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Abstract

Background: Deep learning–assisted eye disease diagnosis technology is increasingly applied in eye disease screening. However,
no research has suggested the prerequisites for health care service providers and residents willing to use it.

Objective: The aim of this paper is to reveal the preferences of health care service providers and residents for using artificial
intelligence (AI) in community-based eye disease screening, particularly their preference for accuracy.

Methods: Discrete choice experiments for health care providers and residents were conducted in Shanghai, China. In total, 34
medical institutions with adequate AI-assisted screening experience participated. A total of 39 medical staff and 318 residents
were asked to answer the questionnaire and make a trade-off among alternative screening strategies with different attributes,
including missed diagnosis rate, overdiagnosis rate, screening result feedback efficiency, level of ophthalmologist involvement,
organizational form, cost, and screening result feedback form. Conditional logit models with the stepwise selection method were
used to estimate the preferences.

Results: Medical staff preferred high accuracy: The specificity of deep learning models should be more than 90% (odds ratio
[OR]=0.61 for 10% overdiagnosis; P<.001), which was much higher than the Food and Drug Administration standards. However,
accuracy was not the residents’ preference. Rather, they preferred to have the doctors involved in the screening process. In
addition, when compared with a fully manual diagnosis, AI technology was more favored by the medical staff (OR=2.08 for
semiautomated AI model and OR=2.39 for fully automated AI model; P<.001), while the residents were in disfavor of the AI
technology without doctors’ supervision (OR=0.24; P<.001).

Conclusions: Deep learning model under doctors’ supervision is strongly recommended, and the specificity of the model should
be more than 90%. In addition, digital transformation should help medical staff move away from heavy and repetitive work and
spend more time on communicating with residents.

(J Med Internet Res 2022;24(9):e40249) doi: 10.2196/40249
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Introduction

Vision loss, defined as either visual impairment or blindness,
is becoming a vital aspect of public health [1], affecting
economic, educational, and employment opportunities, reducing

the quality of life, and increasing the risk of death [1]. Therefore,
according to the recent eye care competency framework by the
World Health Organization, the continuum of eye care across
all levels of the health system should be highlighted, particularly
primary health care, to support universal health coverage [2].
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High-quality eye disease prevention health care, such as
effective screening, can help eliminate almost 57% of all
blindness cases [3]. Nowadays, artificial intelligence (AI) is
gradually adopted in eye disease screening and may assist in
addressing the limited and difficult-to-sustain resources in
screening capacity, personnel costs, and diagnosis expertise [4].
The accuracy of AI models greatly affects the cost-effectiveness
of eye disease screening [5]. Unfortunately, though the US Food
and Drug Administration (FDA) had set a mandatory level of
accuracy with a sensitivity of more than 85% and a specificity
of more than 82.5% [6], the accuracy of AI-assisted eye disease
screening systems in the real world were far worse than that
reported in the model development phase [7]. Therefore, it is
essential to make clear the medical staff and resident
requirements of the accuracy of AI models in the
community-based eye disease screening in the real world.
However, no related research has been conducted thus far.

To fill this evidence gap, we conducted discrete choice
experiments (DCEs) for health care providers and residents in
Shanghai, China, from August 2021 to January 2022. We aimed
to reveal the preferences of medical staff and residents for using
AI technology in community-based eye disease screening,
particularly their preference for accuracy. The DCE technique,
originating in mathematical psychology, has been introduced
in health economics to elicit preferences for health and health
care [8]. Additionally, the DCE technique is predictive of
choices, mimicking real-world decisions in health care
decision-making (correctly predicting >93% of choices) [9].

Methods

Study Setting
Shanghai, with a population of 24 million in 2019, is the
economic, science, and technology innovation center in China.
It is also one of the first cities in the world to adopt deep learning
(DL) models to establish affordable and sustainable
community-based eye disease screening systems. Since 2015,
a teleophthalmology-based eye disease screening system
covering all community health service centers has been
developed in Shanghai. Residents can take free fundus
photographs once a year by the trained general practitioners
(GPs) in community health service centers. The fundus photos
are then sent to the designated eye disease diagnosis centers
through a dedicated information system. After the
ophthalmologists in the diagnosis centers read the fundus photos
and make diagnoses, the screening results are returned to the
community health service centers. The GPs may inform residents
of the screening results and provide medical advice.

In 2020, an AI-assisted eye disease screening system was
established using DL model on cloud servers instead of
ophthalmologists in the diagnosis centers making the screening
diagnoses (Figure 1) [10-12]. The accuracy of DL models used
for community-based eye disease screening has been reported
widely [6,11,13,14]. Thus far, 56 community health service
centers have shifted to the AI-assisted eye disease screening
system. In 2021, these community health service centers
screened over 40,000 residents with the help of the DL model
and found over 7000 residents with suspected eye diseases.
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Figure 1. Process of community-based eye disease screening in Shanghai. A: teleophthalmology-based eye disease screening system; B: deep
learning–assisted eye disease screening system. The photograph in the lower right corner of process B is a sample of the operation interface of the deep
learning–assisted eye disease diagnosis system. AI: artificial intelligence.

Discrete Choice Experiments and Participants
Inclusion
We conducted 2 DCEs to assess medical staff’s preferences
(experiment 1) and residents’ preferences (experiment 2) for
using the DL model in community-based eye disease screening.
The main reason for using a DCE is that simply asking the
respondents to rate the screening strategy attributes or choose
their preferred item from a scale generally yields no more
information than the fact that they want all the benefits and none
of the indirect or direct costs [15]. Choosing between
alternatives forces them to make a trade-off and choose, as in
real life, between options that may increase utility (eg, improved
diagnosis accuracy) and decrease utility (eg, screening cost of
40 CNY [US $6.15] per resident instead of being free).

Based on previously published literature [4-7,16-18], 4 attributes
were identified initially to describe the outline of the
community-based eye disease screening, including the accuracy,
screening result feedback efficiency, level of ophthalmologist’s
involvement, and cost. It was worth stating that “screening result
feedback efficiency” was included in the attributes because
nearly instantaneous feedback might increase compliance [18];
moreover, “level of ophthalmologists involvement” was included
because algorithmic aversion might exist [19]. To assess the
appropriateness of these potential attributes and their levels, 5
experts on eye care were interviewed face-to-face in the
Shanghai Eye Disease Control and Treatment Center. Based on

these interviews, the attribute accuracy was divided into the
following 2 attributes: “missed diagnosis rate” and
“overdiagnosis rate,” as they might have different impacts on
the acceptability of eye disease screening. In addition, 2 new
attributes were added: “organizational form” and “screening
result feedback form,” as the adoption of the DL model had the
potential to reform the screening programs. As a result, 7
attributes were used to describe the outline of the
community-based eye disease screening, and each attribute was
divided into 3-6 levels (Table 1). Three SAS (SAS Institute Inc)
procedures—“%mktruns,” “%mktex,” and “%choiceff”—were
used to develop the questionnaire [20]. The questionnaire
consisted of the following two parts: the respondent’s basic
information, such as sex and age, and a few choice sets, each
of which contained 2 options with different screening attribute
levels (Figure 2). The respondents were asked to choose the
more favorable option in each choice set, and they were not
allowed to choose both or neither in a set [21].

In Experiment 1, one municipal and 16 district-level eye disease
control centers and over 250 community health service centers
in Shanghai were enrolled. To receive rational rather than
imaginary choices, the following two strict inclusion criteria
were set: (1) they had over 5 years of experience in
teleophthalmology-based eye disease screening and (2) they
had over 1 year of experience in DL-assisted eye disease
screening. A total of 34 institutions met the criteria, including
1 (3%) municipal, 16 (47%) district-level eye disease control
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centers, and 17 (50%) community health service centers (Figure
3). All the 40 key persons in charge of community-based eye
disease screening in these 34 institutions were invited and agreed
to participate in the experiment. Due to the limited number of
respondents, we had to ask each one to answer a relatively large
number of questions. According to the rule of thumb, as
proposed by Johnson and Orme [22], we divided the alternative
screening strategies into 30 choice sets of 2 options to ensure
that the sample size of 40 people met the statistical requirements.
The experiment was conducted in the form of a self-administered
questionnaire, with a trained investigator on standby to interpret
the questionnaire. One respondent quit because of temporary
work arrangements. Therefore, data from 39 medical staff were
available in the final analysis.

In Experiment 2, we randomly selected 2 from the 17
community health service centers involved in Experiment 1 and
conducted the residents’ investigation when carrying out the
AI-assisted community-based eye disease screening. All the
residents who participated in the screening were invited to the
experiment. Because the number of residents was relatively
large, we divided the alternative screening strategies into 10
choice sets of 2 options to reduce the response burden for each
respondent. According to the rule of thumb, as proposed by
Johnson and Orme [22], the minimum of the required sample
size was 125. A total of 318 residents were investigated (Figure
3). To help the residents understand the questionnaire, the
experiment was conducted using face-to-face questioning by
trained investigator.

Table 1. Attributes and levels in the discrete choice experiments.

LevelsAttributes

654321

Performance expectancy

—a2015105NoneMissed diagnosis rate (%)

—2015105NoneOverdiagnosis rate (%)

———In 1 monthIn 2 weeksImmediatelyScreening result feedback efficiency

Effort expectancy

———Fully manual diagnosiseSemiautomatedd DL modelFully automatedb DLc

model

Level of ophthalmologist involvement

Facilitating conditions

———Opportunity screening in

outpatienth
Residents’health self-exam-

ination cabing
Centralized screeningfOrganizational form

200
CNY

160
CNY

120
CNY

80 CNY40 CNYiFreeCost

———Screening results, medi-
cal advice, and oral expla-

nation by GPl,m

Screening results and medi-

cal advicek
Screening resultsjScreening result feedback form

aNot available.
bThe screening results were provided entirely by the deep learning model, and the ophthalmologists were not involved in the diagnostic process.
cDL: deep learning.
dThe deep learning model performed the initial screening of fundus photographs and then the ophthalmologists reviewed the results.
eThe screening results were provided entirely by the ophthalmologists and the deep learning model was not involved in the diagnostic process.
fThe community health service center informed the residents to undergo the screening at a uniform place and time.
gThe equipment needed for screening was placed in a specific cabin in the community health service center, and residents could go to the cabin for
self-examination at any time.
hResidents with chronic diseases and other risk factors would be recommended by general practitioners for eye disease screening during their outpatient
follow-up.
iUS 1$=6.5 CNY.
jThe report with only the screening results would be given to the residents without any recommendations or explanations.
kThe report with the screening results and referral recommendations would be given to the residents without explanations.
lBesides the report with the screening results and referral recommendations that would be given to the residents, a general practitioner would also explain
the meaning of the report.
mGP: general practitioner.
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Figure 2. Example of the choice sets applied. Both options include the same 7 attributes. Health care service providers and residents were asked to
decide between options A and B (in 2021, 1 USD=6.5 CNY). AI: artificial intelligence; GP: general practitioner.

Figure 3. Medical staff and residents inclusion process. DL: deep learning.
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Statistical Analyses
Mean, median, and standard deviation were calculated for the
quantitative variables. For categorical variables, the number in
a specific category was calculated as a percentage. Pearson
chi-square test for nominal variables and Mann-Whitney U test
for continuous variables were used for statistical analysis.
Conditional logit models with the stepwise selection method
were used to explore the significant preferences for each
attribute level, with the choice responses as the binary dependent
variable and the difference in levels for each of the attributes
as the independent variables [21]. Two models were used to
estimate the medical staff’s and residents’ preference
respectively, expressed as odds ratios (ORs) for each attribute
level. SAS 9.4 (SAS Institute Inc) were used for statistical
analysis. The level of significance was set at P<.05.

Ethics Approval
All participants were adults. Written informed consent from all
participants was obtained before enrollment. The study adhered
to the principles of the Declaration of Helsinki on Ethics. This
study was approved by the Shanghai General Hospital Ethics
Committee (2022SQ272).

Results

The medical staff’s mean age was 39.67 (SD 6.98) years, and
they had been responsible for eye disease screening for 6.73
(SD 5.76) years on average. The residents’ mean age was 68.62
(SD 6.96) years; Of the 318 participants, 120 (37.74%) were

male and 198 (62.26%) were female. Detailed characteristics
of the respondents are shown Table 2.

Table 3 presents the results of the conditional logit models,
evaluating the influence of the tested attribute levels on medical
staff’s and residents’ preferences. Among the 39 medical staff,
the impact of selected attributes on preferences was statistically
significant for 4 of the 7 attributes. Generally, medical staff
prefer attribute levels with AI technology, lower overdiagnosis
rates, lower screening costs, and higher screening result
feedback efficiency. The results for the attribute “organizational
form,” “missed diagnosis rate,” and “screening result feedback
form” were inconclusive—none of the attribute levels were
associated with statistically significant utility differences.

Further, we focused on the accuracy of the diagnosis. For the
missed diagnosis rate, there were no significant differences of
medical staff’s preferences for a missed diagnosis rate between
0% and 20%. However, for the overdiagnosis rate, compared
with no overdiagnosis, medical staff’s preference for the 10%
overdiagnosis rate significantly decreased (OR=0.61; P<.001).

Among the 318 residents, the influence of selected attributes
on preferences was statistically significant for 3 of the 7
attributes. Generally, residents were in disfavor of the attribute
level with a fully automated DL model (OR=0.24; P<.001), but
they preferred attribute levels with lower screening costs and
oral explanations by GP. The results for the attributes
“organizational form,” “missed diagnosis rate,” “overdiagnosis
rate,” and “screening result feedback efficiency” were
inconclusive. None of the attribute levels were associated with
statistically significant utility differences.
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Table 2. Characteristics of respondents.

ValueRespondent and characteristics

Medical staff (n=39)

39.67 (6.98)Age (years), mean (SD)

Institution level, n (%)

1 (2.56)Municipal eye disease control center

15 (38.46)aDistrict-level eye disease control center

23 (58.97)Community health service center

Position, n (%)

7 (17.95)Institution leader

22 (56.41)Department leader

10 (25.64)Eye disease screening mainstay

6.73 (5.76)Years in the current position, mean (SD)

Resident (n=318)

68.62 (6.96)Age (years), mean (SD)

Sex, n (%)

120 (37.74)Male

198 (62.26)Female

Education level, n (%)

216 (67.92)Junior high school and below

72 (22.64)Senior high school

21 (6.6)Junior college

9 (2.83)Undergraduate and above

Eye disease, n (%)

73 (22.96)Suspected

245 (77.04)None

aOne respondent from a district-level eye disease control center quit the experiment because of temporary work arrangements. Therefore, although 16
district-level eye disease control centers were included in our study, only 15 key persons from these institutions finished the questionnaire.
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Table 3. Preferences for using deep learning in community-based eye disease screening.

ResidentsMedical staffaAttribute and level

OR (95% CI)ORb (95% CI)

Diagnostic technology

0.89 (0.68, 1.15)2.08 (1.71, 2.52)dSemiautomated DLc model

0.24 (0.20, 0.29)d2.39 (1.97, 2.90)dFully automated DL model

ReferenceReferenceFully manual diagnosis

Organizational form

ReferenceReferenceCentralized screening

Not significantNot significantResidents’ health self-examination cabin

Not significantNot significantOpportunity screening in outpatiente

Missed diagnosis rate

ReferenceReferenceNone

Not significantNot significant5%

Not significantNot significant10%

Not significantNot significant15%

Not significantNot significant20%

Overdiagnosis rate

ReferenceReferenceNone

Not significant0.88 (0.68, 1.15)5%

Not significant0.61 (0.46, 0.81)d10%

Not significant0.63 (0.48, 0.83)f15%

Not significant0.51 (0.38, 0.68)d20%

Costg

ReferenceReferenceFree

0.75 (0.56, 1.01)0.61 (0.46, 0.83)f40 CNY

0.56 (0.42, 0.74)d0.47 (0.35, 0.64)d80 CNY

0.82 (0.51, 1.31)0.39 (0.28, 0.54)d120 CNY

0.78 (0.46, 1.32)0.27 (0.19, 0.38)d160 CNY

0.57 (0.46, 0.71)d0.21 (0.15, 0.29)d200 CNY

Screening result feedback form

0.52 (0.44, 0.61)dNot significantScreening results

0.75 (0.65, 0.87)dNot significantScreening results and referral recommendations

ReferenceReferenceScreening results, referral recommendations, and oral explanation by GPh

Screening result feedback efficiency

ReferenceReferenceImmediately

Not significant0.68 (0.56, 0.82)dIn 2 weeks

Not significant0.58 (0.48, 0.70)dIn 1 month

aIn each grid, an OR value over 1 means that the health care services providers were more inclined to this level, while the value less than 1 means that
they disliked this level even more.
bOR: odds ratio.
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cDL: deep learning.
dP<.001.
eResidents with chronic diseases and other risk factors would be recommended by general practitioners for eye disease screening during their outpatient
follow-up.
fP=.001.
gIn 2021, US $1= 6.5 CNY.
hGP: general practitioner.

Discussion

Principal Findings
To the best of our knowledge, this study is the first to
quantitatively estimate both medical staff’s and residents’
preferences for using DL in community-based eye disease
screening in the real world. Since one of the most important
questions for achieving universal health coverage in a digital
world is whether digital technologies help increase the
acceptability of health care services [23,24], our study is
significant for the transformation, application, and promotion
of this new technology. It was based on the multicenter practices
of AI-assisted eye disease screening from 34 medical
institutions, where both medical staff and residents under
investigation had real service experience of AI. We showed that
when compared with a fully manual diagnosis, AI technology
was more favored by the medical staff, even after adjusting for
the impacts of diagnosis accuracy, cost, and efficiency.
However, the residents were in disfavor of the AI technology
without doctors’ supervision. Furthermore, to meet the medical
staff’s preference, the accuracy of the AI-assisted eye disease
screening technology should be much higher than the FDA’s
standards. On the contrary, accuracy was not a priority for the
residents. They prefer to have the doctors involved in the
screening process and leave the choice of accuracy to their
general practitioners.

The adoption of DL model for community-based eye disease
screening is necessary. Before the development of DL model,
the screening relied on ophthalmologists heavily, regardless of
conducting traditional face-to-face screening or a telemedicine
system [25]. At this stage, continuous eye disease screening
was not affordable in most of the countries [6] for two reasons.
On the one hand, the limited human resources of the
ophthalmologists resulted in extremely high screening costs [5].
On the other hand, the organization of the screening was
challenging, requiring the coordination of ophthalmologists,
community health centers, and residents at the same time [25].
As a result, in Shanghai, before the adoption of the DL model,
each community only could provide screening service to
approximately 300 residents per year. On the contrary, after the
adoption of DL model, as the ophthalmologist resources were
no longer the bottlenecks, the screening use volume dramatically
increased to 800 residents per community per year.

Accuracy is regarded as one of the most important
considerations in the adoption of DL model. When screening
populations with a substantial disease, achieving both high
sensitivity and specificity is critical in minimizing both
false-positive and false-negative results [26]. The previous
studies have shown that it is feasible to meet the mandatory
level of accuracy as the primary endpoint with a sensitivity of

more than 85% and a specificity of more than 82.5%, which
was recommended by the FDA [6,22,27,28]. However, when
the DL models were applied in the real world, their accuracy
greatly reduced [7]. Therefore, the question is, “what are the
medical staff and residents’ requirements of the accuracy of AI
models in the real world?”

Our study attempted to answer this question from the perspective
of medical staff’s and residents’ preferences in the real-world,
community-based eye diseases screening. Although the ideal
state is 100% accuracy, under the existing technical conditions,
health care service providers must make a trade-off between
higher sensitivity and specificity. Both outcomes are
important—positive cases should be identified, but this should
not come at the cost of overly sensitive screening systems [29].

We showed that if the overdiagnosis rate exceeded 10%, the
preferences of the medical staff decreased significantly.
Therefore, the specificity of the DL model should be controlled
with over 90% accuracy. This does not mean that sensitivity is
not important, but rather that the sensitivity standard of the FDA
is sufficient. On the one hand, sensitivity is a patient safety
criterion, because the primary goal of eye disease screening is
to identify the people who are likely to have eye disease and
require further evaluation by ophthalmologists [22]. One GP in
our study claimed that “the missed diagnosis may harm
residents’ trust in eye disease screening and reduce their
enthusiasm for screening,” whereas trust acts as a critical
element in medical care [30]. On the other hand, the
overdiagnosis rate affects the number of residents who receive
an unnecessary referral [22]. A higher overdiagnosis rate means
more unnecessary specialist visits, which may lead to
unnecessary psychological stress for suspected patients and add
further referral costs [31]. Therefore, our results indicated that
overdiagnosis would cause resentment from both
decision-making and executive agencies.

However, though accuracy is critical for medical staff, results
show that the residents do not regard it as a priority. They rather
focus on whether the doctors are at the center of medical
decision-making [32]. Humans are notoriously poor at
comprehending probability and evaluating risk, especially when
it pertains to their health or the health of a loved one [33]. In
the AI era, although medical knowledge—which forms the basis
of decision-making—will be as accessible to the patient as the
doctor, most patients need a doctor to understand risk and to
communicate this to them [33]. Patients look to the doctors for
advice when facing uncertainty in their medical decisions [34].
A study of patient attitudes toward AI use has shown that
patients felt their doctors should have the final say in their
treatment plans to avoid experiencing the potential harm that
might result from mistakes made by health care AI [32].
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Therefore, AI tools should be used as decision support tools for
human diagnosticians, but not in place of them [35].

When it comes to the other attributes, AI technology with a
lower cost and higher feedback efficiency is logically preferable.
Cost is an important issue in the adoption of AI-assisted eye
disease diagnosis technology. Therefore, it is necessary to
conduct health economics evaluation [36]. Fortunately, evidence
has shown the cost of screening could be saved by using AI
technology, which is mainly attributable to the substantial
reduction in human assessment time and workforce without
sacrificing screening performance [5].

Traditional ophthalmological diagnosis is heavily dependent
on the interpretation of images, which is often subjective and
qualitative [37]. Reading these images by trained personnel is
neither sustainable nor an efficient use of expertise, and AI
technology is essential in facilitating the capture, storage, and
interpretation of photographs [17]. From the health system’s
perspective, the addition of the DL model to fundus photography
provides an opportunity to improve this platform for detecting
and monitoring retinal diseases on a large scale, and satisfactory
results have been obtained [13]. In addition, AI algorithms may
bridge the clinical gap [4]. The DL method used for
discriminative tasks in ophthalmology, such as diagnosing
diabetic retinopathy or age-related macular degeneration, could
enhance existing data sets of common and rare ophthalmic
diseases without concern for personally identifying information
[38]. Other than helping address the limited screening capacity,
the DL model may reduce workforce costs and relieve the
burden placed on teleophthalmology health care staff [4,39].
The inadequacy of health resources and the vast medical burden

may be important reasons for the rapid acceptance the DL
method by medical staff.

Regarding feedback efficiency, recent studies have shown that
nearly instantaneous feedback may lead to increased patient
compliance [5,18]. The most obvious context for the application
of AI-assisted diagnosis technology is in primary eye care where
the data to be analyzed are complex, the outcomes are simple
and well-defined, and the number of people to process is large
[18]. In this context, manual diagnosis requires extensive time
and energy, whereas AI can work tirelessly and quickly.

Limitations
The most obvious limitation of our study was that DCE was
conducted only in Shanghai. However, as mentioned, Shanghai
is one of the pioneers in eye care digital transformation.
Therefore, our study is valuable for other regions of the world.
The second limitation was that the residents in our experiment
were mainly older adults. However, this was consistent with
the population that participated in the community-based eye
screening in Shanghai because young people mostly participated
in physical examinations at their workplace.

Conclusion
In conclusion, to meet the actual preferences of medical staff
and residents for using AI in the community-based eye disease
screening, the DL model under doctors’ supervision is strongly
recommended, and the specificity of the model should be more
than 90%, which is higher than the FDA standard. In addition,
digital transformation should help medical staff move away
from heavy and repetitive work; however, it should not reduce
their involvement in the health care service. Instead, medical
staff should spend more time on communicating with residents.
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