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Abstract

Background: Multiple types of biomedical associations of knowledge graphs, including COVID-19–related ones, are constructed
based on co-occurring biomedical entities retrieved from recent literature. However, the applications derived from these raw
graphs (eg, association predictions among genes, drugs, and diseases) have a high probability of false-positive predictions as
co-occurrences in the literature do not always mean there is a true biomedical association between two entities.

Objective: Data quality plays an important role in training deep neural network models; however, most of the current work in
this area has been focused on improving a model’s performance with the assumption that the preprocessed data are clean. Here,
we studied how to remove noise from raw knowledge graphs with limited labeled information.

Methods: The proposed framework used generative-based deep neural networks to generate a graph that can distinguish the
unknown associations in the raw training graph. Two generative adversarial network models, NetGAN and Cross-Entropy
Low-rank Logits (CELL), were adopted for the edge classification (ie, link prediction), leveraging unlabeled link information
based on a real knowledge graph built from LitCovid and Pubtator.

Results: The performance of link prediction, especially in the extreme case of training data versus test data at a ratio of 1:9,
demonstrated that the proposed method still achieved favorable results (area under the receiver operating characteristic curve
>0.8 for the synthetic data set and 0.7 for the real data set), despite the limited amount of testing data available.

Conclusions: Our preliminary findings showed the proposed framework achieved promising results for removing noise during
data preprocessing of the biomedical knowledge graph, potentially improving the performance of downstream applications by
providing cleaner data.

(J Med Internet Res 2022;24(7):e38584) doi: 10.2196/38584
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Introduction

The effects of the COVID-19 pandemic linger in 2022—it
affected over 11.6 million people globally in the past year, and
accounted for >2.5 million deaths in more than 220 countries
[1]. With the continuous accumulation of peer-reviewed
publications on the topic, a literature hub serves as a means to
track the most up-to-date scientific information about the virus
[2]—encompassing research on the treatment, diagnosis, and
prevention of COVID-19. A knowledge base built upon the
integration of biomedical entities from such a literature hub
would provide tremendous value in the exploration of explicit
or implicit associations among diverse biomedical entities as
investigators attempt to answer clinical questions related to
COVID-19. A number of recently published journal articles
have included graph-based analysis of COVID-19 data sets [3].
For example, Groza [4] analyzed how a semantically annotated
data set would be helpful in detecting and preventing potentially
harmful misinformation regarding the spread of COVID-19
based on CORD-19-on-FHIR (a linked data version of the
COVID-19 Open Research Dataset [CORD-19] data represented
in FHIR RDF by mining the CORD-19 data set and adding
semantic annotations) [5].

Most knowledge graphs constructed for COVID-19 are currently
based on the co-occurring biomedical entities reported in recent
literature. A knowledge graph of co-occurring concepts, such
as the one created by Oniani et al [6], can help researchers find
associations among genes, drugs, and diseases related to
COVID-19. Using knowledge graphs with heterogeneous
biomedical associations (eg, gene-drug, disease-drug, drug–side
effect) in these types of applications, however, results in a high
probability of false-positive predictions because co-occurrence
in literature does not always mean there is a true biomedical
association between the two entities. These co-occurrence edges
are therefore considered “noise” due to their untrue associations.
For example, the term “glucose” may co-occur with the term
“yellow fever,” but there is no real medical association between
the two terms. Noise removal can be beneficial for downstream
applications, such as link prediction [7], representation learning
[8,9], and node classification [10].

The manual processes of cleaning data and removing noise are
resource intensive. Therefore, an automated denoising method
is ideal in facilitating the curation of knowledge graphs. Existing
methods for denoising knowledge graphs can be divided into
two groups: internal and external [11]. For the internal method,
the predefined semantics or rules [12] are used for nonnumerical
data. Outlier detection [13] removes noise by modeling true
data as a distribution for numerical data. As for external
methods, a pretrained graph neural network integrates
heterogeneous data sources [14] to not only improve the
performance of link prediction but also reduce the training time
of the existing graph neural network model. In this paper, our
methodology can be categorized as an internal method where
data augmentation with a generative adversarial network (GAN)
removes noise. GAN has been widely applied in medical
imaging process [15] to denoise computed tomography images
based on GAN with Wasserstein distance and perceptual
similarity. Zhou et al [16] previously showed improvement of

ultrasonic image quality and noise reduction caused device
limitations through the construction of a two-stage GAN. Other
than the application of generating images, GAN has mainly
been used for generating discrete medical data to contribute to
the scenario of diagnosis of a disease with few labels [17] or
unbalanced classification [18]. To the best knowledge of the
authors, our study is the first study that uses GAN to denoise a
biomedical knowledge graph.

Here, we propose a framework that generates a similar graph
from a raw knowledge graph to distinguish the true and false
edges of association based on generative-based deep neural
networks. Two recent generative-based models, Cross-Entropy
Low-rank Logits (CELL) [19] and a generative-based graph
method (NetGAN) [20], have been adopted as a component to
remove noise and retain true associations within two data sets:
(1) a synthetic data set generated from CORA-ML [21] with
the same preprocessing as in NetGAN [20]; and (2) a real data
set constructed from CORD-19-on-FHIR data sets with
heterogeneous biomedical associations (ie, chemical-disease,
gene-disease, gene-chemical associations) [5]. Our study shows
the proposed method achieved promising results in the
classification tasks for separating the true and negative edges.

Methods

Problem Definition
Given a network G(V, E), where V stands for a set of vertices
(ie, biomedical concepts in the literature) and E represents the
edges among two vertices (ie, the co-occurrence of two
concepts), two kinds of edges exist, which are denoted as L
(known true associations) and U (unknown true associations).
We note that if no edge exists between two vertices, this will
be considered a false association. The aim is to find the true
associations among U (ie, denoise U). Specifically, a proposed
method should have the capacity to determine whether unknown
true associations from U are true associations or false.

Framework

Overview
As this problem could be considered a classification of an
unknown edge with a small number of known true associations
and a large number of unknown true associations, we defined
this classification problem as few-shot learning [22]. We
proposed a framework that used generative-based deep neural
networks (eg, NetGAN and CELL) to denoise the unknown true
associations in U based on similar networks generated. This
framework was divided into 3 parts. We first briefly describe
the GAN-based denoising graph adopted following the
development of the framework, followed by an introduction of
data preparation, which involved two strategies: (1) synthetic
data generation and (2) real data set collection and annotation.
A comprehensive design of our experiments was then conducted
to verify our assumptions.

Denoising Based on Generative-Based Deep Neural
Networks
We adopted NetGAN to generate a new network that would be
used to distinguish the unknown associations in the raw training
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data (ie, graph). To achieve this, we randomly sampled walks
from the raw graph consisting of unlabeled edges and trained
a generator to learn the walks sampled and a discriminator on
how to separate a real walk from a fake one. After achieving
equilibrium among the discriminator and generator, the random
walk sample from the generator was used for filtering the unreal
edge in the raw graph. As determined in previous work by other
researchers [19], sampling enough random walks was sufficient
to reconstruct the graph. Both the generator and discriminator
used the long short-term memory (LSTM) architecture [23] and
were trained with the Wasserstein loss [24]. The generator G
generated large numbers of random walks (node sequence) of
fixed length. The discriminator D distinguished the sequence
of the nodes sampled from G and x that were sampled from the
real graph (including unlabeled associations) with randomly
started nodes. D and G played the following minimax game
with the value function V(D, G):

Finally, the D generated a similar authentic graph network that
could not be distinguished by the discriminator G.

To generate the probability of the edges, CELL approximated

it with a score matrix S, which was computed by 
where n is the number of random walks, T is each length of a
random walk, and diag(π) is the stationary distribution matrix.
P is a transition matrix that approximates the unbiased random

walk used in NetGAN. P can be low-rank approximated by W,
which is the logit transition matrix and is solved by the objective
function as:

where A is the adjacency matrix and s.t. rank(W) ≤ H. In
practice, we further adapted node2vec [25] for the random
sampling process in NetGAN and constrained the edge
generation length with k in the above loss function in CELL.

Data Preparation

Overview

We generated two data sets for this study: (1) a synthetic data
set based on CORA-ML, and (2) a real data set extracted from
CORD-19-on-FHIR data sets [5]. First, we defined two types
of associations: labeled associations denoted as (L) (red colored)
and unlabeled associations represented as (U) (green colored)
(Figure 1), based on two types of association. This was used to
construct our training and test graphs. The training graph
consisted of both the labeled (L) and unlabeled (U) associations,
while there were only labeled (L) associations in the test graph,
as we need the ground truth for evaluating the performance of
our proposed methods. The histogram of each data set is given
below, where Figure 2A is the synthetic data set. This does not
include the false associations added in our subsequent
experiments. Figure 2B shows the histogram of degree
distribution in the real data set.

Figure 1. Overview of our investigation process. GAN: generative adversarial network; ROC-AUC: area under the receiver operating characteristic
curve.
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Figure 2. Histogram of degree distribution in the synthetic data set and real data set.

Synthetic Data Set

The synthetic data set was generated based on CORA-ML with
the same preprocessing work as NetGAN [20]; we chose the
largest connected component in the graph. The final total
number of nodes and edges is shown in the top right corner of
Figure 2A. To test our proposed methods, we took as ground
truth the existing edges as true associations and the nonexistence
edges as false associations. Detailed synthetic data processes
can be found in Figure S1 in Multimedia Appendix 1.

Real Data Set

From CORD-19-on-FHIR [5], we used two annotated networks
(LitCovid [26], Pubtator [27]), extracting the COVID-19–related
terms in our SPARQL query with 3 types of biomedical concepts
(ie, gene, chemical, mutation/disease). After merging identical
IDs from both LitCovid and Pubtator, we were able to obtain a
new data set with a total of 23,578 nodes (Figure 2B). Finally,
we randomly chose a proportional number of edges with a total
of 500 associations (ie, chemical-disease, gene-disease,

gene-chemical associations) from a total of 288,270 edges in
the whole graph and manually labeled them as our labeled data
set. Detailed data preprocessing and degree distribution for each
type of association can be found in Supplementary 2 in
Multimedia Appendix 1.

Experiment Design

Overview

We conducted experiments on both a synthetic data set (ie,
CORA-ML) and a real data set extracted from
CORD-19-on-FHIR to investigate the capability of our proposed
methods of incorporating unlabeled information for improving
the link prediction performance despite limited annotation. We
analyzed the performance of our models with multiple tasks
based on two types of ratios to mimic the percentages of noise
and annotation during the data curation: (1) noise ratio (NR),
the percentage of true and false associations in the unlabeled
edges; and (2) annotation ratio (AR), the percentage of training
and testing associations in the labeled edges.
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Task 1: Test of AR Over the Synthetic Data Set

We wanted to understand how many annotations were needed
during the data curation for our proposed method to predict the
true and false associations. We set a fixed NR and evaluated
the performance of the tested method in two cases: one included
the unlabeled data (ie, training set = labeled true and false
associations + unlabeled associations), and the other did not
include the unlabeled data (ie, training set = labeled true and
false associations). The unlabeled associations were taken as
true associations for training. In the experiment, we tested the
performances based on different AR to mimic the percentage
of the annotations already completed during the data curation.
In practice, the AR varied from 1:9 to 9:1. For each ratio, we
repeated the test 10 times with a random sampling of the training
and testing sets to get the average results.

Task 2: Test of NR Over the Synthetic Data Set

In this task, we wanted to understand how many false
associations were deemed as true associations in unlabeled data
for training because it affected the prediction performance of
the proposed method. We wanted to see whether the proposed
method was robust enough to learn useful information for
prediction, especially from unlabeled edges with more noise.
With a fixed AR of 1:1, we tested the proposed method when
there were more false edges than real edges in the unlabeled
data. In practice, the NR varied from 1:1 to 1:9.

Task 3: Test Over the Real Data Set

After the same training of annotation, two of the authors (CJ
and YY) manually labeled 500 of the 288,270 edges to simulate
an extreme use case for data curation, and another author (VN)
verified the annotation by random sampling the edges. Among
the 500 edges, the 3 types consisted of chemical-disease,
gene-chemical, and gene-disease. Each edge was marked as
true, false, and unknown. In practice, the annotations for
gene-chemical were excluded and marked as unknown in the
final evaluation after the authors had a discussion and reached
a consensus that those annotations were conducted without
enough confidence. Thus, in our final result report of the
receiver operating characteristic curve, we only considered 2
types of associations: chemical-disease and gene-disease.

Setting and Evaluation Metrics
For each proposed method (ie, NetGAN and CELL), a grid
search strategy was adapted for obtaining the best
hyperparameters. In our experiment, we defined the search range
by referencing the original settings in the articles. For NetGAN,

the parameter ranges for the grid search are specified as walk
p = {0.01, 0.1, 1, 10, 100} and q = {0.01, 0.1, 1, 10, 100}. For
CELL, the parameter ranges are specified as rank H = {9, 20},
learning rate lr = {0.01, 0.05, 0.1}, and weight decay weightdecay

= {1e – 5, 1e – 6, 1e – 7}. In practice, the origin NetGAN was
obtained from [28], and the origin CELL was obtained from
[29].

In the evaluation step, we chose the area under the receiver
operating characteristic curve (AUC ROC) and average precision
(AP) as the metrics of link prediction for our proposed methods
in both synthetic and real data sets. In the implementation, both
AUC ROC and AP scores were calculated by scikit-learn [30].
The visualization of predicted results in our real data set was a
plot made with Cytoscape [31], an open-source software
platform for visualizing complex networks and integrating these
with any type of attribute data.

Results

Task Evaluation Outcomes

Task 1: Comparison of the Link Prediction Results in a
Graph With/Without the Unlabeled Associations Among
Different ARs
We conducted our experiments in two scenarios. One was the
base case (dashed line in Figure 3) where we tested our models
without using the unlabeled information, without explicitly
stating it as the base case; all of our statements in the following
section would be the default case (solid line in Figure 3) that
indicated that we included the unlabeled associations in the link
prediction tasks. We reported the AUC ROC score in Figure 3.
Here, the left subfigure displayed the AUC ROC curve with a
fixed AR of 0.5. The dashed line named “Base NetGAN”
indicates the method of NetGAN that did not incorporate the
unlabeled information. “Base CELL” is the method that CELL
runs in the base case. There was little difference between the
two methods when considering the base case with an AUC ROC
score of 0.597 for NetGAN and 0.591 for CELL. However,
when unlabeled information was taken into consideration, both
methods achieved better performance compared to the base case
(the AUC ROC score of NetGAN was 0.724, while CELL
achieved a score of 0.828). The right side of Figure 3 shows the
performance of the proposed methods in different ARs ranging
from 0.1-0.9. We determined that CELL had overall better
performance.
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Figure 3. AUC ROC performance of NetGAN and CELL with/without unlabeled information. AR: annotation ratio; AUC ROC: area under the receiver
operating characteristic curve; CELL: Cross-Entropy Low-rank Logits.

Task 2: How Do the Models Perform With Different NRs
in the Unlabeled Edges?
We tested the performance of methods in which the unlabeled
information contained a different ratio of noise 10 times (Figure
4). CELL demonstrated exceptional performance when the NR
was 1:1. Even in the extreme case where the true versus false

ratio reached 1:9, CELL still had better performance compared
to NetGAN with an area under the curve (AUC) score of around
0.7. CELL had less variance in performance compared with
NetGAN at all NRs. In other words, CELL had a relatively
better capability and stability to use unlabeled data compared
with NetGAN when dealing with the complexity of the NR in
unknown information.

Figure 4. Performance in terms of AUC score at different noise ratios. AUC: area under the curve; AUC ROC: area under the receiver operating
characteristic curve; CELL: Cross-Entropy Low-rank Logits.

Task 3: The Performance of Proposed Models in Our
Collected Real Data Set
After our exploration of our methods in task 2, we conducted
our methods on a real data set. Although the NR was unknown
in our real data set, the proposed methods still performed better
than random classification with the incorporation of unknown
associations. In addition, compared with NetGAN, CELL still
had an impressive result with an AUC ROC of up to 0.706 when
the test and train ratio was 1:1 and the unknown association
occupied about 99.95% as shown in Figure 5. The good

performance of CELL showed that it had an excellent capability
to predict the true association with the use of unlabeled data.
We reported the AUC ROC value of each type of association
separately in Figure 6. Combining Figure S2 in Multimedia
Appendix 1 of edge degree of each type of association, we
concluded that, as the degree is larger, there would be more
noise contained in each edge. Thus, the results would be affected
correspondingly. The average precision performance for our
proposed models in our synthetic and real data sets can be found
in Supplementary 3 in Multimedia Appendix 1.
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Figure 5. Performance on real data set. ROC: receiver operating characteristic curve; CELL: Cross-Entropy Low-rank Logits.

Figure 6. AUC ROC (area under the receiver operating characteristic curve) score for different types of associations in the real data set. CELL:
Cross-Entropy Low-rank Logits.

Denoised Knowledge Graph Generated From the Real
Data Set
We trained the adapted NetGAN with the whole real data set,
and plotted the predicted denoised knowledge graph in Figure
7, where the edges are generated based on the score matrix
calculated following the generation method used in NetGAN

[12]. There are a total of 21,016 edges in our visualization
consisting of gene-chemical (7562), gene-disease (7613), and
chemical-disease (5841). Three different colors (red, green, and
blue) stand for three different types of associations/edges
(gene-chemical, gene-disease, chem-disease). The source file
for the prediction can be found at [32].
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Figure 7. Visualization of the predicted knowledge graph based on the real COVID-19–related data set.

Discussion

Principal Results
In this study, we proposed a method to automate the denoising
of a knowledge graph generated via the counting of
co-occurrence from biomedical literature. Our work can be
considered as the preprocessing part for the curation of the
knowledge graph. We adopted state-of-the-art generative-based
graph methods, NetGAN and CELL, to leverage the unlabeled
co-occurring biomedical entities in the training process by the
perturbation of the original graph in the determination of an
unknown edge. Two data sets (ie, synthetic and real data sets)
were used to evaluate proposed methods in 3 link prediction
tasks, and our experiments achieved promising results with both
synthetic and real data sets.

Limitations
Despite the capability and stability of the methods used in this
study, there are a few limitations that need to be discussed.

First, the associations labeled in the real data set are limited due
to limited resources. In addition, due to the reality of vagueness
or missing concepts in the biomedical literature, there will be
some bias. A large sample of annotated associations may provide
a solution to reduce this bias and thus is needed for our future
work. One way to potentially accomplish this goal would be to
use natural language processing methods to standardize the
concepts prior to annotation, which may improve the
construction of knowledge graph input to our methods. Another
way includes collaborating with professional annotators to both
increase the number of annotations as well as improve the
quality.

Second, while we have achieved notable improvement with
AUC around 0.7 in our real data set compared with random
classification, there is still a gap between the experimental
results in a controlled environment compared to the adaptation
of the proposed methods for data curation in real-world
scenarios. Performance improvement is still needed. The
complexity of our investigated algorithm comes from the module
of LSTM, which generates random walks for reconstructing the
graph. An adaptation of binary neural networks [33] that directly
produces the discrete adjacency matrix for the graph may have
the potential to significantly improve the efficacy of our
investigated methods as reconstruction of the adjacency matrix
from random walks will not be needed. Another potential
direction for improving the performance of removing noise in
our investigated methods could be looking into the possibilities
of transfer learning or external methods as we discussed
previously, such as in [34]. By importing prior knowledge into
the process of graph generation, we could employ the knowledge
from an already built data set [35] to help us remove the false
associations when constructing our biomedical graph.

Third, our evaluation was based on the logic of classifying the
true or false associations directly, and was intentionally not
focused on the impact evaluation of the denoised data sets
generated in our work on downstream applications (eg,
prediction for drug-target association and protein-protein
interaction). Although we assume the performance will be
improved in those applications [36], we acknowledge that there
has not yet been any scientific proof to support that. The whole
data stream, including the methods of data processing, data
curation (ie, denoising method proposed in this study), and
application, needs to be investigated further to fill this gap,
which could provide convincing evidence of the impact of our
proposed method for denoising knowledge base construction.
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