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Introduction

It is challenging to routinely assess gait unless dedicated
measuring devices are available. Inspired by a recent study that
reported high classification performance of activity recognition
tasks using smartwatches [1], we hypothesized that the
recognition of gait-related activities in older adults can be
formulated as a supervised learning problem. To quantify the
complex gait motion, we focused on hand motion because
disturbed hand motions are frequently reported as typical
symptoms of neurodegenerative diseases [2].

Methods

Data Acquisition
We recruited 39 older adult participants (age: 80.4, SD 6.5 years;
n=38, 73.7% women) from a local community. The number of
participants for each class was as follows: cane-assisted gait
(C0) (n=7), walker-assisted gait (C1) (n=5), gait with
disturbances (C2) (n=21), gait without disturbances (C3) (n=6),
and gait without disturbances in young controls (C4) (n=12).
During the experiment, participants were asked to wear a
smartwatch (DW9F1; Fossil Group, Inc) on each wrist and walk
at a normal speed similar to their usual walk. Figure 1 shows
example photographs taken during the experiment.
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Figure 1. Five different gait styles: cane-assisted gait (C0), walker-assisted gait (C1), gait with disturbances (C2), gait without disturbances (C3), and
gait without disturbances in young controls (C4).

Classification
The multivariate time-series (MTS) signals captured at a
sampling rate of 50 Hz were segmented into

. Here, represents the
inertial motion at a specific moment, t.  In this study, D was 12
(=6×2), since each smartwatch measures the 6-DOF (6 degrees
of freedom) motion separately, and T was 100 (approximately
2s) so that each x could contain at least a full gait cycle. The

task in our study was to infer the type of gait activity, ,
where C was 5. Our neural network systems, tailored to learn
gait features from MTS data, were trained in an end-to-end
fashion using state-of-the-art deep learning architectures,
including Conv1D [3], long short-term memory (LSTM) [4],
and an LSTM with an attention mechanism [5].

Ethics Approval
All participants were enrolled after institutional review board
(IRB) approval (Sungkyunkwan University IRB approval
number: SKKU 2021-12-014).

Results

We employed the accuracy and macro average of the F1-score,
Fm, as a measure of performance. For the both-hands condition,
the accuracy (Fm) was 0.9757 (0.9728), 0.9736 (0.9699), and
0.9771 (0.9738) when Conv1D, LSTM, and attention-based
LSTM were employed, respectively. In the case of the left-hand
and right-hand conditions, the accuracies (Fm) obtained in the
left-hand condition were 0.9652 (0.9623), 0.9611 (0.9583), and
0.9630 (0.9592), respectively. In the right-hand condition, the
accuracies (Fm) were 0.9724 (0.9706), 0.9673 (0.9643), and
0.9673 (0.9635) for the same employed models, respectively.
We also examined the learned representations as shown in
Figure 2 using t-distributed stochastic neighbor embedding
(t-SNE) [6], which visualizes the high-dimensional vectors by
projecting them into a 2D space in such a way that similar points
cluster together.
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Figure 2. Feature visualization using t-distributed stochastic neighbor embedding. Each point is colored according to the predicted class. LSTM: long
short-term memory.

Discussion

The experimental results demonstrated an acceptable
classification performance (ie, both accuracy and the Fm score
were higher than 0.95). However, there is systematic confusion,
such as recognizing C3 as C2 (0.03-0.04 for the left hand,
0.05-0.07 for the right hand, and 0.05-0.06 for both hands,
respectively) as shown in Figure 2 (see the region highlighted

in black). It is noteworthy that the classification performance
of the single-hand condition was similar to that of the both-hands
condition, suggesting that wearing a single smartwatch is
sufficient for the proposed gait assessment task. From the t-SNE
plot, it was found that points from the LSTM and attention-based
LSTM exhibit a more clustered distribution than those from the
Conv1D model. We expect that the proposed approach can be
applied to various health care applications for older adults (eg,
wearable detection of gait disturbances).
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