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Abstract

Background: The widespread secondary use of electronic medical records (EMRs) promotes health care quality improvement.
Representation learning that can automatically extract hidden information from EMR data has gained increasing attention.

Objective: We aimed to propose a patient representation with more feature associations and task-specific feature importance
to improve the outcome prediction performance for inpatients with acute myocardial infarction (AMI).

Methods: Medical concepts, including patients’ age, gender, disease diagnoses, laboratory tests, structured radiological features,
procedures, and medications, were first embedded into real-value vectors using the improved skip-gram algorithm, where concepts
in the context windows were selected by feature association strengths measured by association rule confidence. Then, each patient
was represented as the sum of the feature embeddings weighted by the task-specific feature importance, which was applied to
facilitate predictive model prediction from global and local perspectives. We finally applied the proposed patient representation
into mortality risk prediction for 3010 and 1671 AMI inpatients from a public data set and a private data set, respectively, and
compared it with several reference representation methods in terms of the area under the receiver operating characteristic curve
(AUROC), area under the precision-recall curve (AUPRC), and F1-score.

Results: Compared with the reference methods, the proposed embedding-based representation showed consistently superior
predictive performance on the 2 data sets, achieving mean AUROCs of 0.878 and 0.973, AUPRCs of 0.220 and 0.505, and
F1-scores of 0.376 and 0.674 for the public and private data sets, respectively, while the greatest AUROCs, AUPRCs, and
F1-scores among the reference methods were 0.847 and 0.939, 0.196 and 0.283, and 0.344 and 0.361 for the public and private
data sets, respectively. Feature importance integrated in patient representation reflected features that were also critical in prediction
tasks and clinical practice.

Conclusions: The introduction of feature associations and feature importance facilitated an effective patient representation and
contributed to prediction performance improvement and model interpretation.

(J Med Internet Res 2022;24(8):e37486) doi: 10.2196/37486
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Introduction

Electronic medical records (EMRs) contain diverse and
heterogeneous information, such as demographic data, disease
diagnoses, laboratory tests, radiological findings, examinations
and procedures, and medications. EMR data can be used to not
only reflect the health status of patients and record the treatment
trajectory, but also help doctors in making clinical decisions
[1-6] and improving the efficiency of diagnosis and treatment
[1,7,8]. One of the most prevalent and practical tasks of the
secondary use of EMR data is building models to predict the
disease status [8-10] and treatment outcomes [11-17] for a
patient, using machine learning algorithms.

However, the high dimensionality, sparsity, and heterogeneity
of EMR data [12,18] pose many obstacles for directly inputting
the raw data into machine learning–based predictive models.
Some manual and data-driven feature engineering methods
[15,19], though time-consuming and laborious, were used to
select important features or extract useful information for
predictive tasks. Moreover, the performance of predictive
models relies heavily on the representation of data. It was
reported that effective representation methods could make the
downstream modeling simpler and more flexible, and greatly
improve the predictive performance [18,20]. By transforming
raw features into compact vectors, representation learning can
make it easier to automatically extract useful information when
building predictive models [16,21,22]. One widely used
representation method for EMR data is the skip-gram algorithm
[23], a distributed embedding method that treats patient records
as sentences and medical concepts as words. An inevitable
problem in the skip-gram algorithm is that contrary to words
within a sentence, medical concepts in a patient’s record do not
have a natural order, making it difficult to learn meaningful

representations of concepts that have potential associations.
One solution for this problem was randomly shuffling the
concepts within a record to learn concept embeddings
[12,24-26]. It could reduce the impact of the disorder attribute
of medical concepts on the algorithm to some degree, while
associations among these concepts were still not taken into
consideration.

Acute myocardial infarction (AMI) is an acute ischemic heart
disease and is the second leading cause of death. One in every
6 deaths is caused by ischemic heart disease, where AMI
accounts for the majority of deaths [27,28]. Mortality risk
prediction for AMI patients plays a crucial role in clinical work,
helping doctors identify potential clinical factors, take early
intervention measures based on timely alerts of patients’adverse
health statuses, and reduce the burdensome expenditure of
related health care expenses. Therefore, researchers [19,29-31]
have focused on building machine learning models for the
outcome prediction of AMI patients, and most of them used
specific clinical features, such as laboratory test results (eg,
albumin), comorbidities (eg, diabetes), and demographic data
(eg, gender).

In this study, we aimed to represent various structured features
extracted from EMR data as fixed-length embedding vectors,
which were then used to improve the performance of predictive
models for the death risk of AMI patients. Specifically, we
introduced the association strengths into the skip-gram algorithm
to learn more informative representations of features. We also
introduced the Shapley additive explanations (SHAP) [32]
technique to facilitate representation at the patient level and
enhance the interpretability of the predictive model. An
overview of our proposed representation learning framework
and its application is shown in Figure 1.

Figure 1. Overview of the proposed representation learning method for patients’ mortality risk prediction. First, feature representations were learned
by the skip-gram algorithm using an adaptive context window. Then, patient representations were constructed based on feature representations weighted
by the feature importance. Finally, the proposed patient representation was applied in the mortality risk prediction for acute myocardial infarction
in-patients from a public data set and a private data set, and compared with reference methods.

Methods

Skip-Gram–Based Patient Representation
The representation was learned hierarchically at the following
3 levels: the concept, feature, and patient levels. At the concept
level, we employed the improved skip-gram algorithm [23] to
represent a concept as an embedding vector. In the natural
language processing domain, the basic idea of skip-gram was

to maximize the occurrence probabilities of the target words
and the context words in the predefined context window, making
the words that appear in the same context window closer in the
embedding space. Unlike words with natural orders in a
sentence, medical concepts appeared out of order in a patient
record for a certain hospital stay. This made it difficult to
determine the context window that contained relevant concepts
for the target concept, especially when the number of concepts
in a record was far larger than the size of the context window.
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Thus, for a concept within a record, we identified relevant
concepts using its association strength with a candidate concept
in the same record. The association strength was defined as the
confidence (equation 1) of an association rule with one candidate
concept as the unique antecedent (or consequent).

Confidence (C1, C2) = |C1∩C2| / |C1| (1)

where C1 and C2 are the antecedent and consequent concepts,
respectively, of an association rule C1→C2, and |C1| and

|C1∩C2| are the numbers of patient records containing C1 and
both C1 and C2, respectively. The greater the confidence, the
stronger the association between the 2 concepts. Antecedent (or
consequent) concepts in association rules with the top N highest
confidences were included in the context window of the target
concept. We called these selection schemes of context concepts
antecedent-based (or consequent-based) embeddings. Figure 2
provides an example of the consequent-based selection scheme
of context concepts.

Figure 2. An illustration of context concept selection for the skip-gram algorithm using association strengths. All records are composed of 10 concepts
(C1, C2, ……, and C10). In the confidence matrix, element Cij was the confidence of the association rule with Cj as antecedent and Ci as consequent.
For patient 1 with 6 concepts (C1, C3, C6, C7, C8, and C10), the included concepts in C1’s 4-concept context window were selected from the remining
5 candidate concepts, whose confidences were 0.66 (antecedent, C10), 0.62 (C3), 0.55 (C6), 0.53 (C8), and 0.46 (C7). Therefore, C10, C3, C6, and C8
were selected to construct the context window for C1.

Moreover, to reduce the high dimensionality and sparsity of a
large number of concepts, while preserving the clinical
information as much as possible, we aggregated the concepts
of disease diagnoses and procedures into several clinically
meaningful feature groups according to International
Classification of Diseases, 10th revision (ICD-10) codes and
International Classification of Diseases, 9th revision (ICD-9)
codes, and with the help of clinical experts. For example, disease
diagnoses of type 1 diabetes mellitus and type 2 diabetes
mellitus were grouped into the feature group of diabetes
mellitus. The average of all embedding vectors of concepts from
the same feature group in a patient record was treated as the
representation at the feature level for the patient.

The representation at the patient level was the weighted sum of
feature-level representations. The feature weights were obtained
under the guidance of the predictive task, indicating the
importance of each feature involved in the patient representation.
In this study, we used SHAP values as the feature weights. The
SHAP framework is a machine learning interpretation technique
based on the idea of game theory. It approximated a trained
prediction model with a different but simple model that could
easily calculate the contribution in the form of a SHAP value
for each feature in the prediction model and performed additive

feature attribution to explain the combination of features [32].
A positive or negative SHAP value reflected a positive or
negative influence on the prediction. A feature’s importance
was then computed as the average of its absolute SHAP values
from all samples.

Experiments and Evaluations

Data Sets and Data Preprocessing
In this study, we used a public data set, the freely accessible
critical care database Medical Information Mart for Intensive
Care III (MIMIC-III data set [33]), and a private data set for the
experiments.

The MIMIC-III data set was collected between June 2001 and
October 2012, and involved 46,520 patients admitted to
intensive care units at the Beth Israel Deaconess Medical Center
in Boston, Massachusetts. It includes patient health information,
such as demographics, vital signs, laboratory test results,
medications, procedures, diagnosis codes, and clinical notes.
The informative MIMIC-III data set was widely used in some
medical machine learning modeling and algorithm evaluations,
providing strong data support for researchers to establish models
and evaluate algorithms [14,18].
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The private data set was derived from the EMR system of a
tertiary hospital, Xuanwu Hospital, Capital Medical University,
Beijing, China, between January 2014 and December 2016.
Patient features included hospital admission and discharge
information, demographic data, disease diagnoses, laboratory
tests, examinations and procedures, medications, and radiology
reports of chest X-ray or color sonography examination.

We extracted the records of all 3010 and 1671 AMI patients
from the public and private data sets, respectively. The diagnosis
of AMI was confirmed with the ICD-9 codes 410.01 to 410.91
or ICD-10 codes I21 and I22. There were 254 (8.1%) and 103
(6.2%) patients who died in the hospital from the public and
private data sets, respectively.

We maintained patients’ first hospitalization data to evaluate
the proposed method. Demographic data (age and gender) and
the following AMI-related features were maintained in both
data sets: AMI-relevant items of laboratory tests that at least
95% of patients carried out, AMI-relevant radiological features
extracted from radiology reports [34], 7 commonly prescribed
medications, and all recorded disease diagnoses and procedures.
For laboratory tests performed more than once, only the results

obtained in the first test (usually at admission) were retained,
which could reflect a patient’s health status and the severity of
illness.

Since initially proposed in the field of natural language
processing, the skip-gram algorithm was used to train
embeddings for discrete words or symbols. Therefore, to use
the skip-gram algorithm for the embedding representation of
the structured data, all patient features should be categorical,
where each discrete value is treated as a concept. For example,
male and female were 2 concepts for gender. Different from
raw categorical features, such as gender, disease diagnoses,
procedures, and medications, that might remain unchanged, the
continuous variables age and laboratory test results had to be
discretized into two or more concepts. Age was discretized into
2 concepts (>60 years and ≤60 years). Each laboratory test result
was also discretized into 2 concepts (normal and abnormal with
reference to clinical standards). In total, 3326 and 1073 medical
concepts were identified and further aggregated to 104 and 108
feature groups in the public and private data sets, respectively
(Table 1). All feature groups of the private and public data sets
are listed in Multimedia Appendix 1 and Multimedia Appendix
2, respectively.

Table 1. Concepts and feature groups of both the public and private data sets.

Concept examplesPrivate data setPublic data setFeature category

Concepts
(n=1073), n

Feature groups
(n=108), n

Concepts
(n=3326), n

Feature groups
(n=104), n

>60 years and ≤60 years2121Age

Male and female2121Gender

Abnormal serum triglyceride and normal serum creati-
nine

80403819Laboratory tests

Cardiac image enlargement and sharp costophrenic angle36363434Radiological features

Hypertension and brainstem infarction73915260024Disease diagnoses

Coronary stenting and pericardiocentesis207864318Procedures

Angiotensin-converting enzyme inhibitor and heparin7777Medications

Representation Evaluation
To evaluate the effectiveness and advantages of the proposed
representation, we used 2 additional kinds of simple reference
representation methods, namely, the 3-layer autoencoder with
learning and the feature selection method without learning.
Table 2 describes the details of the proposed and reference
representation methods.

The proposed representation method was first evaluated at the
concept level. Cluster analyses were used to cluster laboratory
test concepts into 2 clusters for the quantitative evaluation. The
adjusted Rand index (ARI) [35] (ranging from −1 to 1) was
used to evaluate the cluster solutions. Greater ARI values
indicated higher ability of discriminating from categories with
different real labels (normal and abnormal). We also applied
the t-distributed stochastic neighbor algorithm to project the

embedding vectors of laboratory test concepts into a
2-dimensional space to visually observe the distribution of
embeddings.

The proposed representation method was then evaluated at the
patient level with a downstream prediction task using the logistic
regression model. The predicted outcome was the in-hospital
death of AMI patients during hospital stay. The input for
prediction was the patient representation derived from the entire
feature set listed in Table 1. We also extracted a treatment-free
feature subset that excluded medications and procedures from
the entire feature set, trying to clarify that the performance of
the proposed patient representation was related to the features
that were involved in the representation and that the
treatment-related features played a crucial role in predicting
patient outcome even if they had been represented as embedding
vectors.
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Table 2. Descriptions of the proposed and reference representation methods.

Representation examplesDescriptionsRepresentation
method

(0,1,1,0,0,0,1,12,8.5,3,8) for a patient with
11 features

The mixture of discretization codes for original discrete features and original
values for continuous features. The missing values in the laboratory tests were
interpolated using the mean of the corresponding laboratory tests.

Mixture

(0,1,1,0,0,0,1,1,0,1,1) for a patient with 11
discretization features

The 0-1 vector where the digit 1 represented the patient having the specific dis-
ease, procedure, radiological feature, and medication, and 0 otherwise. Age of
1 meant >60 years and 0 meant ≤60 years, gender of 1 meant male and 0 meant
female, and a laboratory test item of 1 meant abnormal and 0 meant normal.
Missing values for laboratory tests were interpolated by the corresponding mode.

Discretization

(0,0,1,0,0,1,0,1) for a patient with 8 selected
features

The selected features with discretization representations were statistically differ-
ent between patients with and without the label “death.”

DIS_FSa

(0.7,1.9,0.5,−1,−3.1,2.4) for a patient with
a 6-dimensional vector

The hidden-layer vector of a 3-layer autoencoder with discretization vectors as
inputs and outputs. The dimension of the hidden layer was set to 64.

DIS_AEb

(1.6,−0.5,1.1,0.1,−1.3,0.6) for a patient with
a 6-dimensional embedding vector

The average of feature embedding vectors learned from the skip-gram algorithm
using the random selection method to determine the context window.

RAN_EM_AVEc

(1.2,−0.9,1.3,0.4,−1.9,1.0) for a patient with
a 6-dimensional embedding vector

The weighted sum of the feature embedding vectors learned from the skip-gram
algorithm using the random selection method to determine the context window.

RAN_EM_WGTd

(0.9,−0.6,1.2,1.4,−1.9,0.6) for a patient with
a 6-dimensional embedding vector

The average of the feature embedding vectors learned from the skip-gram algo-
rithm using the confidence with the target concept as the antecedent.

ANT_EM_AVEe

(1.2,−1.5,1.1,0.1,−0.6,0.6) for a patient with
a 6-dimensional embedding vector

The weighted sum of the feature embedding vectors learned from the skip-gram
algorithm using the confidence with the target concept as the antecedent.

ANT_EM_WGTf

(1.6,−0.8,2.1,1.6,−1.4,1.5) for a patient with
a 6-dimensional embedding vector

The average of the feature embedding vectors learned from the skip-gram algo-
rithm using the confidence with the target concept as the consequent.

CON_EM_AVEg

(1.1,−0.4,−0.7,1.6,−0.3,0.9) for a patient
with a 6-dimensional embedding vector

The weighted sum of the feature embedding vectors learned from the skip-gram
algorithm using the confidence with the target concept as the consequent.

CON_EM_WGTh

aDIS_FS: discretization representations with feature selection.
bDIS_AE: hidden vector of an autoencoder-based representation.
cRAN_EM_AVE: average of the random selection–based embedding representation.
dRAN_EM_WGT: weighted sum of the random selection–based embedding representation.
eANT_EM_AVE: average of the antecedent-based embedding representation.
fANT_EM_WGT: weighted sum of the antecedent-based embedding representation.
gCON_EM_AVE: average of the consequent-based embedding representation.
hCON_EM_WGT: weighted sum of the consequent-based embedding representation.

We randomly split samples into training and test data sets by
the ratio of 7:3. The training samples were first represented in
the discretization vectors and used to build a predictive model
for calculating all features’ SHAP values for the further patient
embedding representations of all study samples. After being
represented as embedding vectors, the training and test samples
were used to build and validate a logistic regression-based
predictive model, respectively. The area under the receiver
operating characteristic curve (AUROC), area under the
precision-recall curve (AUPRC), and F1-score were the main
evaluation metrics. Other relevant performance metrics from
the confusion matrix included precision, recall, and accuracy.
To eliminate the performance bias introduced by the
initialization of a skip-gram model and the training/test data set
split, we performed the comparative experiment 100 times. In
each experiment round, the above processes were repeated. The
mean with its 95% CI of each performance evaluation metric
was reported.

In the skip-gram algorithm, the size of the context window and
the dimension of the embedding vector were determined by trial

and error. We conducted a group of predictive experiments on
the public data set, using possible combinations of window sizes
of 5, 10, 15, and 20, and vector dimensions of 50, 100, 200, and
300. Experimental results (listed in Multimedia Appendix 3)
showed that the skip-gram algorithm with the combination of
a window size of 10 and a vector dimension of 300 had the
highest representation performance. Therefore, the size of the
context window and the dimension of the embedding vector
were set to 10 and 300, respectively. We applied the negative
sampling mechanism (20 negative samples in this study) to
accelerate the concept embedding training process. Other
parameters were as follows: learning rate, 0.001; number of
iterations, 50; batch size, 64. The gradient calculation method
was Adam. We implemented representation learning, SHAP
value computation, and prediction modeling in Python 3.7 and
TensorFlow 2.0. In the step of patient representation, we used
the L2 regularization penalty with “liblinear” solver for the
logistic regression model, and the inverse of regularization
strength was set to 0.1.
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Ethics Approval
The study was approved by the Human Research Ethics
Committees of Xuanwu Hospital, Capital Medical University
(approval number: Clinical Scientific Research 2020-070).

Results

Concept Representation Evaluation
Embedding vectors for laboratory test concepts were visualized
in a plane space (Figure 3). Concepts of normal and abnormal
laboratory tests (Figure 3) were farther away when they were

represented by the consequent-based embeddings (Figures 3A
and 3D) than by the antecedent-based embeddings (Figures 3B
and 3E) and the random selection–based embeddings (Figures
3C and 3F). In cluster analyses for laboratory tests, the
consequent-based embeddings achieved higher ARIs (0.317
and 0.520 on the public and private data sets, respectively) than
the antecedent-based embeddings (0.112 and 0.149, respectively)
and the random selection–based embeddings (0.043 and 0.028,
respectively). The best cluster performance of the
consequent-based embeddings among the 3 embeddings
indicated that the consequent-based embeddings might contain
more feature association information.

Figure 3. Visualization of the embedding laboratory tests using different selection schemes for contextual concepts in the skip-gram algorithm (the
t-distributed stochastic neighbor embedding algorithm was used). Dots in red and green represent abnormal and normal laboratory test results, respectively.
A to C for the public data set: the contextual concepts of a target concept consist of its consequent concepts (A) or antecedent concepts (B) in association
rules, or randomly selected concepts (C). D to F are the counterparts of A to C on the private data set.

Predictive Performance
Table 3 and Multimedia Appendix 4 list the predictive
performances using various representation methods on the
private and public data sets, respectively. The proposed
representation method, the weighted sum of the
consequent-based embedding representation (CON_EM_WGT),
showed the highest predictive performances, with maximum
AUROCs of 0.878, 0.973, and 0.926 using all features of the
public data set and the entire and treatment-free feature sets of
the private data set, respectively. When the performance was
measured by AUPRC and F1-score, the proposed representation
method outperformed all the other methods regardless of the
data sets and feature sets.

Compared with the reference representations, most of the
embedding-based representations on both data sets showed a
performance improvement. The average AUROC, AUPRC, and
F1-score of the 6 representation methods with embeddings were
greater than those of the 4 reference methods without
embeddings (0.855 vs 0.831, 0.203 vs 0.185, and 0.354 vs 0.328,
respectively) on the public data set with the entire feature set.
Further, among the 6 representations based on the skip-gram
algorithm, representations with algorithm improvement based
on the association strength achieved superior performance than
those without.

When assembling feature representations into a patient
representation, the assembling method and the involved features
did matter. Representations based on the idea of weighted sum
outperformed those based on the idea of average, on either the
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public data set with the entire feature set (AUROC, 0.863 to
0.878 vs 0.834 to 0.850) or the private data set with the entire
feature set (0.967 to 0.973 vs 0.948 to 0.957). On the other hand,
consistently superior predictive performance was achieved on
both data sets with the entire feature set compared with the

treatment-free feature set. Multimedia Appendix 5 shows the
average predictive performance of patient representation
methods on the public and private data sets with and without
treatment feature sets.

Table 3. Predictive performance of patient representation methods on the private data set.

F1-score, mean (95% CI)AUPRCb, mean (95% CI)AUROCa, mean (95% CI)Feature set and representation methods

Entire feature set

Embedding-based representation methods

0.674 (0.468-0.880)0.505 (0.278-0.732)0.973 (0.951-0.995)CON_EM_WGTc

0.479 (0.301-0.657)0.312 (0.159-0.465)0.957 (0.933-0.981)CON_EM_AVEd

0.658 (0.442-0.874)0.489 (0.258-0.720)0.972 (0.948-0.996)ANT_EM_WGTe

0.478 (0.329-0.627)0.310 (0.185-0.435)0.953 (0.929-0.977)ANT_EM_AVEf

0.660 (0.460-0.860)0.486 (0.263-0.709)0.967 (0.942-0.992)RAN_EM_WGTg

0.451 (0.306-0.596)0.287 (0.167-0.407)0.948 (0.923-0.973)RAN_EM_AVEh

Reference representation methods

0.361 (0.279-0.443)0.207 (0.144-0.270)0.884 (0.845-0.923)DIS_AEi

0.452 (0.309-0.595)0.283 (0.167-0.399)0.938 (0.907-0.969)DIS_FSj

0.454 (0.307-0.601)0.283 (0.165-0.401)0.939 (0.908-0.970)Discretization

0.417 (0.264-0.570)0.251 (0.135-0.367)0.904 (0.849-0.959)Mixture

Treatment-free feature set

Embedding-based representation methods

0.456 (0.282-0.630)0.282 (0.139-0.425)0.926 (0.883-0.969)CON_EM_WGT

0.413 (0.297-0.529)0.248 (0.156-0.340)0.915 (0.876-0.954)CON_EM_AVE

0.455 (0.275-0.635)0.278 (0.133-0.423)0.919 (0.874-0.964)ANT_EM_WGT

0.423 (0.307-0.539)0.256 (0.162-0.350)0.912 (0.869-0.955)ANT_EM_AVE

0.416 (0.238-0.594)0.248 (0.119-0.377)0.915 (0.868-0.962)RAN_EM_WGT

0.385 (0.265-0.505)0.225 (0.133-0.317)0.897 (0.850-0.944)RAN_EM_AVE

Reference representation methods

0.361 (0.279-0.443)0.207 (0.144-0.270)0.884 (0.845-0.923)DIS_AE

0.367 (0.236-0.498)0.214 (0.124-0.304)0.903 (0.862-0.944)DIS_FS

0.381 (0.238-0.524)0.224 (0.122-0.326)0.905 (0.862-0.948)Discretization

0.356 (0.227-0.485)0.202 (0.116-0.288)0.867 (0.806-0.928)Mixture

aAUROC: area under the receiver operating characteristic curve.
bAUPRC: area under the precision-recall curve.
cCON_EM_WGT: weighted sum of the consequent-based embedding representation.
dCON_EM_AVE: average of the consequent-based embedding representation.
eANT_EM_WGT: weighted sum of the antecedent-based embedding representation.
fANT_EM_AVE: average of the antecedent-based embedding representation.
gRAN_EM_WGT: weighted sum of the random selection–based embedding representation.
hRAN_EM_AVE: average of the random selection–based embedding representation.
iDIS_AE: discretization representations with features selection.
jDIS_FS: hidden vector of an autoencoder-based representation.

J Med Internet Res 2022 | vol. 24 | iss. 8 | e37486 | p. 7https://www.jmir.org/2022/8/e37486
(page number not for citation purposes)

Huang et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Predictive Model Interpretation
Figure 4 illustrates the global feature attributions for the top 20
most important features from the private data set when
predicting in-hospital death risk. The treatment-related features
played an important role in the mortality prediction. These
features included other surgery (mean absolute SHAP value:
0.413), diagnostic ultrasound (0.279), contrast agent
cardiovascular angiography (0.197), etc (Figure 4A). Moreover,
comorbidity diseases like hypertension (mean absolute SHAP
value: 0.252) and heart disease complications (0.236), and
laboratory tests like serum glucose (0.188) and serum lactate
dehydrogenase (0.139) had strong associations with in-hospital
death (Figure 4B). SHAP values of features in the public data
set are shown in Multimedia Appendix 6.

In addition to the feature’s global importance in the specific
predictive task, SHAP values were helpful in distinguishing the

feature’s local importance, that is, the importance for an
individual sample. Figure 5 illustrates how the mortality risk
was predicted with SHAP values for a patient who died during
hospital stay and another patient who did not die. The positive
SHAP values of most features of the patient who died during
hospital stay increased the total SHAP value from an average
value of −3.739 to a final value of −0.499 (Figures 5A and 5C),
meaning that the patient had a higher risk of in-hospital death
than the average. In this incremental process, gender as female,
for example, contributed a SHAP value of +0.21 (Figures 5C).
On the contrary, the negative SHAP values of most features of
the patient who was discharged alive decreased the total SHAP
value from −3.739 to −6.169 (Figures 5B and 5D), indicating
a lower death risk. In this decremental process, male gender
contributed a SHAP value of −0.09 (Figures 5D). We have
shown 2 examples of patients from the public data set in
Multimedia Appendix 7.

Figure 4. The mean absolute Shapley additive explanations (SHAP) values of the top 20 features of the private data set within the entire feature set
(A) and the treatment-free feature set (B).
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Figure 5. Shapley additive explanations (SHAP) values for a patient who died during hospital stay (A and C) and another patient who did not die (B
and D). Both patients were selected from the private data set with the entire feature set. A and B, all features with their SHAP values. C and D, 20
features with the greatest absolute SHAP values. Features in blue tend to reduce the possibility of a patient being classified as positive (death in this
study), while features in red do the contrary. The meaning of each abbreviated feature name can be found in Multimedia Appendix 1.

Discussion

Principal Findings
With the widespread adoption of EMR data in building machine
learning–based predictive models, one of the most fundamental
research challenges was learning proper patient representations
that might capture hidden semantic associations among medical
concepts [18]. In this study, we proposed an improved

skip-gram–based patient representation method where the
association strength among medical concepts and the
task-specific feature importance were integrated. Compared
with other representation methods, the proposed patient
representation improved the performance of the mortality risk
prediction for AMI patients.

In previous studies, deep learning models [9,10,12,25,36] were
used in training embedding representations of medical concepts
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for the subsequent patient representation. When using the
skip-gram algorithm, the order of medical concepts that was
independent of feature relevance hindered the algorithm from
learning high-quality representation. Prior work recommended
the shuffling mechanism for medical concepts in a patient record
to reduce the impact of the out-of-order characteristics on the
algorithm [12,24-26]. In this study, we introduced the
association strength between 2 concepts that was defined as the
confidence of an association rule involving just the 2 concepts.
Experiments from various aspects indicated that this ingenious
improvement was effective in revealing potential associations
among medical concepts and further enhancing the performance
of downstream prediction tasks.

In addition to the representation algorithm, features used to
represent a patient were also critical. Many previous studies
focused on some features in the original form of medical codes,
such as disease diagnoses, procedures, and medications
[1,11,14,37]. For laboratory tests that contained much diagnosis
and prognosis-relevant information about patients, we included
the normal status of the laboratory tests into the feature sets,
rather than simply using the number of laboratory tests and test
co-occurrences [12,38]. We further extracted radiological
features from free-text radiological reports. Admittedly, richer
features may lead to a feature representation with more
information, even if the dimension of patient representation
remains unchanged. In this study, predictive models using more
features to represent a patient did reflect more information about
the patient and showed higher performance than those using
fewer features. Our finding is similar to the results of other
studies [39,40].

Prior studies employed neural networks to train predictive
models for clinical outcomes using EMR data [2,16,22]. They
focused on end-to-end prediction models built on large data
sets, where the last hidden layer of the neural network was
regarded as the patient representation. Although the deep
end-to-end neural network–based patient representation
improved the predictive accuracy, the lack of interpretability
could not be ignored. Some studies [26,41] constructed patient
representations using the average of concept representations
learned by word embedding methods, which did not make full
use of the importance of different clinical features for patients.
As an advanced interpretability method, the SHAP value [32]
was successfully used to analyze and explain the predictive
models in some previous studies [40,42-44]. We introduced
SHAP values as feature importance into the patient
representation, and further explained the predictive model with
SHAP values. SHAP values can be used to not only rank the
overall importance and identify the important factors for the
prediction task, but also explore the key factors for predicting
the mortality risk for a specific patient. In our predictive task
for AMI patients, the most important features identified by
SHAP values were really closely related to AMI [45-47], such
as serum glucose and serum creatine kinase, which are 2 critical
laboratory tests for AMI diagnosis and prognosis in clinical
practice.

In our predictive task, the model that took all available patient
characteristics represented by the proposed patient representation

method as inputs showed a higher performance than other
models on the same task in previous studies (AUROC, 0.973
vs 0.905 to 0.935 [19,29-31,48]). This may be because the
embedding representation contained a large number of diverse
features extracted from a general EMR system, while many
researchers selected AMI-related features with the assistance
of clinical experts. For example, basic demographic data and
few laboratory tests, as well as several specific features of AMI
like Killip classification and left ventricular ejection fraction
[19,30] were directly added into the machine learning model to
predict mortality risk. Further, compared with other simple
feature extraction methods like Principal Component Analysis
[29] and the 3-layer autoencoder model, the proposed method
took the association strength and feature importance into
consideration, achieving higher predictive performance.

Limitations
This study had some limitations. First, only patients’ laboratory
tests for the first time during hospital stay were included in this
study, while many patients took two or more laboratory tests.
Since temporal data, especially multiple laboratory tests, may
reflect the dynamic health status and the treatment effect of a
patient over time, the lack of temporal characteristics of
laboratory tests in the patient representation may lead to
performance loss in downstream tasks. A future study will focus
on integrating this uneven and irregular temporal data into the
current patient representation. Second, the skip-gram algorithm
was used in training concept embeddings. The algorithm is
popular in the natural language processing domain, possibly
having a limited ability to represent structured and disordered
EMR data. A transformer-based pretrain model, Med-Bert, has
been trained to represent disease diagnoses originally expressed
in ICD-10 and ICD-9 codes, showing higher performance with
AUROCs of 85.39% and 82.23% in heart failure and pancreatic
cancer prediction tasks, respectively [49]. Therefore, more
complicated deep learning methods will be adopted for a more
informative patient representation in the future. Lastly, we
carried out only internal validation of the predictive model built
on the proposed patient representation. External validation of
high quality will be more convincing and will help in continuous
algorithm improvement. Moreover, the chosen reference
methods for the performance comparison were simple feature
selection methods and a 3-layer autoencoder. Comparison with
state-of-the-art methods is needed to evaluate the performance
and potential use of our proposed method.

Conclusions
In this study, we improved the embedding-based patient
representation with the association strength of medical concepts
and importance of patient features. After further training and
fine-tuning, the model based on the proposed patient
representation will hopefully be used to assist in prognostic
prediction for AMI inpatients. This study puts forward a
meaningful direction for the development of more effective and
efficient clinical prediction models using EMR data. It is
desirable for patient representation learning to serve as an
essential part of building a predictive model for clinical
outcomes.
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