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Abstract

Background: Depression is a common comorbid condition in individuals with chronic back pain (CBP), leading to poorer
treatment outcomes and increased medical complications. Digital interventions have demonstrated efficacy in the prevention and
treatment of depression; however, high dropout rates are a major challenge, particularly in clinical settings.

Objective: This study aims to identify the predictors of dropout in a digital intervention for the treatment and prevention of
depression in patients with comorbid CBP. We assessed which participant characteristics may be associated with dropout and
whether intervention usage data could help improve the identification of individuals at risk of dropout early on in treatment.

Methods: Data were collected from 2 large-scale randomized controlled trials in which 253 patients with a diagnosis of CBP
and major depressive disorder or subclinical depressive symptoms received a digital intervention for depression. In the first
analysis, participants’baseline characteristics were examined as potential predictors of dropout. In the second analysis, we assessed
the extent to which dropout could be predicted from a combination of participants’ baseline characteristics and intervention usage
variables following the completion of the first module. Dropout was defined as completing <6 modules. Analyses were conducted
using logistic regression.

Results: From participants’ baseline characteristics, lower level of education (odds ratio [OR] 3.33, 95% CI 1.51-7.32) and

both lower and higher age (a quadratic effect; age: OR 0.62, 95% CI 0.47-0.82, and age2: OR 1.55, 95% CI 1.18-2.04) were
significantly associated with a higher risk of dropout. In the analysis that aimed to predict dropout following completion of the

first module, lower and higher age (age: OR 0.60, 95% CI 0.42-0.85; age2: OR 1.59, 95% CI 1.13-2.23), medium versus high
social support (OR 3.03, 95% CI 1.25-7.33), and a higher number of days to module completion (OR 1.05, 95% CI 1.02-1.08)
predicted a higher risk of dropout, whereas a self-reported negative event in the previous week was associated with a lower risk
of dropout (OR 0.24, 95% CI 0.08-0.69). A model that combined baseline characteristics and intervention usage data generated
the most accurate predictions (area under the receiver operating curve [AUC]=0.72) and was significantly more accurate than
models based on baseline characteristics only (AUC=0.70) or intervention usage data only (AUC=0.61). We found no significant
influence of pain, disability, or depression severity on dropout.
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Conclusions: Dropout can be predicted by participant baseline variables, and the inclusion of intervention usage variables may
improve the prediction of dropout early on in treatment. Being able to identify individuals at high risk of dropout from digital
health interventions could provide intervention developers and supporting clinicians with the ability to intervene early and prevent
dropout from occurring.

(J Med Internet Res 2022;24(8):e38261) doi: 10.2196/38261
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Introduction

Background
Chronic back pain (CBP) is a major global health concern with
lifetime prevalence rates of 60%-70% [1]. CBP is the leading
cause of activity limitation and work absenteeism and accounts
for the highest number of disability-adjusted life years
worldwide [2]. Approximately 1 in 5 adults with CBP are
diagnosed with major depression and many more experience
subclinical symptoms [3]. In patients with CBP, comorbid
depression is often associated with lower treatment adherence,
poorer treatment outcomes, increased medical complications,
and higher health care use [4-6].

Psychological interventions have been demonstrated to be
effective in the treatment of depression for individuals with
CBP [7]. Accordingly, cognitive behavioral therapy is now
recommended as the first-line treatment in most international
guidelines, for example, the National Institute for Health and
Care Excellence [8]. However, the ability to access
psychotherapy is a significant barrier to treatment. On average,
less than 1 in 5 people in high-income countries and less than
1 in 27 people in low- and middle-income countries receive
appropriate treatment [9], giving rise to a treatment gap in
mental health care [10].

Digital interventions, which deliver psychotherapeutic
components via a web browser or smartphone app, have been
proposed as a scalable, cost-effective way to meet the growing
demand for psychological treatment and address many of the
challenges associated with accessing traditional face-to-face
therapy [11-15]. There is now a large body of evidence
supporting the efficacy of digital interventions for the prevention
and treatment of depression [16-20], with recent studies
providing promising evidence for the treatment of depression
in patients with comorbid physical conditions [21-25].

Despite the demonstrated efficacy, adherence to digital
interventions remains a major challenge. A recent meta-analysis
on digital interventions for depression identified that, on
average, little more than half of the participants completed the
full intervention and only 25% of the participants completed
the full intervention when the intervention was delivered within
routine health care settings [16]. The same meta-analysis also
identified that completing the full intervention was the strongest
predictor of outcomes, underscoring the importance of treatment
adherence [26]. Similar rates of intervention dropout have been
reported in other studies on digital health interventions [27-30],
giving rise to what Eysenbach [31] has referred to as the “law

of attrition,” the observation that a substantial proportion of
users in eHealth apps will stop using the intervention before
completing the full treatment protocol.

Several studies have assessed predictors of dropout in digital
mental health interventions [27,32-34]. In a systematic review
of internet-based interventions for anxiety and depression,
Christensen et al [34] found that higher baseline depression
severity and older age were associated with higher rates of
intervention dropout. In a meta-analysis of individual patient
data, Karyotaki et al [33] found that being male, having a lower
education level, younger age, and comorbid anxiety symptoms
significantly increased the risk of dropout from self-guided
digital interventions for depression.

However, to the best of our knowledge, no research has been
published to date that assesses which factors may predict dropout
in a digital intervention for depression in patients with comorbid
somatic illness. This question may be particularly pertinent for
these individuals as chronic pain and depression are often
associated with reduced motivation to initiate or complete
goal-directed tasks [35,36]. As the treatment schedules of
patients with multimorbidities can already be quite demanding
[37,38], higher levels of pain disability—or lower confidence
in performing activities while in pain (pain self-efficacy)—may
therefore influence an individual’s ability to adhere to a digital
intervention and thus experience the benefits [39].

Knowing which patient characteristics predict a higher
likelihood of dropout may be valuable for identifying individuals
in advance of treatment that might benefit from alternative care
pathways [33,40]. However, it is unclear how useful the baseline
predictors may be once a patient has already started treatment.
In most digital health interventions, there is a steady attrition
over time, with most users dropping out after completing the
first 1 or 2 modules—the “attrition-phase” [31,41,42]. The
ability to identify which individuals are at high risk of dropout
early on in treatment could be valuable for supporting clinicians,
especially within stepped-care models where rapid identification
of nonresponders and the speed of providing alternative
treatment can have a significant influence on outcomes [43,44].

Although the field is still nascent, there is a wealth of data
generated from digital interventions that may aid the prediction
of dropout once a patient has started treatment. In the same way
that many digital apps outside of health care use
churn-prediction models to identify if a user is likely to churn
(ie, stop using the app as intended), similar models and
principles of human-computer interaction may be valuable to
predict dropout and maximize adherence within the field of
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digital health. For example, in a digital intervention for a chronic
lifestyle disease, Pedersen et al [45] were able to predict dropout
with 89% precision using a model that included the number of
messages received from the health coach, 2 weeks of inactivity,
and the provider of the intervention as the most significant
predictors. In a study of a self-help digital intervention for the
treatment of insomnia, Bremer et al [46] identified individuals
at risk of dropout with an area under the receiver operating curve
(AUC) of 0.719 using a combination of baseline characteristics
(eg, self-reported stress levels) and intervention usage data (eg,
number of days to complete each module). One of the most
significant findings of the study was that the prediction of user
dropout was possible early on in the intervention (after
completion of the introductory module).

Objectives
As digital mental health interventions are being increasingly
adopted by health care systems worldwide [13,47], the ability
to identify patients at risk of dropout may provide valuable
information to improve the adherence, and thus effectiveness,
of digital interventions. This study aimed to identify the factors
that may predict dropout in a digital intervention for depression
in individuals with CBP. In particular, we sought to assess which
participant characteristics may be associated with a higher risk
of dropout and whether intervention usage data could help
improve the identification of individuals at risk of dropout early
on in treatment.

Drawing from 2 recent studies on a guided digital intervention
for the treatment and prevention of depression in individuals
with comorbid CBP, we asked the following research questions:

1. Can we predict intervention dropout from participant
baseline characteristics? If so, which participant
characteristics predict a higher likelihood of dropout?

2. Can we develop an “early warning system” that identifies
participants at risk of dropout early on in the intervention?
Specifically, how accurately can we predict which
participants will drop out after completion of the first
module and what is the most accurate model for classifying
at-risk individuals?

3. Do predictors of dropout differ between patients clinically
diagnosed with major depressive disorder (where the
intervention is targeting treatment) and patients with
subclinical depressive symptoms (where the intervention
is targeting prevention)?

Methods

Study Design
This study was a secondary analysis of data from 2 trials that
assessed the efficacy of a therapist-guided internet-based
intervention for the treatment [48] and prevention [21] of
depressive symptoms in patients with comorbid CBP. Both
trials were observer-masked, multicenter, pragmatic, and
randomized controlled trials with a parallel design. The trials
were conducted simultaneously using the same intervention,
procedures, and research setting but targeted individuals with
different levels of depressive symptomatology (diagnosed
depressive disorder of mild to moderate severity in the study

by Baumeister et al [48] and subclinical but at least mild levels
of depressive symptoms in the study by Sander et al [21]). For
the purpose of this study, the trial data were combined. All the
participants provided written informed consent.

Participants
All participants (N=253) assigned to the intervention arms of
the primary studies were included in this analysis. The inclusion
criteria of the primary studies were as follows: (1) age ≥18
years; (2) presence of depressive symptoms, either reported
persistent subthreshold depressive symptoms in the past 3
months or meeting the Diagnostic and Statistical Manual of
Mental Disorders, 4th Edition, criteria for a mild to moderate
depressive episode or persistent depressive disorder; (3)
diagnosed back pain chronicity of at least 6 months; (4) have
German language skills; and (5) access to internet and PC. The
exclusion criteria were as follows: (1) having ongoing or planned
psychotherapy within the forthcoming 3 months, (2) being
currently suicidal or having had suicidal attempts within the
past 5 years, or (3) having had a severe depressive episode
within the past 6 months. In the primary studies, participants
were recruited during or following discharge from 1 of the 82
orthopedic clinics across Germany. They were recruited
personally by a clinician or on the web using a flyer and
information letters distributed by the clinic.

Intervention
The intervention is a guided internet- and mobile-based
intervention for the treatment (eSano BackCare-D [49]) or
prevention (eSano BackCare-DP [50]) of depression in patients
with comorbid CBP. The content of the intervention is based
on cognitive behavioral therapy for depression and includes
elements of psychoeducation, social skills, problem-solving,
behavioral activation, relaxation, motivation for physical
exercises, and psychological pain intervention elements.
Modules consist of information provided by text, video, audio,
and interactive exercises and include a homework assignment.
At the start of each module, participants reported their perceived
stress level at the time and whether they had experienced any
negative events in the previous 7 days. There are 6 regular
modules and 3 optional modules focusing on sleep, partnership
and sexuality, and work. Participants were advised to complete
1 session per week. During the intervention, participants were
guided by trained and supervised psychologists (e-coaches) who
provided written feedback within 48 hours of each completed
module and by answering any queries.

Measures

Baseline Measures
In this study, 8 baseline characteristic variables were assessed
as potential predictors of dropout. Variables were chosen on
the basis of previous research pointing to demonstrated or
hypothetical relationships between the predictor variables and
intervention adherence or dropout [32-34,45,46,51].
Demographic characteristics included age, sex (male or female),
education level (based on the International Standard
Classification of Education by UNESCO [52], low: level 1-2,
medium: level 3-4, and high: level 5+), marital status (single,
in a relationship, or divorced or widowed), and social support

J Med Internet Res 2022 | vol. 24 | iss. 8 | e38261 | p. 3https://www.jmir.org/2022/8/e38261
(page number not for citation purposes)

Moshe et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


(low, medium, or high). Clinical characteristics included
depression, as measured by the Hamilton Depression Rating
Scale (HAM-D; [53]); pain disability, as measured by the
Oswestry Disability Index (ODI; [54]); and pain self-efficacy,
as measured by the Pain Self-Efficacy Questionnaire (PSEQ).
The process variables included internet affinity, as measured
by the Internet Affinity Scale. Further details on all
measurements are provided in the original study protocols
[49,50].

Intervention Usage Measures
Intervention usage measures included both active and passive
measures. The active measures were the stress level reported
by the participant at the start of each module (“Burden”) and
the occurrence of any negative events experienced in the past
7 days, self-reported by the participant at the start of each
module (“Negative Events”). Burden was assessed using a Likert
scale from 0 to 10, where 0=“not burdened at all” and
10=“extremely burdened.” Negative events were dummy coded
as 0=“no negative event in the past week” and 1=“at least one
negative event in the past week.” For passive measures, we
included the number of days taken to complete each module
(“N Days to complete module”) and the number of minutes
spent on the web completing each module (“Time spent online
completing module”).

Dropout
Dropout was defined as completing <6 intervention modules,
in accordance with the intervention developers [49,50]. It was
operationalized as a binary outcome (dropped out or did not
drop out).

Analytic Strategy

Predicting Dropout From Participant Baseline
Characteristics
To assess whether participants’ baseline characteristics could
predict dropout, analyses were conducted using logistic
regression in 3 steps. First, we conducted a series of bivariate
analyses to assess the odds ratios (ORs) of each baseline variable
(bivariate “bivariate model”). Second, we repeated the analyses
with all baseline variables simultaneously entered into the
binomial model (the “complete model”). Finally, we built a
“parsimonious model” in which we excluded nonsignificant
predictors with no incremental predictive power from the
complete model in a stepwise procedure.

Akaike information criterion (AIC) and Bayesian information
criterion (BIC) were used as measures of model fit and for model
comparison. For nested models, likelihood ratio tests were used
to directly compare whether 2 models were significantly
different from one another [55]. Collinearity was assessed using
variance inflation factors and tolerance (1/variance inflation
factors). The assumption of linearity of the logit (a linear
relationship between the predictors and dropout) was assessed
for all continuous predictor variables, and any variables found
violating the assumption were transformed based on a visual
inspection of the plot.

As this was an exploratory study, we did not adjust for multiple
testing. The study was not powered for confirmatory analysis

of the predictors, and alpha adjustment may have increased the
likelihood of type II errors.

Predicting Dropout Early on in the Intervention
To assess whether we could identify people at risk of dropout
early on in the intervention, we first created a subset of the data
available up until the point of module 1 completion (ie, baseline
assessment data and intervention data captured until participants
had completed the first module). We then compared the
performance of three separate logistic regression models using
the constrained data set: (1) a model based on participant
baseline characteristics only—the “baseline characteristics
model,” (2) a model based on intervention usage variables
only—the “intervention usage model,” and (3) a model
combining all baseline characteristics and intervention usage
variables—the “combined model.” The quality of the models
was assessed using the area under the receiver operating
characteristic curve (AUROC) and related measures of
sensitivity and specificity [55]. The optimal threshold for
AUROC was determined using Youden J statistic [56].

Sensitivity analyses were conducted to assess whether predictors
differed in the prevention and treatment studies. Here, study
was included as a dummy-coded variable (0=PROD-BP for the
prevention study and 1=WARD-BP for the treatment study) in
all parsimonious models, first as an additional predictor to assess
for a main effect of study type on dropout and then as an
interaction term with other predictors in the model to assess
whether the effect of a predictor differed across studies.

To assess whether the number of modules completed influenced
the relative risk of dropout, we conducted sensitivity analyses
using Cox proportional hazards regression [57]. In this study,
we assessed whether significant predictors of dropout differed
between the 2 methods. Analyses were conducted according to
the procedures outlined by Eysenbach [31]. The number of
completed modules was used as a proxy for time. Models were
built using the same 3-step procedure outlined above for logistic
regression.

Missingness occurred in 111 out of 3084 (3.6%) data points
and was assumed to be missing at random, indicating that
missingness depended on observed data [58]. To avoid bias
introduced by missingness, missing data were imputed using
multiple imputation by chained equations [59,60]. Predictors
for missing values were selected based on (1) model-induced
predictors, (2) predictors based on bivariate correlation, and (3)
bivariate correlation with missingness according to the
procedures outlined by van Buuren and Groothuis-Oudshoorn
[60]. Predictive mean matching was used as the imputation
method. The number of imputed data sets was set to 20, and the
number of iterations was set to 10. Convergence was visually
assessed and confirmed. Regression analysis was performed on
each imputed data set, and the results were pooled according to
the rules by Rubin [61]. Sensitivity analyses were conducted
using observed (nonimputed) data to compare with the results
of the complete models using imputed data.

All analyses were conducted in R using R Studio (RStudio,
PBC; [62]). The pROC package was used to calculate the
AUROC [63]. The Caret package (R Foundation for Statistical
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Computing) was used to calculate the sensitivity and specificity
[64]. The multiple imputation by chained equations (MICE)
package was used for multiple imputation and likelihood ratio
tests [60].

Ethics Approval
This study was a secondary of analysis of data from two
RCTs—Sander et al [21] and Baumeister et al [48]. In the
original studies, all the participants provided written informed
consent. The trial in Sander et al [21] was registered at German
Clinical Trials Register (DRKS00007960). The trial in
Baumeister et al [48] was registered at the World Health
Organization International Clinical Trials Registry
(DRKS00009272). All procedures were approved by the ethics
committee of the Albert Ludwigs University of Freiburg,
Germany (REC No. 8022-6-BW-H-2015; No. 297/14_150513
for the WARD-BP trial, EK-297/14_150513 for the PROD-BP
study).

Results

Descriptive Statistics
Among the 253 participants, 149 (58.9%) were female and 104
(41.1%) were male. The age of participants ranged from 24 to

78 years, with a mean age of 51.1 (SD 8.88) years. Of the 253
participants, 171 (67.6%) reported having a low level of
education. Of the 253 participants, 34 (13.4%) were single, 180
(71.1%) were in a relationship or married, and 39 (15.4%) were
divorced or separated. The mean depression severity at baseline
was 10.3 (SD 5.93), as measured by the HAM-D, and 9.94 (SD
4.41), as measured by the Patient Health Questionnaire-9. The
mean level of pain disability was 31.3 (SD 14.7), as measured
by the ODI, and the mean level of pain self-efficacy was 34.9
(SD 13.0), as measured by the PSEQ. Table 1 provides a detailed
summary of the demographic and clinical characteristics of the
participants.

On average, the participants completed 4.65 out of the 6 regular
and 3 optional modules (SD 3.48). The participants took an
average of 17.64 (SD 19.55) days to complete each module,
and the mean time on the web taken to complete a module was
80.26 (SD 136.96) minutes. The mean self-reported burden was
4.55 (SD 1.97), and the mean number of self-reported negative
events across the intervention was 0.80 (SD 1.33). Table 2 shows
that 45.1% (114/253) of the participants dropped out of the
intervention before completing at least six modules. The table
also shows that the number of participants completing the
modules decreased steadily as the intervention progressed.

J Med Internet Res 2022 | vol. 24 | iss. 8 | e38261 | p. 5https://www.jmir.org/2022/8/e38261
(page number not for citation purposes)

Moshe et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 1. Demographic and clinical characteristics of the participants (N=253).

ValueaVariable

Age (years)

51.1 (8.88)Mean (SD)

52 (24-78)Median (range)

Sex, n (%)

104 (41.1)Male

149 (58.9)Female

Education level, n (%)

171 (67.6)Low

45 (17.8)Medium

37 (14.6)High

Marital status, n (%)

34 (13.4)Single

180 (71.1)In a relationship (including married)

39 (15.4)Divorced or separated

Children, n (%)

200 (79.1)Yes

53 (20.9)No

Social support, n (%)

9 (3.6)None

67 (26.5)Low

81 (32)Sufficient

73 (28.9)High

23 (9.1)Very high

Internet affinity (IASb)

9.33 (4)Mean (SD)

8.5 (5-25)Median (range)

1 (0.4)Missing, n (%)

HAM-Dc

10.3 (5.93)Mean (SD)

9 (0-30)Median (range)

1 (0.4)Missing, n (%)

PHQ-9d

9.94 (4.41)Mean (SD)

10.0 (1-24)Median (range)

3 (1.2)Missing, n (%)

Pain disability (ODIe)

31.3 (14.7)Mean (SD)

30.0 (0-72)Median (range)

1 (0.4)Missing, n (%)

Pain self-efficacy (PSEQf)

34.9 (13)Mean (SD)
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ValueaVariable

36 (0-59)Median (range)

1 (0.4)Missing, n (%)

Dropout, n (%)

139 (54.9)No

114 (45.1)Yes

aValues are based on observed data.
bIAS: Internet Affinity Scale.
cHAM-D: Hamilton Depression Rating Scale.
dPHQ-9: Patient Health Questionnaire-9.
eODI: Oswestry Disability Index.
fPSEQ: Pain Self-Efficacy Questionnaire.

Table 2. Intervention usage data.

ValueVariable

4.65 (3.48)Modules completed, mean (SD)

Participants completing modules, n (%)

188 (74.31)Module 1

174 (68.77)Module 2

159 (62.85)Module 3

148 (58.5)Module 4

136 (53.75)Module 5

128 (50.59)Module 6

109 (43.08)Module 7

71 (28.06)Module 8

61 (24.11)Module 9

17.64 (19.55)Days to module completion, mean (SD)

80.26 (136.96)Time spent on the web completing module (minutes), mean (SD)

4.55 (1.97)Burden, mean (SD)

0.81 (1.33)Negative events, mean (SD)

114 (45.1)Dropout, n (%)

Predicting Dropout Using Participant Baseline
Characteristics
Table 3 displays the performance of the models used to predict
dropout based on the participant baseline characteristics. As the
Patient Health Questionnaire-9 and PSEQ scores were highly
correlated with HAM-D and ODI (r=0.63 and r=−0.73,
respectively) and were not significant in the bivariate analyses,
they were not included in the multivariate predictor models to
prevent collinearity. The results of the bivariate analysis
indicated that a lower level of education was significantly
associated with a higher risk of dropout (OR 2.43, 95% CI
1.19-4.97; P=.01, whereas higher age predicted a lower risk of
dropout (OR 0.97, 95% CI 0.94-0.99; P=.02). None of the other
potential predictors (sex, social support, internet affinity,
baseline depression severity, and baseline pain intensity) were
statistically significant at the level of P<.05 in the bivariate
analysis.

In the complete model, being single was found to be an
additional significant predictor of dropout (OR 2.54, 95% CI
1.09-5.90; P=.03). When age was added as a quadratic term

(age2) to the model to account for the nonlinear relationship
between age and dropout, we found that both age (OR 0.63,

95% CI 0.47-0.84; P<.001) and age2 (OR 1.55, 95% CI 1.17 to
–2.05; P<.001) were significant predictors, such that both lower
and higher age were associated with increased risk of dropout.

In the parsimonious model, where predictors were reduced
stepwise to relevant predictors only, low education (OR 3.33,
95% CI 1.51-7.32; P<.001) and age (OR 0.62, 95% CI

0.47-0.82; P<.001 and age2: OR 1.55, 95% CI 1.18-2.04;
P<.001) remained significant predictors of dropout. Marital
status, internet affinity, baseline depression severity, and
baseline pain intensity were found to be nonsignificant after
controlling for the other predictors.

J Med Internet Res 2022 | vol. 24 | iss. 8 | e38261 | p. 7https://www.jmir.org/2022/8/e38261
(page number not for citation purposes)

Moshe et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 3. Predictors of dropout from participant baseline characteristics.

Parsimonious modelaComplete modelaBivariate modelaPredictors

P valueOR (95% CI)P valueOR (95% CI)P valueORb (95% CI)

<.0010.62 (0.47-0.82)<.0010.63 (0.47-0.84).020.97 (0.94-0.99)Age

<.0011.55 (1.18-2.04)<.0011.55 (1.17-2.05)N/AN/AcAge2

N/AN/A.071.68 (0.96-2.94).071.60 (0.96-2.66)Sex (male)

Marital status

N/AN/A.032.54 (1.09-5.90).081.97 (0.93-4.20)Single vs in a relationship

N/AN/A.250.62 (0.27-1.42).110.54 (0.26-1.14)Divorced or widowed vs in a relationship

Education

<.0013.33 (1.51-7.32)<.0013.77 (1.68-8.49).012.43 (1.19-4.97)Low vs medium

.152.08 (0.78-5.57).162.08 (0.74-5.83).181.88 (0.75-4.71)High vs medium

Social support

N/AN/A.600.83 (0.41-1.69).550.83 (0.45-1.53)Low vs high

N/AN/A.131.64 (0.86-3.14).131.60 (0.88-2.90)Medium vs high

N/AN/A.581.02 (0.95-1.10).531.02 (0.96-1.09)IASd

N/AN/A.360.98 (0.93-1.03).670.99 (0.95-1.03)HAM-De

N/AN/A.691.00 (0.97-1.02).851.00 (0.98-1.02)Pain disability

N/AN/AN/AN/A.921.00 (0.98-1.02)Pain self-efficacy (PSEQf)

N/AN/AN/AN/A.240.97 (0.91-1.02)PHQ-9g

aModels based on imputed data.
bOR: odds ratio.
cN/A: Not applicable.
dIAS: Internet Affinity Scale.
eHAM-D: Hamilton Depression Rating Scale.
fPSEQ: Pain Self-Efficacy Questionnaire.
gPHQ-9: Patient Health Questionnaire-9.

Predicting Dropout Early on in the Intervention
Tables 4-6 provide a comparison of the models used to predict
dropout following the completion of the first module. In the
parsimonious model using only participant baseline
characteristics, higher and lower age (OR 0.57, 95% CI

0.41-0.79; P=.001 and age2: OR 1.68, 95% CI 1.22-2.31;
P=.001) and low education (OR 2.98, 95% CI 1.04-8.56; P=.04)
were significant predictors of dropout. The AUROC for the
model was 0.70, the sensitivity was 68%, and the specificity
was 62%.

In the parsimonious model using only intervention usage data,
a higher number of days to module completion predicted a
higher risk of dropout (OR 1.04, 95% CI 1.01-1.07; P=.005),
whereas a self-reported negative event in the previous week
was associated with a lower risk of dropout (OR 0.30, 95% CI
0.11-0.81; P=.02). The AUROC for the model was 0.61, the
sensitivity was 56%, and the specificity was 54%.

In the parsimonious model that combined participant baseline
characteristics and intervention usage variables as predictors,
higher and lower age (OR 0.60, 95% CI 0.42-0.85; P=.004 and

age2: OR 1.59, 95% CI 1.13-2.23; P=.008), medium versus high
social support (OR 3.03, 95% CI 1.25-7.33; P=.02), and a higher
number of days to module completion (OR 1.05, 95% CI
1.02-1.08; P=.002) all predicted a higher risk of dropout,
whereas a self-reported negative event in the previous week
was associated with a lower risk of dropout (OR 0.24, 95% CI
0.08-0.69; P=.008). The AUROC for the model was 0.72, the
sensitivity was 76%, and the specificity was 59%.

As shown in Table 7, a comparison of the parsimonious models
based on participant baseline characteristics and intervention
usage variables revealed that the model that combined baseline
and intervention usage variables was the most accurate in
predicting dropout (AIC=198.9; BIC=253.9) and significantly
more accurate than the model using participant baseline

characteristics only (AIC=212.6; BIC=254.7; χ²
181=5.3; P=.006).
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Table 4. Predictors of dropout following module 1 completion—participant baseline characteristics.

Parsimonious modelaComplete modelaBivariate modelaPredictors

P valueOR (95% CI)P valueOR (95% CI)P valueORb (95% CI)

.0010.57 (0.41-0.79).0060.61 (0.43-0.87).0480.96 (0.92-1.00)Age

.0011.68 (1.22-2.31).011.58 (1.12-2.24).120.97 (0.93-1.01)Age2

N/AN/Ac.411.37 (0.65-2.92).271.45 (0.75-2.82)Sex (male)

Marital status

N/AN/A.202.06 (0.67-6.27).241.79 (0.68-4.72)Single vs in a relationship

N/AN/A.991.01 (0.35-2.93).550.75 (0.30-1.90)Divorced or widowed vs in a relationship

Education

.042.98 (1.04-8.56).023.60 (1.19-10.88).112.17 (0.83-5.68)Low vs medium

.232.18 (0.60-7.85).401.77 (0.46-6.80).252.03 (0.61-6.75)High vs medium

Social support

N/AN/A.660.80 (0.29-2.22).690.84 (0.34-2.07)Low vs high

N/AN/A.052.32 (1.00-5.38).012.65 (1.22-5.80)Medium vs high

N/AN/A.721.02 (0.92-1.13).591.02 (0.94-1.11)IASd

N/AN/A.981.00 (0.94-1.07).790.99 (0.94-1.05)HAM-De

N/AN/A.280.98 (0.95-1.01).380.99 (0.97-1.01)Pain disability

N/AN/AN/AN/A.971.00 (0.97-1.02)Pain self-efficacy (PSEQf)

N/AN/AN/AN/A.410.97 (0.90-1.04)PHQ-9g

aModels based on imputed data.
bOR: odds ratio.
cN/A: not applicable.
dIAS: Internet Affinity Scale.
eHAM-D: Hamilton Depression Rating Scale.
fPSEQ: Pain Self-Efficacy Questionnaire.
gPHQ-9: Patient Health Questionnaire-9.

Table 5. Predictors of dropout following module 1 completion—intervention usage variables.

Parsimonious modelaComplete modelaBivariate modelaPredictors

P valueOR (95% CI)P valueOR (95% CI)P valueORb (95% CI)

.0051.04 (1.01-1.07).0051.04 (1.01-1.07).0071.04 (1.01-1.06)Number of days to module 1 completion

.020.30 (0.11-0.81).020.30 (0.11-0.81).030.34 (0.13-0.87)Negative events

N/AN/Ac.911.01 (0.85-1.19).830.98 (0.84-1.15)Burden

N/AN/A.941.00 (0.99-1.01).811.00 (0.99-1.01)Time spent on the web completing module 1

aModels based on imputed data.
bOR: odds ratio.
cN/A: not applicable.

J Med Internet Res 2022 | vol. 24 | iss. 8 | e38261 | p. 9https://www.jmir.org/2022/8/e38261
(page number not for citation purposes)

Moshe et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 6. Predictors of dropout following module 1 completion—baseline and intervention usage variables.

Parsimonious modelaComplete modelaPredictors

P valueOR (95% CI)P valueORb (95% CI)

.0040.60 (0.42-0.85).0030.54 (0.36-0.80)Age

.0081.59 (1.13-2.23).0051.76 (1.19-2.61)Age2

N/AN/Ac.331.53 (0.65-3.59)Sex (male)

Marital status

N/AN/A.311.88 (0.56-6.34)Single vs in a relationship

N/AN/A.751.21 (0.38-3.78)Divorced or widowed vs in a relationship

Education

N/AN/A.073.21 (0.91-11.33)Low vs medium

N/AN/A.841.17 (0.26-5.23)High vs medium

Social support

.880.92 (0.34-2.51).750.83 (0.27-2.56)Low vs high

.023.03 (1.25-7.33).013.40 (1.33-8.64)Medium vs high

N/AN/A.840.99 (0.88-1.11)IASd

N/AN/A.780.99 (0.92-1.06)HAM-De

N/AN/A.080.97 (0.94-1.00)Pain disability

.0021.05 (1.02-1.08).0041.05 (1.02-1.08)Number of days to module 1 completion

.0080.24 (0.08-0.69).0090.22 (0.07-0.68)Negative events

N/AN/A.710.96 (0.80-1.17)Burden

N/AN/A.281.01 (0.99-1.02)Time spent on the web completing module 1

aModels based on imputed data.
bOR: odds ratio.
cN/A: not applicable.
dIAS: Internet Affinity Scale.
eHAM-D: Hamilton Depression Rating Scale.

Table 7. Predictors of dropout following completion of module 1: model comparison (models based on imputed data).

Specificity (%)Sensitivity (%)AUROCcBICbAICaModel

62680.70254.7212.6Model 1: baseline variables

54560.61223.7207.5Model 2: intervention variables

59760.72253.9198.9Model 3: baseline+intervention variables

aAIC: Akaike information criterion.
bBIC: Bayesian information criterion.
cAUROC: area under the receiver operating characteristic curve.

Sensitivity Analyses
Sensitivity analyses assessing whether findings differed between
the treatment (WARD-BP) and prevention (PROD-BP) studies
found no significant difference between the two, either in terms
of main effect or interaction effects with other predictors.
Sensitivity analyses assessing whether findings differed when
using Cox proportional hazards regression versus logistic
regression found no difference in the significant predictors.
Multimedia Appendix 1 presents the results from the Cox

regression analyses. Sensitivity analyses assessing whether the
results differed between the models using observed data and
those using imputed data revealed no difference in the predictors
found to be significant. Results from the models using observed
data are presented in Multimedia Appendix 2.
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Discussion

Principal Findings
This study aimed to identify the predictors of treatment dropout
in a digital intervention for the treatment and prevention of
depression in patients with comorbid CBP. From the
participants’ baseline characteristics, we found that a lower
education level and lower and higher age (a quadratic effect)
predicted a higher risk of dropout. From the intervention usage
variables, we found that a higher number of days to module
completion predicted a higher risk of dropout, whereas the
occurrence of a negative event in the previous week predicted
a lower risk of dropout.

Participants with lower education levels were more likely to
drop out of treatment, which is consistent with a large body of
research on adherence to both digital interventions and
face-to-face psychotherapy [33,51,65-67]. This may reflect the
fact that these individuals find it harder to comprehend the
intervention material or the digital format, and thus, they lose
the motivation to continue [30,51]. It is worth noting that 67.5%
(171/253) of the participants in this study were classified as
having low levels of education. Lower levels of education have
also been associated with longer duration or higher occurrence
of back pain [68], underscoring the need for additional research
on digital interventions for this particular patient group. The
finding that both younger and older age predicted higher risk
of dropout suggests that the relationship between age and
dropout may be more complex than has been previously
identified, either owing to the nonlinear relationship between
the two or a possible interaction between age and other factors
such as computer literacy [33,69]. More pertinently, it points
to the challenges of predicting which individuals are likely to
drop out of a digital intervention based on baseline
characteristics alone [70]. Finally, the finding that neither pain
disability nor depression severity levels were associated with
an increased risk of dropout is important as it suggests that
digital interventions targeting comorbid depression are
acceptable for patients with varying levels of pain intensity and
depression symptom severity. This is further supported by the
fact that we found no significant difference in predictors when
the intervention was aimed at prevention and when it was aimed
at treatment. Taken together, these findings provide promising
evidence that digital interventions may provide a scalable
approach for integrating psychological treatment within pain
management routines in health care settings.

This study also demonstrated the feasibility of predicting
dropout early on in the intervention based on data restricted to
the first module and participant baseline characteristics. Our
finding that the number of days taken to complete the first
module significantly predicted dropout is consistent with the
study by Bremer et al [46] that identified the average number
of days taken to complete each module as one of the strongest
predictors of dropout in a digital intervention for insomnia. This
may reflect a number of underlying causes, including challenges
interacting with the intervention, low motivation, lack of time,
or low perceived value [40]. The finding that a self-reported
negative event in the previous week predicted a lower risk of

dropout may be because of the fact that experiencing a negative
event (or being asked to report on one) provided greater intrinsic
motivation to complete the module and is consistent with
research demonstrating that some people drop out from an
intervention because they no longer feel they need it [30,31,40].
However, it is worth highlighting that the CIs for the predictor
were wide, so the results should be interpreted with caution and
examined in future studies using larger sample sizes to determine
whether the findings replicate. Notwithstanding, this is the first
study to identify that a simple 1-item self-report questionnaire
may be used to aid the prediction of dropout during a digital
intervention, thus highlighting the potential of incorporating
such assessments within digital interventions in the future.
Interestingly, the relationship between participant education
level and dropout was no longer significant in the models that
combined baseline characteristics and intervention usage
variables (Table 6). This suggests that a patient’s education
level may be less important at predicting dropout when including
variables that reflect how the patient interacts with the
intervention, such as how long it takes them to complete a
specific module.

Indeed, a comparison of models using baseline characteristics
and intervention usage variables revealed that a model that
combined baseline characteristics and intervention usage data
generated the most accurate predictions and was significantly
more accurate than models based on baseline characteristics
only or intervention usage data only. Moreover, in terms of
clinical utility, the AUROC of 0.72 and sensitivity of 76%
exceeded the accuracy threshold of 65%-70%, at which
clinicians reportedly become willing to act on predictions [71].
Implemented within an intervention, dropout risk models such
as this could be used to alert supporting clinicians and health
care workers when an individual is at high risk of dropout, so
that they are able to intervene early and ideally prevent it.

Notwithstanding the above, there is still significant room for
improving model performance. In particular, the development
of models that are able to predict dropout before completion of
the first module would be especially valuable as a significant
proportion of individuals drop out before then [65,69].
Developing more accurate models will require intervention
developers to capture more granular data related to engagement
with the intervention, for example, the number and timing of
log-ins, interaction with specific components of the modules
(eg, homework; [72]), data specifically related to the
intervention target (eg, sleep data for an insomnia intervention;
[46]), and additional self-report data such as early measures of
therapeutic alliance with the coach [40,73]. Armed with
comprehensive intervention usage data such as this, researchers
will be better positioned to engineer both handcrafted
(theory-driven) and automated features and assess their impact
on predictive accuracy. Exploring the role of nonlinear machine
learning models in improving model performance is also an
area that holds potential, as has been demonstrated in several
studies comparing the classification performance of machine
learning algorithms with logistic regression in the prediction of
dropout [45,46].

Finally, as the findings of this study were specific to one
intervention, future research would also benefit from assessing
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whether the predictors found herein are valuable for predicting
dropout in other digital interventions, alternative disorders, and
different populations. If it is consistently found that there are a
set of variables such as “number of days to module completion”
that are associated with higher risk of dropout, these predictors
may then be used to inform the basis of models for other
interventions in the future. In the same way that outcome
feedback technology that identifies individuals at risk of
deterioration during treatment has been shown to improve
eventual treatment outcomes [43,44], dropout warning systems
could be used to alert the supporting clinician, guide care
pathways (eg, in stepped-care models), or personalize the
intervention itself in the case of self-help interventions. Given
the high dropout rates found in real-world settings [16], this
will become increasingly important as interventions are
implemented within public and private health care systems to
meet the growing demand for psychotherapy [47].

Strengths and Limitations
To the best of our knowledge, this is the first study to examine
the predictors of dropout in a digital intervention for depression
in individuals with a comorbid somatic illness. This is also the
first study to compare whether predictors of dropout differ when
the intervention is aimed at prevention (in a subclinical
population) versus treatment (in a clinically diagnosed
population) and using study samples with clinically verified
diagnoses at baseline. Finally, in contrast to most studies
conducted to date, which have been based on efficacy trials with
small sample sizes and convenient samples [33], this analysis
was based on data from 2 large-scale effectiveness trials. These
trials were conducted within routine health care settings, where
dropout rates are typically significantly higher [16], thereby
providing high ecological validity.

Despite these strengths, we acknowledge several limitations of
this study. First, the analyses were based on data specific to a
prevention and treatment version of one intervention and one
population, namely, individuals with depressive symptoms and
CBP. As such, the predictors we found to be significant and the
subsequent accuracy of the classification models may not
generalize to other interventions or other populations. For
example, dropout has been found to be significantly greater in
unguided interventions than in guided interventions, and the

mechanisms underlying dropout may differ between the two
[33,51]. Future research would, therefore, benefit from assessing
whether the predictors found to be significant in this study
generalize to other interventions, populations, and settings.
Second, as this was an exploratory study, we did not just adjust
for multiple testing as alpha adjustment may have increased the
likelihood of type II errors. Future research aimed at replicating
the current findings in studies that are sufficiently powered for
a confirmatory analysis would be valuable. Third, we had only
a limited set of data from the intervention available for analysis.
Several studies have demonstrated that a number of other
variables derived from intervention usage are valuable in the
prediction of both adherence and outcomes, including in-depth
measures of engagement such as the frequency of log-ins [45]
and interactions with specific content formats [72]. Accordingly,
there may be other variables with further explanatory power
that were not included in our models. The same applies to
baseline characteristics, where studies have shown that data
obtained from electronic medical records may be used to identify
those at risk of dropout during face-to-face therapy [74,75].
Finally, although dropout in this study was operationalized
according to the usage intended by the clinicians who developed
the intervention [76], it is important to highlight that it is not
always necessary for patients to complete the full per-protocol
treatment to benefit clinically [30]. In other words, dropout is
not always representative of a negative experience [31,40].

Conclusions
The high dropout rates associated with digital health
interventions remain one of the biggest challenges to their
successful implementation in real-world health care settings.
Being able to identify individuals at high risk of dropout early
on in treatment may provide clinicians and intervention
developers with a valuable opportunity to intervene early and
prevent dropout from occurring. Using a combined set of
predictors from patient baseline characteristics and intervention
usage data, we were able to identify individuals at risk of
dropout early on in a digital intervention for depression in
patients with comorbid CBP. Future research should explore
ways of improving model accuracy and investigate the feasibility
and efficacy of using these models directly within the
interventions themselves to improve adherence.
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ODI: Oswestry Disability Index
OR: odds ratio
PSEQ: Pain Self-Efficacy Questionnaire
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