F1).
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Table 4. Test set results for classification of reasons for downgrading the quality of evidence (T1), reporting macroaveraged F1 together with median
absolute deviation (subscripted) across all trials of 10-fold cross-validation.

GRADEa downgrading criteriaData setup and model

Publication bias, F1Indirectness, F1Inconsistency, F1Imprecision, F1RoBb, F1

CDSR-QoEc

0.08.020.17.020.23.020.48.020.50.02Random

0.00.000.00.000.00.000.71.020.74.02Majority

0.02.000.11.020.09.020.72.020.75.02Classifierd

0.14.130.25.130.25.020.64.020.74.02Multilabellere

CDSR-QoE-supp

0.39.120.41.020.31.020.75.020.78.02Classifier

0.44.210.47.020.29.020.59.020.64.02Multilabeller

0.19.130.24.020.26.020.74.020.72.02Classifier, −txtf

CDSR-QoE-alignedg

0.05.000.28.260.47.020.69.020.71.02Classifier

0.13.000.30.100.51.020.66.020.74.02Classifier, +PSh

aGRADE: Grading of Recommendation, Assessment, Development, and Evaluation.
bRoB: risk of bias.
cCDSR-QoE: Cochrane Database of Systematic Reviews Quality of Evidence.
dFor classifier (T1 [a]), each reason type is independently trained and evaluated in a binary setting (eg, “risk of bias” vs “other”).
eFor multilabeller, a single model is tasked with predicting multiple reasons (T1 [b]).
f−txt: with removed textual inputs.
gAs CDSR-QoE-aligned is smaller and with different test sets compared with CDSR-QoE, the results are not directly comparable between the 2.
h+PS: with added primary study–related features.

Can Low-Level Signal From Primary Studies Further
Improve Automated Quality Assessment?
CDSR-QoE-aligned provides us with links to the characteristics
of primary studies that form the BoE. The effect of adding
primary study–related features (+PS) was positive for RoB
(Table 4). This was expected because the bulk of the added
features (bottom of Table 4) relate to RoB components. In fact,
one might expect the advantage of adding RoB judgments and
justifications to be even more pronounced, as these low-level
RoB decisions have already been made by the reviewers.
However, the judgments that are input to our model still only
belong to individual RoB components and not to an overall RoB
judgment. In addition, they are concerned with only 1 primary
study, whereas the model needs to assign a RoB decision for
the entire BoE. These 2 factors may explain why the classifier
failed to attain a larger improvement in the presence of low-level
RoB judgments. The effect was also positive for publication
bias, which possibly correlates with specific components of
RoB or could be informed by the study method description. We
observed increased F1-scores for inconsistency and indirectness;
however, the variability between the cross-validation trials was
higher (largely because of data sparsity).

Because of the difficulty in obtaining alignments to primary
studies, we had to perform our analysis on a smaller subset of

the original data, as explained in the Data Set construction and
quality control section. Although we found the incorporation
of primary studies to be beneficial, a larger-scale evaluation
and exploration of the impact of other features from the primary
studies (eg, textual abstracts and metadata such as journal titles
of the published articles) are warranted in the future to offer a
more comprehensive view.

Predicting Overall Quality (T2)
We now shift our discussion to the overall quality grading,
which we analyze at 2 granularity levels. The first maintains
the original 4-tier GRADE scoring scheme, whereas the second
merges the levels to obtain a binary score. In the 2-tier case, we
merge high and moderate and low and very low. This is
motivated by how quality assessment informs the guideline
development. Guideline authors will form the recommendations
based on their confidence in all effect estimates for each
outcome that is considered critical to their recommendation and
the quality of evidence. Typically, a strong recommendation is
associated with high, or at least moderate, confidence in the
effect estimates for critical outcomes. Conversely, GRADE
discourages guideline panels from making strong
recommendations when their confidence in estimates of effect
for critical outcomes is low or very low [46]. The results in
Table 5 show that our model improves significantly over trivial
baselines. The classification approach yielded better results on
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F1 metrics and achieved stable performance over the 4 levels
of GRADE (∼0.5 F1). In comparison, the regression approach
made more mistakes for the outermost classes but achieved, on
average, a smaller absolute error (0.62). In the simplified binary
task, our classifier achieved an F1-score of 0.74. From the LR
baseline results we see that it is important to include all 3 input
categories (numerical, categorical, and textual) and that a more
complex representation approach of EvidenceGRADEr of these
categories is warranted (0.74 vs 0.66 F1). Nevertheless, the LR
approach clearly outperformed the 2 trivial baselines, regardless
of the included input categories.

To better understand which systematic review inputs play an
important role in the overall quality assessment, we performed
an ablation analysis using the 4-tier GRADE classifier. We
removed 1 feature at a time and noted the changes in the scores
for each of precision, recall, and F1. As shown in Figure 6, all
feature types (numerical, categorical, and textual) contribute to
the quality of prediction. The removal of certain textual features
has the greatest impact on performance (especially abstracts
and conclusions). We also found that the type of effect and the
number of excluded studies harm the performance (in the case

of recall and F1) and could be removed from the model. On the
basis of the F1 plot, there appeared to be no clearly redundant
features, the removal of which would leave the score unchanged.

Finally, considering that medical evidence (also, the prevalence
of higher-quality evidence) is nonuniformly distributed across
medical areas, as shown in Figure 4, the predictive performance
on different medical areas may also be variable. This is an
important question from the perspective of practical application,
which we intend to explore separately in the future, owing to
its complexity. To provide an impression of the out-of-domain
generalizability of our system, we conducted an experiment
using mental health as the selected area. Although the quality
of 4-tier predictions in mental health alone equals the average
performance over all areas (0.49 F1), the situation becomes
interesting when we look at how well the model generalizes
when it is trained on all areas except mental health and is then
evaluated on mental health only. This results in a decreased F1

(from 0.49 to 0.43); however, in binary grading, the performance
remains the same, meaning that only finer-grained distinctions
are negatively affected. Additional analyses related to the
generalizability can be obtained from the authors.
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Table 5. Results on the test set for overall quality scoring using Grading of Recommendation, Assessment, Development, and Evaluation (T2) on
Cochrane Database of Systematic Reviews Quality of Evidence, averaged over 10 folds, with median absolute deviation in subscript.

ScoresF 1RP valueMAEaSetup and model

F1 nega-
tive

F1 posi-
tive

F1 very
lowF1 lowF1 moderateF1 high

4-tier

N/AN/Ab0.18.060.28.040.30.030.23.010.25.020.25.02.25.021.20.02Random

N/AN/A0.00.000.51.040.00.000.00.000.13.010.25.00.08.010.80.06Majority

N/AN/A0.12.030.41.040.39.050.08.030.25.010.27.01.26.011.02.02LRc-nd

N/AN/A0.21.050.44.020.42.040.09.040.29.020.31.01.37.010.96.05LR-nce

N/AN/A0.31.060.38.050.47.030.28.080.36.020.37.02.46.010.89.05LR-nctf

N/AN/A0.46.060.51.050.53.080.47.060.49.030.49.03.54.040.77.05Classifier

N/AN/A0.37.080.52.030.50.040.30.130.42.040.42.03.56.070.62.02Regressor

2-tier g

0.47.020.52.03N/AN/AN/AN/A0.52.000.53.00.53.00N/ARandom

0.70.030.00.00N/AN/AN/AN/A0.35.020.50.00.27.02N/AMajority

0.64.030.50.05N/AN/AN/AN/A0.57.020.57.02.58.02N/ALR-n

0.69.030.57.05N/AN/AN/AN/A0.63.020.63.03.64.02N/ALR-nc

0.69.030.64.04N/AN/AN/AN/A0.66.020.67.02.68.02N/ALR-nct

0.76.020.72.06N/AN/AN/AN/A0.74.030.75.02.75.02N/AClassifier

aMAE: mean absolute error.
bN/A: not applicable.
cLR: logistic regression.
d-n: with numerical features.
enc: with numerical and categorical features.
fnct: with numerical, categorical, and text features.
gIn the 2-tier task, F1-pos represents the positive class (high+moderate), and F1-neg the negative class (low+very low).
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Figure 6. Feature ablations over the different metrics for predicting the overall Grading of Recommendation, Assessment, Development, and Evaluation
(GRADE) score. A feature is considered important if its removal results in a large drop in performance (is located lower in the plot). The scores on
y-axes represent the difference to the model with no ablation (the dashed horizontal line). SoF: summary of findings. NUM: numerical. CAT: categorical.
CI: confidence interval.

Discussion

Principal Findings
Our data set was constructed from CDSR by repurposing the
quality-of-evidence annotations of human reviewers. The focus
of our study is generalized quality assessment in systematic
reviews, for which we have proposed a ML method to rate the
quality and its associated components for the entire BoE. We
have demonstrated that assessment of quality of evidence can
be automated with reasonable accuracy when distinguishing
between coarse-grained grades of overall quality and when
identifying specific quality criteria, including RoB and
imprecision. The prediction of less frequent criteria proves more
challenging, despite the substantial gains in performance
observed when adding more training data. The fine-grained,
4-tier overall grading also turns out to be more challenging than
the 2-tier grading; however, the assignment of a quality level
is roughly equally good (∼0.5 F1) across the 4 levels, and on
average, the predicted quality is within one level of that assigned
by human reviewers.

Limitations
As we have discussed in the Consistency of GRADE ratings
section, the findings from user studies examining grading
consistency suggest that quality assessment may be subjective
to some extent. This is despite the existence of extensive
guidelines for GRADE scoring and well-established quality
assessment workflows and infrastructure (eg, Cochrane RoB
assessment tool). Although the learning outcomes observed

here are promising, it is likely that the varying consistency of
quality annotations in the data negatively impacts the predictive
performance. It would be important to quantify this effect in
the future by carrying out a user study that closely matches our
task or to develop learning algorithms that are specifically
enhanced to deal with label uncertainty. We carried out a brief
descriptive analysis of the consistency of RoB assignment, for
which we used the labels available in Cochrane reviews
(Multimedia Appendix 2) [13].

Furthermore, we have seen that there is value in incorporating
lower-level evidence stemming from primary studies, which
can additionally increase the quality of assessing the RoB and
certain other criteria. However, a limitation here is that
alignment is needed between the SoF for a particular outcome
and the pool of primary studies that were included. We found
this alignment to be noisy in most instances. The exclusion of
these cases left us with a reduced number of instances in which
the alignments were reliably extracted. A more structured
representation of this relationship in the CDSR would help
increase the coverage, potentially improving the modeling
process. From the perspective of a real-life use case, it would
be reasonable to assume that for a given test case, alignment
with the relevant primary studies will be available.

Through our ablation analysis for the overall grading of
evidence, as well as by removing the entire set of textual features
for reason prediction, we have shown that different parts of the
systematic review narrative contain quality-related information.
When encoded by the NLP component of EvidenceGRADEr,
these can be exploited to build a more confident quality assessor.
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The narrative thus contains complementary signals to nontextual
parts of a review. This may be surprising given that the narrative
typically provides only a synthesized interpretation of the quality
of evidence, and the link to the exact clinical question (PICO
criteria) is lost or difficult to extract.

Presently, the system cannot explain its decisions, despite this
information playing an important role for a user to decide
whether to trust its prediction. A variety of explanation methods
could be adopted, for example, gradient-based saliency
approaches that reveal which input features contribute the most
toward the predicted class [47-49] and are also commonly used
in NLP models [50,51]. Another appealing option is
counterfactual explanations, which consist of input instances
that are closely related to the original instance yet result in a
different output class (see the survey by Madsen et al [51] for
an overview). These can give the user a sense of direction in
which the inputs would need to be changed for the desired
prediction to occur (eg, to obtain a higher quality of evidence).
They are also generally model-agnostic and can be applied in
a post hoc manner. Somewhat orthogonal to these options is
joint (or multitask) learning, in which in addition to the original
task, the model is trained on another related task, thereby making
the decisions on the first task more interpretable. One example
of such work is RobotReviewer [14], in which in addition to
the article-level RoB labels, the system also predicts for each
individual sentence within a full text regardless of whether it
was used in assessing the RoB for a particular bias type.
Although directly translating this approach to our scenario would
be nontrivial (ie, for GRADE criteria, direct quotes from the
systematic review are generally not available), there are other
possibilities. For example, overall GRADE scoring and
prediction of individual downgrading criteria can be performed
jointly using a single model. In this way, instead of only
providing an overall quality grade, the model would also support
the prediction with the downgrading criteria that led to that
particular score. We leave the implementation of these options
for future work.

Implications for the Preparation of Systematic Reviews
We envisage that Evidence GRADEr could play a role in
different steps in the process of preparing systematic reviews.
One possibility is that specific review steps have already been
completed, but the review itself has not yet been written. This
corresponds to our results obtained with textual features
removed (Table 4, under “classifier, -txt”). Concretely, steps in
the systematic review process such as the initial screening of
primary studies and meta-analysis provide important supporting
data for the quality assessment model (eg, the total number of
participants for a BoE and a numerical estimate of the relative
effect) before the synthesized narrative becomes available. These

can be used by the model to obtain the quality grades, which
can then be incorporated into the SoF, as well as in the narrative
produced by the reviewers. Although the application of our tool
further upstream in the reviewing process is possible in principle
(eg, before meta-analysis), many strongly predictive inputs
(such as the lower and upper CIs) would be missing at test time,
thereby negatively impacting predictive performance.

Automated quality grading can also add value to the reviewing
process in the form of consistency checking. The reviewers
would first perform their GRADE assessment and then use the
tool to confirm it. This could be coupled with feedback on
features that led to a different predicted score in the case of a
discrepancy, which opens up interesting applications regarding
explainability, as we discuss at the end of the next section.

Future Work
There are several possible directions for extending our work in
the future. We would like to study the effect of replacing
individual review elements (carried out by human experts in
our study) with existing automated tools, such as tools for
extracting PICO elements or recognizing medical concepts,
detecting numerical values, and assigning the RoB to individual
studies [12,52-54]. This would represent further progress toward
end-to-end systematic review automation, based on systems
that make use of pipelines of NLP tools, each modeling
individual quality aspects or architectures, thereby addressing
multiple constituent tasks simultaneously.

Another possibility is studying the contribution of individual
studies and already synthesized data elements toward the overall
BoE quality. For example, through counterfactual reasoning
[55], we may be able to answer which changes—either at the
aggregate level or at the level of primary studies—would lead
to higher-quality evidence or to the absence of specific
downgrading reasons. This could be of value in guiding the
updates of the existing BoE and may highlight how specific
aspects of primary research should be carried out.

In terms of end applications of our EvidenceGRADEr, such as
in guideline development, knowing not only the overall quality
score but also the individual quality criteria would add to
transparency and enable the users to better scrutinize the
decisions of the system. In the future, we would like to provide
explanations for the prediction of quality criteria in addition to
the predictions themselves. These explanations could include
a selection of, or an abstraction over, the textual snippets from
the primary studies, as commonly done in RoB assessment [13];
for other quality criteria, justifications similar to those provided
in the footnotes of the SoFs could be generated by the model
alongside the predicted quality criteria.
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