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Abstract

Background: Prevalence of diabetes has steadily increased over the last few decades with 1.5 million deaths reported in 2012
alone. Traditionally, analyzing patients with diabetes has remained a largely invasive approach. Wearable devices (WDs) make
use of sensors historically reserved for hospital settings. WDs coupled with artificial intelligence (AI) algorithms show promise
to help understand and conclude meaningful information from the gathered data and provide advanced and clinically meaningful
analytics.

Objective: This review aimed to provide an overview of AI-driven WD features for diabetes and their use in monitoring
diabetes-related parameters.

Methods: We searched 7 of the most popular bibliographic databases using 3 groups of search terms related to diabetes, WDs,
and AI. A 2-stage process was followed for study selection: reading abstracts and titles followed by full-text screening. Two
reviewers independently performed study selection and data extraction, and disagreements were resolved by consensus. A narrative
approach was used to synthesize the data.

Results: From an initial 3872 studies, we report the features from 37 studies post filtering according to our predefined inclusion
criteria. Most of the studies targeted type 1 diabetes, type 2 diabetes, or both (21/37, 57%). Many studies (15/37, 41%) reported
blood glucose as their main measurement. More than half of the studies (21/37, 57%) had the aim of estimation and prediction
of glucose or glucose level monitoring. Over half of the reviewed studies looked at wrist-worn devices. Only 41% of the study
devices were commercially available. We observed the use of multiple sensors with photoplethysmography sensors being most
prevalent in 32% (12/37) of studies. Studies reported and compared >1 machine learning (ML) model with high levels of accuracy.
Support vector machine was the most reported (13/37, 35%), followed by random forest (12/37, 32%).

Conclusions: This review is the most extensive work, to date, summarizing WDs that use ML for people with diabetes, and
provides research direction to those wanting to further contribute to this emerging field. Given the advancements in WD technologies
replacing the need for invasive hospital setting devices, we see great advancement potential in this domain. Further work is needed
to validate the ML approaches on clinical data from WDs and provide meaningful analytics that could serve as data gathering,
monitoring, prediction, classification, and recommendation devices in the context of diabetes.

(J Med Internet Res 2022;24(8):e36010) doi: 10.2196/36010
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Introduction

Background
Diabetes, also known as diabetes mellitus, is a metabolic disease
characterized by elevated blood glucose levels, which can
ultimately result in many complications such as heart attack,
stroke, kidney failure, leg amputation, vision loss, and nerve
damage [1]. As the world embarks on a centennial anniversary
since the development of insulin to manage glucose levels of
people with diabetes, we have seen remarkable advances during
these 100 years, with improved life expectancy and quality of
life [2]. Noncommunicable diseases such as metabolic syndrome
and diabetes continue to be among the leading causes of
disability and mortality [3]. The number of cases and their
prevalence have steadily increased over the last few decades.
According to the World Health Organization, 1.5 million people
died in 2012 alone because of diabetes, with an additional 2.1
million deaths caused by a higher than optimal blood glucose
level, resulting in increased risks of cardiovascular and other
diseases. A total of 463 million people, globally, were affected
by type 2 diabetes (T2D) mellitus in 2019. Furthermore, it is
predicted that 700 million individuals would develop diabetes
by 2045 [4]. Although the World Health Organization
acknowledges that there is no one fixed solution and that a
coordinated multicomponent intervention is needed, it outlines
technology as one of the key stakeholders in reducing the impact
of diabetes in addition to input from governments, health care
providers, people with diabetes, civil society, food producers
and manufacturers, and suppliers of medicine [1].

Despite the advancements in blood glucose monitoring
techniques, the mainstream detection technology remains largely
invasive. The commonly used home electronic glucometers
involve people with diabetes invasively self-pricking to draw
blood from fingertips, opening them up to infections as well as
stress and pain caused by the procedure that is often expected
multiple times a day.

The availability and advancements of smart devices, such as
smartphones, have made the monitoring of diabetes-related
features more accessible. Many studies have examined this
much welcomed technology [5,6]. These normally require the
use of an external attachable sensor, and monitoring is then
delivered via an app or a separate continuous glucose monitoring
(CGM) device, which can still be semi-invasive and require a
connection range via Bluetooth or Wi-Fi signals. The use of
completely noninvasive technology in the form of wearable
devices (WDs) for regulating and monitoring glucose levels for
people with diabetes is a fairly new concept and is in its infancy.
Commercially available devices, such as smart watches and
smart bands, can take measurements using sensors that
researchers have reported on their usefulness in diabetes
monitoring [7,8]. Such technologies can be affordable and easily
accessible, and when used properly, can improve the quality of
life of patients in a noninvasive manner. With their widespread
commercial use and acceptance owing to their fashionable
nature, globally researchers have a unique opportunity to provide
medical care away from hospital settings and bulky invasive
hardware in an affordable manner without requiring expert

assistance. WDs have an increasing capacity, although not at
the level of smartphones, to gather, store, transmit, and process
data; the features can then be used for management, treatment,
assessment, and sometimes even prediction. Furthermore, many
WDs are normally connected via Wi-Fi or Bluetooth to external
devices, such as a smartphone, where computationally expensive
processing is performed for the simple purpose of storage or as
a gateway to cloud spaces. Cloud storage can facilitate
monitoring by clinicians without the need of hospitalization.
Several useful sensors already exist incorporated into WDs
similar to those of smartphones, including electrocardiogram
(ECG), photoplethysmography, galvanic skin response, near
infrared, and accelerometer sensors. WDs have additional
advantages when it comes to sensing physiological signs, such
as heart rate, ECG, and skin temperature. This is largely owing
to their close contact with the wearer, which is of particular
interest when monitoring diabetes-related metrics.

Artificial intelligence (AI) is a broader term that encompasses
machine learning (ML). Technically, ML is a subset of AI, often
loosely used interchangeable buzzwords. As a high-level
definition, AI is anything related to making machines smarter
(eg, computational search algorithms). ML, on the other hand,
is an AI system that can self-learn via an algorithm, and as a
result, such a system becomes smarter without human
intervention over time (eg, classifying an outcome) [9]. Deep
learning, on the other hand, is another branch of AI that attempts
to mimic the human brain in terms of how it processes large
amounts of data and has already shown success rates in areas
such as diabetic retinopathy screening [10]. ML principles have
been applied in clinical settings to build algorithms to support
predictive models for the risk of development of diabetes [11].
AI has also been shown to provide useful management tools to
deal with large amounts of data [12]. Owing to the large amount
of data measurable through continuous monitoring via
wearables, AI can be used to further analyze the acquired data.
This can help to understand and draw meaningful information
from the gathered data and provide advanced and clinically
meaningful analytics. Many researchers have adapted existing
WDs not originally intended for diabetes management and
adapted the sensory information for use in diabetes-related
metrics, and some have created prototypes especially designed
for diabetes [13,14]. WDs are used for a variety of reasons,
including monitoring, prevention, glucose estimation,
diagnostics, classification, and prevention, but the number of
studies that are reported are low in comparison with those that
make use of smartphones for example. With the increased
potential outreach of WDs globally, especially when combined
with the ever-expanding field of AI-incorporating ML
algorithms, the correct management of large amounts of data
and processing with ML algorithms holds great potential for
quality-of-life improvement in people with diabetes [15].

Research Problem and Aim
Many studies have been conducted on AI-based WDs for
diabetes. Exploring the features of AI-based WDs reported in
these studies is important for developers, patients, health care
providers, and researchers to identify the recent advances and
challenges in this area. Although several reviews were conducted
in this area, (1) they were focused on smartphones and AI for
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diabetes [16-18], (2) they were focused on WDs in general rather
than AI-based WDs [17,19], and (3) they did not summarize
the features of AI-based WDs in a thorough manner [16-19].
Therefore, we aimed to explore the features of AI-based WDs
for diabetes as reported in previous studies. We believe that this
review will allow developers and researchers to advance further
in this field by highlighting the gaps and opportunities.

Methods

Overview
This scoping review was carried out to satisfy this study’s goals
of exploring features of AI-driven wearable technologies for
diabetes. In order to construct a complete scoping review, the
PRISMA-ScR (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses extension for Scoping Reviews)
[20] was used as a guiding approach. The PRISMA-ScR
checklist is shown in Multimedia Appendix 1.

Search Strategy

Search Sources
The article search for this review began by identifying all
relevant studies using 7 electronic databases: MEDLINE,
PsycINFO, EMBASE, IEEE Xplore, ACM Digital Library,
Web of Science, and Google Scholar. We scanned the first 100
hits retrieved by searching Google Scholar. The reason being
Google Scholar typically returns several items that are sorted
by relevance to the search topic. Bibliographic collection was
conducted from October 25 to October 30, 2021. The reference
lists of the included articles were then searched for additional
sources. We also checked relevant articles that cited the included
studies using Google Scholar’s “cited by” tool (forward
reference list checking).

Search Terms
A number of different sets of keywords were designed to search
databases depending on each database’s search term limit; as
IEEE and Google Scholar have term limits, search queries were
truncated based on the required limit. We considered the
research topics included in the database to complete our search
queries. We combined Diabetic OR Diabetes keywords
describing the relevant population (people with diabetes), with
each kind of relevant intervention to wearables (wearable* OR
smart watch* OR smart* OR smartwatch* OR fitness band*
OR flexible band* OR wristband* OR smart insole* OR
bracelet*) and AI (Artificial Intelligence OR Machine Learning
OR Deep Learning OR Decision tree OR K-Nearest Neighbor*
OR Support vector machine* OR Recurrent neural network*
OR convolutional neural network* OR Artificial neural
network* OR Naïve Bayes OR Naive Bayes OR Fuzzy Logic
OR K-Means OR Random Forest OR LSTM OR autoencoder
OR boltzmann machine OR deep belief network). For example,
the following search terms were applied in Google Scholar:
(Artificial Intelligence OR Machine Learning OR Deep Learning
OR convolutional neural network* OR Artificial neural
network*) AND (wearable* OR smart watch* OR smart*) AND
(Diabetic OR Diabetes). All the databases had search time
period criteria that were enabled and set with the search query
from 2015 to present; in addition, the language checkbox in
each database was set to English only. Full search terms for
each electronic database searched are available in Multimedia
Appendix 2.

Studies were chosen based on the criteria in Textbox 1.
Peer-reviewed articles and published protocols were included
only if they were related to wearables that could be used by an
individual outside of a clinical setting. They also had to use AI
for the purpose of diabetes and be classified as noninvasive.
For full inclusion and exclusion criteria refer to Textbox 1.

Textbox 1. Inclusion and exclusion criteria.

Inclusion criteria

1. Publications that are in the English language.

2. Peer-reviewed articles including proposals.

3. Population with or suspected to have diabetes. No restrictions regarding their age, gender, and ethnicity.

4. Commercial, medical, or prototypes but with condition wearable device and uses artificial intelligence (AI).

5. Wearable usable by individual person not with help of clinical staff or plugged in to hospital setting.

6. Wearables using methods for diabetes analysis are to be noninvasive.

Exclusion criteria

1. Any study that does not contain AI as an intervention.

2. People with other diseases, health care providers, and caregivers as population.

3. Not a wearable device (example artificial implant or body infused).

4. Studies opting statistical measures only, for analysis of collected data.

5. Sensors or tracking devices infused inside a person’s body.

6. Wearable devices that need professional sittings or hospital sittings.
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Study Selection
This review’s studies were selected in 2 steps. In the first stage,
2 reviewers (AA and SA) independently reviewed the titles and
abstracts of all retrieved papers. In the second phase, the same
reviewers individually read the whole texts of the papers
included in the first step. Rayyan (Qatar Computing Research
Institute, Hamad Bin Khalifa University) [21], a web-based tool
developed for data management for systematic and scoping
reviews, was used to upload all the articles acquired from
databases in a Research Information Systems format; then,
filtering and citations were managed. During the first and second
steps of the selection process, any disagreements between the
2 reviewers were resolved through conversation and decisions
were made based on consensus.

Data Extraction
AA and SA constructed the data extraction form, as shown in
Multimedia Appendix 3. The data extraction technique was
carried out independently by 2 reviewers (AA and SA), and any
discrepancies were resolved by discussion and consensus.
Microsoft Excel was used to record the data extracted.

Data Synthesis
SA synthesized the extracted data using the narrative approach,
aggregating the data using tables and text and nonstatistical

techniques. For being more precise, we presented the search
results followed by general features of the studies, finally
describing characteristics of the WDs and AI technologies. We
described the general features of WDs (eg, device placement,
type, and operating system [OS]) and their technical features
(ie, features of sensors, such as sensors used, sensing approach,
and primary measurements). The AI features were addressed
based on the models used, the evaluation metrics, and their
applications.

Results

Search Results
Having searched 7 bibliographic databases, this study returned
3872 citations. As shown in Figure 1, a total of 294 duplicates
were subsequently removed, leaving 3578 unique titles, and
abstracts; publications that did not make use of AI technologies
via WDs for diabetes management were considered irrelevant.
Of these, we further excluded 3424 citations after screening
their titles and abstracts. Of the remaining 154 references, 117
publications were excluded during the full-text screening. We
were left with 37 studies, and this number remained unchanged
even after performing backward and forward reference list
checking. The synthesis included a total of 37 articles
(Multimedia Appendix 4 [7,8,13,14,22-54]).

Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow chart of the study selection process. EC: exclusion
criteria; IC: inclusion criteria.
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General Description of Included Studies
Table 1 highlights the general features of the studies included.
Many of the included studies (27/37, 73%) were published
between 2019 and 2021, with the remaining 27% (10/37)
published between 2016 and 2018. Most of the included studies
were published in IEEE (21/37, 57%). A large proportion of
the studies were authored by institutes in the United States (7/37,
19%), China (5/37, 14%), and India (5/37, 14%). A total of 26

of the 37 studies (70%) were journal articles, and the remainder
were conference proceedings (11/37, 30%). Most of the studies
targeted type 1 diabetes (T1D), T2D, or both (21/37, 57%),
whereas 32% (12/37) did not specify the type of diabetes and
mentioned diabetes in general. The remainder targeted
prediabetes or a combination of T1D, T2D, and prediabetes
(4/37, 11%). Features of each included study are shown in
Multimedia Appendix 5.
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Table 1. General features of included studies (n=37).

Study IDStudies, n
(%)

Features

Year

S4, S8, S10, S16, S18, S20, S21, S24, S29, S3010 (27)2019

S3, S7, S11, S13, S15, S17, S19, S22, S359 (24)2020

S5, S9, S12, S14, S25, S27, S28, S338 (22)2021

S1, S6, S23, S34, S36, S376 (16)2018

S2, S26, S323 (8)2017

S311 (3)2016

Publisher

S1, S3, S5, S9-S11, S13-S18, S20, S24, S26, S28, S29,
S31, S32, S36, S37

21 (57)IEEE

S2, S12, S223 (8)Elsevier

S6-S83 (8)MDPI

S21, S352 (5)ACM

S4, S19, S23, S25, S27, S30, S33, S348a (22)Other (JMIR, IET, ICST, Confluence, BMJ Publishing Group, SPIE,
Telemedicine and e-Health, SAGE)

Country

S13, S14, S21, S27, S30, S31, S347 (19)United States

S5, S15, S18, S19, S375 (14)China

S12, S17, S23, S25, S325 (14)India

S3, S202 (5)Pakistan

S6, S352 (5)Switzerland

S10, S242 (5)Bangladesh

S1, S2, S4, S7, S8, S9, S11, S16, S22, S26, S28, S29, S33,
S36

14b (38)Other (Korea, Colombia, Canada, Morocco, Mexico, Italy, Macedonia,
Sri Lanka, United Kingdom, Russia, Taiwan, Philippines, Saudi Arabia,
Germany)

Publication type

S1-S20, S22, S23, S27, S28, S33, S3426 (70)Journal articles

S21, S24-S26, S20-S32, S35-S3711 (30)Conference proceedings

Diabetes type studied

S1, S5, S6, S8, S10, S11, S14, S24, S369 (24)Both T1Dc and T2Dd

S2-S4, S15, S16, S21, S297 (19)T2D

S13, S22, S30, S34, S355 (14)T1D

S12, S252 (5)T1D, T2D, and prediabetes

S171 (3)T1D and prediabetes

S271 (3)Prediabetes

S7, S9, S18, S19, S20, S23, S26, S28, S31, S32, S33, S3712 (32)Not specified

a1 study for each publication.
b1 study for each country.
cT1D: type 1 diabetes.
dT2D: type 2 diabetes.

Study Design Features
Table 2 outlines details about the studies associated with this
review. More than half of the studies (21/37, 57%) had the aim

of estimation and prediction of glucose (10/37, 27%) or glucose
level monitoring (11/37, 30%). A couple of studies had multiple
aims, and the remainder aimed to provide diabetes classification
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(4/37, 11%), diagnostic solutions (5/37, 14%),
self-administration and monitoring (4/37, 11%), and prevention
(2/37, 5%). Most of the studies did not mention anything about
security (31/37, 84%); the remainder did specify security
measures taken (6/37, 16%). Participants’ demographics
depicted most of them being adult (18/37, 49%) with both

genders considered in equal proportional in most of the studies
(10/37, 27%). Approximately 41% (15/37) of the studies used
diverse populations by separating them into people with diabetes
and people without diabetes. Study design features of each
included study are shown in Multimedia Appendix 5.

Table 2. Study design features (n=37).

Study IDStudies, n (%)Features

Study aim

S3, S18, S19, S21, S23, S25, S27, S28, S32, S33, S3710 (27)Blood glucose estimation (predictions)

S7-S11, S15, S20, S24, S26, S3010 (27)Glucose level monitoring

S4, S29, S33, S34, S355 (14)Diagnostic solution

S12-S14, S174 (11)Diabetes classification

S1, S5, S6, S314 (11)Self-administration and monitoring

S2, S162 (5)Prevention

S22, S362 (5)Other disease predictions, detection, and monitoring (hypo-
glycemia and foot temperature)

Privacy and security

S1-S22, S24-S26, S29, S30, S34-S3731 (84)Not mentioned

S23, S27, S28, S31, S32, S336 (16)Mentioned

Data source

S2, S3, S5, S7, S8-S19, S21, S22, S24, S26, S29, S34-S3725 (68)Private

S1, S4, S6, S254 (11)Public

S20, S302 (5)Not mentioned

Participant demographics

Age group (years)a

S81 (3)Children and young adults (≤18)

S2-S5, S8, S10, S13, S15, S16, S17, S19, S21, S22, S27, S29, S31,
S33, S34

18 (49)Adult (19-65)

S2, S4, S15, S21, S22, S336 (16)Older adult (>65)

S1, S6, S7, S9, S11, S12, S14, S18, S20, S23-S26, S28, S30, S32,
S35-S37

19 (51)Not mentioned

Gender

S2, S3, S5, S13, S15, S17, S18, S27, S29, S3410 (27)Male

S2, S3, S5, S13, S15, S17, S18, S27, S29, S3410 (27)Female

S1, S4, S6-S12, S14, S16, S19-S26, S28, S30-S33, S35-S3727 (73)Not mentioned

Diabetesb

S1, S4, S5-S7, S10, S12, S14, S15, S18, S19, S21, S27, S34, S3614 (38)Yes

S1, S5, S6, S8-S10, S12, S14, S18, S19, S27, S29, S31, S33, S3615 (41)No

S2, S3, S11, S13, S16, S17, S20, S22-S26, S29, S30, S32, S35,
S37

17 (46)Not mentioned

aNumbers do not add up as participants in some studies belong to more than one age group.
bNumbers do not add up as participants in some studies were diabetic and nondiabetic.
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Features of WDs

General Features of Wearables
Table 3 highlights the general features of WDs; some studies
used multiple devices. Only 41% (15/37) of the studies used
commercially available WDs, whereas 59% (22/37) used
prototypes. Most of the studies (22/37, 59%) included
wrist-worn devices. In most of the studies, the device type was
in the form of a wearable sensor (14/37, 38%), followed by
smartwatch (8/37, 22%) and smart wristband (9/37, 24%). Only
one study reported a smart sock and another reported smart
clothes. Among the developed wearable technologies used,
Empatica E4 was the most cited (6/37, 16%), followed by
Glutrac (3/37, 8%). For OSs, most of the studies reported
devices either directly or indirectly compatible with iPhone OS
and Android OS 43% (16/37); OS was not mentioned in a large
number of studies (11/37, 28%), and 8% (3/37) mentioned
Android only and 5% (2/37) mentioned iPhone OS only. For

gateway (ie, a hardware that acts as a “gate” between 2 networks
or any device that enables traffic to flow in and out of the
network), many of the studies did not mention any sort of
gateway (17/37, 46%). Most of the studies that mentioned a
gateway used a smartphone (16/37, 43%). Host devices (devices
where the actual manipulation of collected data was performed,
ie, processing) were used in many of the studies, the most
popular being cloud-based (18/37, 49%), many did not report
any use of a host device (8/37, 22%), and smart devices were
mentioned in 16% (6/37) of studies. For the purpose of
transferring data (mode of data transfer) from the WD, the
majority of devices reported Bluetooth as the means of transfer
(19/37, 51%); 19% (7/37) of studies did not mention the mode
of transfer. A total of 16% (6/37) of studies reported the use of
some form of internet connection as the mode of transfer (ie,
Wi-Fi or mobile network). Features of WDs for each included
study are shown in Multimedia Appendix 5.
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Table 3. General features of wearable devices (n=37).

Study IDStudies, n (%)Features

Technology status

S1, S3-S5, S8-S11, S16, S17, S20, S23, S24, S26, S28-S33, S36,
S37

22 (59)Prototype

S2, S6, S7, S12-S15, S18, S19, S21, S22, S25, S27, S34, S3515 (41)Commercial

Device type

S11 (3)Smart clothes

S311 (3)Smart socks

S2, S7, S14, S15, S18, S19, S28, S358 (22)Smart watch

S21, S242 (5)Smart watch and wearable sensor

S4, S6, S12, S13, S25, S27, S30, S33, S349 (24)Smart wristband

S23, S322 (5)Smart wristband, smart footwear, and smart neckband

S3, S5, S8-S11, S16, S17, S20, S22, S26, S36, S3714 (38)Wearable sensor

Placement

S11 (3)Body

S111 (3)Chest

S3, S8, S17, S20, S265 (14)Finger

S5, S9, S16, S29, S31, S366 (16)Foot

S101 (3)Hand

S4, S6, S7, S12-S15, S18, S19, S24, S25, S27, S28, S30, S33-
S35, S37

18 (49)Wrist

S211 (3)Wrist and arm

S21 (3)Wrist or thigh

S23, S322 (5)Wrist, foot, and neck

S221 (3)Arm and body

Device technologya

S211 (3)Actigraph

S241 (3)Arduino Nano

S341 (3)Basis Peak

S22, S352 (5)FreeStyle Libre Flash

S221 (3)Medtronic Zephyr

S211 (3)Dexcom G4 Platinum (Professional)

S12, S13, S14, S25, S27, S356 (16)Empatica E4

S15, S18, S193 (8)Glutrac

S61 (3)Mi band 2

S8, S162 (5)Raspberry Pi Zero

S21 (3)Pebble

S26, S282 (5)Custom

S1, S3-S5, S7, S9-S11, S17, S20, S23, S29-S33, S36, S3718 (49)Not mentioned

Operating systemb

S2, S8, S163 (8)Android

S9, S112 (5)iOSc

S311 (3)Microsoft
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Study IDStudies, n (%)Features

S241 (3)Raspberry Pi OSd

S6, S7, S12-S15, S17-S20, S22, S23, S26, S28, S30, S3216 (43)iOS and Android

S25, S27, S293 (8)Any desktop OS

S291 (3)Any smartphone OS

S1, S3-S5, S10, S21, S33-S3711 (30)Not mentioned

Gateway

S1, S6, S7, S11-S15, S17-S20, S23, S28, S30, S3216 (43)Smartphone

S331 (3)Database servers (Hbase and Hadoop or Spark)

S41 (3)Adapter

S25, S272 (5)Smartphone or PC

S2, S3, S5, S8-S10, S16, S21, S22, S24, S26, S29, S31, S34-S3717 (46)None

Host device

S1, S6, S7, S11-S15, S17-S19, S23, S25, S27, S28, S30, S32,
S33

18 (49)Cloud (MongoDb, Database server, Google)

S4, S20, S29, S314 (11)PC (laptop, desktop, or Microsoft Surface)

S241 (3)Raspberry Pi

S5, S8, S9, S16, S22, S266 (16)Smart devices (smartphone, tablet, or PC)

S2, S3, S10, S21, S34-S378 (22)None

Mode of data transfer

S2, S5, S6, S9, S11-S15, S18-S20, S22, S25-S28, S30, S3119 (51)Bluetooth

S1, S7, S8, S16, S17, S336 (16)Internet (Wi-Fi or cellular or mobile network)

S23, S322 (5)Internet (Wi-Fi or cellular or mobile network) and Bluetooth

S24, S292 (5)Wired

S41 (3)Removable media

S3, S10, S21, S34-S377 (19)N/Ae

aNumbers do not add up as some studies used more than one wearable device.
bNumbers do not add up as the WD in one study worked on 2 operating systems.
ciOS: iPhone operating system.
dOS: operating system.
eN/A: not applicable.

Technical Features of Wearables
Table 4 shows an overview of the technical features of the WDs
associated with the studies in this review. Devices were often
reported as having >1 device measure, and we reported these
primary measures along with the measurements used for the
respective studies. We observed that many studies reported
blood glucose (15/37, 41%) followed by temperature (10/37,
27%), heart rate (9/37, 24%) and galvanic skin response (9/37,
24%) as their top primary device measures. Regarding the
second feature shown in Table 4, the majority of the studies
reported on blood glucose as the main measurement studied
(27/37, 73%), followed by heart rate or variability (4/37, 11%).

Most of the studies (28/37, 76%) reported an opportunistic
approach (ie, no input required from the participant) when
obtaining data using the WDs, whereas the remaining (9/37,
24%) used a participatory approach (ie, input required from the
participants). For sensing technologies, various sensors were
used, either built-in to the WD or as wearable sensors, often
reported as >1 sensor per device. We observed a large number
of devices in the studies reviewed reporting
photoplethysmography sensor use (12/37, 32%), while optical
heart rate was only seen in 5% (2/37) of studies among some
of the other less-reported sensors. Features of WDs for each
included study are shown in Multimedia Appendix 5.
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Table 4. Technical features of wearables (n=37).

Study IDStudies, n (%)Feature

Primary device measurea

S3, S8, S10, S15, S17-S22, S24, S26, S28, S30, S3715 (41)Blood glucose

S1, S102 (5)Physiological

S6, S11, S14, S22, S23, S32-S359 (24)Heart rate, heart rate variability, or interbeat interval of the heart

S12-S14, S23, S25, S27, S32, S34, S359 (24)Galvanic skin response

S12-S14, S25, S27, S356 (16)Blood volume pulse

S12-S14, S25, S27, S356 (16)Acceleration

S5, S9, S23, S29, S32, S335 (14)Plantar pressure

S12, S13, S16, S23, S25, S27, S32, S34-S3610 (27)Temperature (skin, foot, shoe, air, or ambient)

S7, S162 (5)Step count

S2, S4, S9, S16, S21, S23, S31, S328 (22)Other (sedentary behaviors, pulse wave information, inertial data,
weight, humidity, activity patterns, frequency of food intake and water,
and ankle edema quantification)

Measurement studiedb

S1, S3, S6-S8, S10-S28, S30, S33, S3727 (73)Blood glucose

S5, S9, S293 (8)Plantar pressure

S28, S33, S34, S354 (11)Heart rate or heart rate variability

S2, S4, S31, S32, S34-S367 (19)Other (sedentary behavior, pulse wave, edema, general diabetes
symptoms, temperature, sleep quality, step counts, and GSR)

Sensing approach

S1, S2, S5, S7, S11-S14, S16-S29, S31-S33, S35-S3728 (76)Opportunistic

S3, S4, S6, S8-S10, S15, S30, S349 (24)Participatory

Sensing technologyc

S2, S13, S14, S21, S275 (14)Accelerometer

S3, S10, S12-S15, S19, S20, S24, S25, S27, S2812 (32)Photoplethysmography

S10, S13, S14, S23, S24, S27, S32, S348 (22)Galvanic skin response

S3, S17, S18, S28, S375 (14)Near infrared

S11, S18, S223 (8)Electrocardiography

S21, S222 (5)Continuous glucose monitoring

S61 (3)Bluetooth

S5, S9, S23, S29, S32, S33, S367 (19)Pressure sensors

S13, S14, S273 (8)Infrared thermopile

S7, S16, S23, S24, S32, S366 (16)Temperature sensor

S23, S322 (5)Optical heart rate sensor

S23, S322 (5)Vibration sensor and flex sensor

S7, S312 (5)Motion sensor

S1, S4, S7, S8, S16, S316 (16)Others (physiological sensors, pulse sensor, blood glucose level sensor,
Raspberry Pi camera, humidity sensor, step count sensor, weight
sensor, stretch sensor, and optical sensor)

aNumbers do not add up as WDs in many studies were used to measures many biomarkers.
bNumbers do not add up as some studies used more than one measure.
cNumbers do not add up as WDs in most studies used more than one sensor.
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Wearables Characteristics With Regard to Diabetes
Measurements

Wearable Technology Status Versus WD Type
Multimedia Appendix 6 further visualizes the data highlighting
the WD type and whether they are commercial or prototypes.
Wearable sensors were the most prominent as a prototype while

smartwatches and smart wristbands were the most common as
commercial.

Diabetes Types Versus WDs
Figure 2 shows the type of diabetes and number of studies
related to each WD type. While most studies did not specify
the type, T1D (as a smart wristband), T2D (as a wearable
sensor), or both (as a wearable sensor or smartwatch) seem to
be the most targeted types.

Figure 2. Diabetes type with regards to wearable device type. PreD: prediabetes; T1D: type 1 diabetes; T2D: type 2 diabetes.

AI and ML Technologies
For the purpose of this study, we categorized the ML algorithms
into 4 categories (classification models, regression models,
neural network–based models, and optimization algorithms)
and those that were not clearly specified by the study authors
were categorized as black boxes (ie, studies that mention they
make use of ML or AI but do not specify any further details of
algorithms used). Many ML technologies were reported that
come under these headings (refer to Table 5 for a full list), and
some studies reported and compared >1 model. Support vector
machine (SVM) was the most reported (13/37, 35%), followed
by random forest (12/37, 32%), k-nearest neighbor (7/37, 19%),

Naive Bayes (5/37, 14%), and decision trees (4/37, 11%) among
the most used models from classification models. From the
regression models, only linear regression (2/37, 5%) was
reported in a couple of studies, whereas all others were reported
by single studies only. Artificial neural networks were reported
in 14% (5/37) of the studies in neural network–based models,
followed by long short-term memory (4/37, 11%), convolutional
neural networks (3/37, 8%), and deep neural networks (3/37,
8%); these networks were used for both classification and
regression purposes. Table 5 also highlights that the majority
of the studies applied the AI and ML technologies for either the
purpose of blood glucose level forecasting (12/37, 32%) or
classifying the participants as normal, diabetic, or prediabetic
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(12/37, 32%). Table 6 highlights some of the statistical measures
used to evaluate the ML algorithms within the reported studies.
Some studies used multiple statistical techniques for this
purpose, among them were reports of accuracy (20/37, 54%)

and sensitivity (9/37, 24%). While some studies did not mention
which was the best ML model identified (6/37, 16%), random
forest was reported as the best identified model (7/37, 19%),
followed by SVM (6/37, 16%).
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Table 5. Artificial intelligence (AI)– and machine learning (ML)–related features (n=37).

Study IDStudies, n (%)Features

AI or ML technologies useda

Classification models

S1, S2, S4, S5, S9, S12, S13, S25, S29, S30, S33, S34, S3613 (35)Support vector machine

S2, S4, S5, S7, S11, S14, S15, S18, S27, S29, S36, S3712 (32)Random forest

S5, S9, S12, S13, S25, S29, S317 (19)K-nearest neighbors

S2, S7, S13, S31, S365 (14)Naive Bayes

S1, S13, S31, S354 (11)Decision tree

S1, S132 (5)Ensemble learning or ensemble—boosted trees

S2, S112 (5)Logistic regression

S2, S72 (5)J48

S4, S132 (5)Linear discriminant analysis or linear discriminant

S5, S352 (5)Gradient boosting decision trees

S51 (3)AdaBoost classifier

S71 (3)ZeroR

S71 (3)OneR

S71 (3)Simple logistic regression

S291 (3)Gaussian Process classifier

S331 (3)C4.5

S141 (3)Linear ridge Classifier

S121 (3)Extreme gradient boost

Regression models

S3, S162 (5)Linear regression

S31 (3)Support vector regression or Fine Gaussian support vector re-
gression

S151 (3)Random Forest regression

S151 (3)AdaBoost regression

S171 (3)Multilayer Polynomial regression

S31 (3)Ensemble—boosted trees

S201 (3)Exponential Gaussian process regression

Neural network–based models

S1, S2, S8, S26, S365 (14)Artificial Neural Network

S6, S13, S21, S344 (11)Long short-term memory

S10, S22, S243 (8)Convolutional Neural Network

S11, S13, S223 (8)Deep neural networks

S21, S342 (5)Recurrent Neural Network

S6, S292 (5)Multilayer Perceptron

Optimization algorithm

S71 (3)Sequential minimal optimization

S191 (3)L1 norm optimization

S231 (3)Particle swarm optimization

S19, S23, S323 (8)MLa black box

Application of AI technology usedb

J Med Internet Res 2022 | vol. 24 | iss. 8 | e36010 | p. 14https://www.jmir.org/2022/8/e36010
(page number not for citation purposes)

Ahmed et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Study IDStudies, n (%)Features

S6, S8, S16, S18, S20, S22, S24, S25-28, S3412Blood glucose level forecasting

11, S30, S32, S374Blood glucose monitoring

S3, S4, S5, S6, S7, S12, S14, S21, S23, S29, S32, S3612Classify patients with diabetes (normal, diabetic, and prediabetic)

S33, S352Classify other diseases (patients with hypertension or hypoglycemia)

S2, S10, S133Evaluation of a developed system

S3, S52Feature selection

S1, S9, S153Performance validation

S16, S17, S193Optimize sensors results

S16, S172Predictions for step count, shoe removal time, or serum glucose

S311Edema monitoring

aNumbers do not add up as most studies developed more than one AI algorithms.
bNumbers do not add up as AI algorithms in some studies were used for more than one application.
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Table 6. Statistical evaluation of artificial intelligence and machine learning algorithm (n=37).

Study IDValueCharacteristic

Accuracy (%; n=20)

S6, S33≤80

S15, S21, S28, S35, S3681-90

S1, S9, S13, S15, S22, S25, S2991-95

S4, S5, S7, S12, S14, S30, S31>95

Sensitivity (%; n=9)

S35≤80

S4, S6, S25, S3381-90

S9, S2291-95

S5, S7>95

Specificity (%; n=7)

S35≤85

S9, S2286-90

S5, S2591-95

S4, S7>95

Area under the curve (%; n=2)

S22≤91

S35>91

Clarke Error Grid zone A (%; n=8)

S37≤74

S19, S1075-80

S18, S2881-90

S3, S8>90

S24Not mentioned

Precision (%; n=6)

S6, S33≤80

S981-90

S2591-95

S2, S7>95

Root mean square error (%; n=4)

S19, S21<5

S175-15

S27>15

Others, n (%)

S3, S8, S16, S17, S19, S21, S27, S378 (22)

Best model identified, n (%)

S8, S262 (5)Artificial Neural Network

S10, S22, S243 (8)Convolutional Neural Network

S14, S17, S21, S284 (11)Deep Neural Networks

S4, S9, S25, S29, S30, S336 (16)Support Vector Machine

S2, S5, S15, S18, S27, S36, S377 (19)Random Forest

S131 (3)Long Short-Term Memory
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Study IDValueCharacteristic

S31, S352 (5)Decision Trees or Gradient Boosting Decision Trees

S311 (3)K-Nearest Neighbors

S61 (3)Multilayer Perceptron

S71 (3)OneR

S11 (3)Ensemble

S31 (3)Support Vector Regression

S11, S19, S20, S23, S32, S346 (16)Not mentioned

AI and ML Versus Wearables Versus Diabetes
Figure 3 shows the category of the ML algorithm used according
to each WD placement and measurement. Most devices that

made use of classification models among the wrist-worn devices
were the most prominent. Neural network and regression model
were the least used.

Figure 3. Artificial intelligence (AI) or machine learning (ML) models used with regard to wearable device placement and measurement studied. CM:
classification model; NN: neural network; RM: regression model.

Discussion

Principal Findings
This was the first study of its kind to the best of our knowledge,
considering the amount of features we were able to extract from
each publication. The features extracted should give researchers
insight not only into the technologies that are readily available
commercially but also into what is possible in the future with
studies we identified that developed prototypes. Our findings

shed light on this emerging field, which is still in its infancy.
This is further highlighted by the fact that 59% (22/37) of the
studies that met our inclusion criteria were prototypes; we were
only able to identify 41% as commercially available (as
demonstrated in Multimedia Appendix 6) devices, of which
only (7/15, 46%) studies performed some sort of ML
classification on the extracted data directly from WDs, whereas
(6/15, 40%) studies made use of neural network–based models
with classification to make out of already collected data. Most
of these measured blood glucose on wrist-worn devices and
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used a classification algorithm (Figure 3). Classification models
were widely used (Figure 3) in the reviewed studies, largely
owing to studies attempting to classify types of diabetes (T1D,
T2D, etc). SVM and random forest were the most prevalent
classifiers and exhibited the highest performance. SVM [55] is
extensively used because of its superiority in generalization and
nonlinear function fitting, and it also has a number of advantages
when dealing with small-sample studies [56]. Furthermore,
SVM is a binary classifier, and we observed that it is mostly
used on blood glucose level data to determine levels for diabetes
categorization. Aside from the accuracy for demonstrating
efficacy, the Clarke Error Grid was the most commonly used
performance metric, possibly because of its popularity as a
performance metric for assessing blood glucose estimation. The
grid was split into 5 zones, each with varied prediction accuracy
between the estimated and reference blood glucose readings.
The data fell within zone A, which pertains to precise glucose
calculations, where each consecutive zone is thought to have
progressively substantial erroneous estimations [57,58]. Most
of the sensory data being collected especially when looking at
commercially available devices, did not require any further or
minimal input from the user, meaning the person with diabetes
can get on with day-to-day tasks without having to worry about
taking regular invasive finger pricks for monitoring glucose
levels; for example, while still feeling that they are wearing a
stylish item such as a smartwatch. We specifically examined
studies after 2015, as previous studies related to the use of WDs
found that most wearables were used in this range [59]. One of
the reasons may be that Fitbit released its first device in 2009
and the Apple Watch followed in 2015; both these devices set
the tone for WDs, and it is not surprising that 59% (22/37) from
our review were wrist-worn. A total of 78% (29/37) of the
devices were connected to either a gateway or host device,
usually a smartphone (16/37, 43%) via either Bluetooth (19/37,
51%) or Wi-Fi or internet (6/37, 16%); this is likely owing to
the fact that web-based data are now more affordable and the
availability of low energy connectivity technology such as
Bluetooth. This ability to connect has resulted in more analytics
and data storage being possible on host devices than on
smartphones or directly on the cloud (18/37, 49%) of studies
in this review, compared with limited computing power on the
WD itself. One of the limitations of this is that devices need
continuous connections, which can be an issue, as reported data
can be lost if the connection is not maintained for long periods
[60]. We also observed that many devices used gateways or
host devices, which we believe to be largely because of the
limited computing power of WDs.

Strengths
This review was conducted according to the PRISMA-ScR;
therefore, it can be considered a high standard. Two reviewers
independently conducted the study selection and data extraction.
We believe this to be the first of its kind study focusing on WDs
targeting diabetes using AI approaches and were unable to
identify previous scoping reviews in the literature that has as
an exhaustive list of features extracted in this field. A
combination of expert research computer scientists and research
medical practitioners allowed us to explore the current
technologies in depth and highlight gaps in the research

community. The most popular databases in the health care and
information technology fields were searched; furthermore,
Google Scholar with forward and backward reference list
checking allowed an exhaustive search of the literature, reducing
the risk of publication bias.

Limitations
Only studies published between 2015 and 2021 in the English
language were included. Furthermore, we did not use Medical
Subject Headings terms in our search; therefore, we may have
overlooked some relevant studies. We excluded devices that
could be classified as WDs, such as electroencephalogram and
ECG machines, which limited their use in hospital settings. As
our focus was AI, we excluded any study of WDs and diabetes
that had a statistical measurement not considered an AI
approach. Although we included a large number of features and
some effectiveness measures, we fall short of critically assessing
the quality of each of the included studies—this goes beyond
the scope of our review—and we hope to cover this in a full
systematic review in the near future on the same topic.

Practical and Research Implications
WDs hold great potential for the self-monitoring of
diabetes-related parameters, and their ability to be paired with
a range of smart devices, including smartphones and general
connectivity to clouds, allows the continuous collection of data
from many biosensors that measure vitals and biosignals without
user interference. The fact that they can be worn in a stylish and
fashionable manner has potential for wider acceptance than
other technologies, such as CGMs. Although many studies have
used WDs for diabetes, we found that ML is still lacking in a
sizable number of these studies. With the limited number of
studies that reported the use of ML, we see great promise,
largely owing to the accuracy levels of the ML algorithms
reported in Table 6. Engineering and data science research
experts need to come together and identify the most common
sensors and technologies and study their effectiveness when
combined with ML approaches. In addition, commercially
available WDs are readily available and therefore sit in waiting
for researchers to conduct studies and apply ML and report
further in scientific journals to prove validity and instill
consumer confidence. Most of the papers identified in this study
used AI or ML algorithms for testing the validity of the system
functioning rather than identifying the approaches that could
be used for the development of such intelligent devices. More
work needs to concentrate on applying known ML algorithms
for the purpose of making more accurate diabetes-related
measurement calculations. Currently, the number of commercial
devices associated with studies are still very low, a quick search
on retail sites such as Amazon reveals many commercial devices
claiming diabetes-related measurements, which have still yet
to be validated with related studies, and this is one area where
researchers could get involved. Researchers need to make more
use of purpose-shifted devices as they are lying in wait as
opposed to creating prototypes and testing the effectiveness of
the many commercially available devices. We encourage
researchers to perform systematic reviews to assess the efficacy
of AI-based and non–AI-based WDs compared with traditional
medical devices. Some technologies that are classified as WDs
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such as CGMs are still classified as semi-invasive as they allow
the embedding of a sensor partially into participants’ skin, we
feel for wider acceptance especially for home use products the
technology really needs to move away from such sensors and
more studies now need to focus on how measurements can be
obtained from noninvasive sensors such as those available on
commercial smart watches. Further work is also required on
ML algorithms used for diabetes data that can be used on the
WDs as opposed to on host devices, as this would reduce some
issues reported such as loss of data owing to WD out of range
with the host device, which will become easier with time as the
technology advances and WD memories are no longer a
limitation. We suspect there would be less reliance on host
devices for some of the ML computations.

Another area for exploration is the use of the internet of things
(IoT); in our search, we found a handful of studies making use
of IoT. Most IoT papers describe the IoT architecture for
diabetes management without specifying the sensors or WDs
actually used or implemented, and do not go into much (if any)
detail about any ML deployed. There are many opportunities
in this domain; none of the studies were found to make good
use of developed commercial technologies such as Alexa,
Google Home, and Apple watches, which are readily available.
The possibilities here are endless, using a combination of data
gathered from sensors at the WDs with other patients and
personal data in real-time with IoT. This brings along with its
own caveats and the need to incorporate questions of privacy
and data sovereignty arising from the mass data storage in
cloud-based systems and the many interconnected devices and
hospital datacenters; there are issues that need to be considered
with the use of data and individual consent. There are also
problems regarding the scope of an individual’s consent to use
their data, as well as potential accountability if the data are
mishandled. There are dangers associated with AI algorithms

and their misdiagnoses, dangerous advice, or recommendations
that do not correspond to the required standard of care. Data
security breaches or the reidentification of previously
deidentified data may have unintended repercussions.
Furthermore, other ethical issues need to be considered, such
as accessibility, although commercial WDs that are easily and
cheaply available may not be affordable for the masses in
low-income countries. A multidisciplinary effort is required,
including but not limited to engineers, medical practitioners,
and legal experts.

Conclusions
We investigated and reported the current state of WDs and their
features for the purpose of diabetes that use ML approaches.
Considering the availability of consumer-grade biosensors, we
see great advancement potential in this domain, replacing
hospital setting, invasive devices, especially when it comes to
monitoring glucose levels. Further clinically significant studies
are needed to instill confidence and validate WD use as well as
the application of ML algorithms on WD data. Researchers and
those wanting to develop AI-based WDs can use our review to
understand where the gaps are in this emerging field. We
encourage readers to use more data and delve deeper into the
studies we have identified in order to establish, validate, and
repeat studies that showed high accuracy. There is still much
work needed, and we feel our review has provided the most
extensive work so far summarizing WDs that use ML for people
with diabetes to date. Finally, researchers will also benefit from
our study as they can embark on longer and better populated
systematic studies scrutinizing the benefits of WDs as data
gathering, monitoring, prediction, classification, and
recommendation devices in the context of diabetes. We envisage
several follow-up studies, starting with a full systematic review
from our own group.
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