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Abstract

Background: A clinical decision support system (CDSS) is recognized as a technology that enhances clinical efficacy and
safety. However, its full potential has not been realized, mainly due to clinical data standards and noninteroperable platforms.

Objective: In this paper, we introduce the common data model–based intelligent algorithm network environment (CANE)
platform that supports the implementation and deployment of a CDSS.

Methods: CDSS reasoning engines, usually represented as R or Python objects, are deployed into the CANE platform and
converted into C# objects. When a clinician requests CANE-based decision support in the electronic health record (EHR) system,
patients’ information is transformed into Health Level 7 Fast Healthcare Interoperability Resources (FHIR) format and transmitted
to the CANE server inside the hospital firewall. Upon receiving the necessary data, the CANE system’s modules perform the
following tasks: (1) the preprocessing module converts the FHIRs into the input data required by the specific reasoning engine,
(2) the reasoning engine module operates the target algorithms, (3) the integration module communicates with the other institutions’
CANE systems to request and transmit a summary report to aid in decision support, and (4) creates a user interface by integrating
the summary report and the results calculated by the reasoning engine.

Results: We developed a CANE system such that any algorithm implemented in the system can be directly called through the
RESTful application programming interface when it is integrated with an EHR system. Eight algorithms were developed and
deployed in the CANE system. Using a knowledge-based algorithm, physicians can screen patients who are prone to sepsis and
obtain treatment guides for patients with sepsis with the CANE system. Further, using a nonknowledge-based algorithm, the
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CANE system supports emergency physicians’ clinical decisions about optimum resource allocation by predicting a patient’s
acuity and prognosis during triage.

Conclusions: We successfully developed a common data model–based platform that adheres to medical informatics standards
and could aid artificial intelligence model deployment using R or Python.

(J Med Internet Res 2022;24(7):e37928) doi: 10.2196/37928
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Introduction

The clinical decision support system (CDSS) is expected to play
an essential role in modern medicine. The expansion of scalable
data and advances in data science have led to considerable
data-driven CDSS research, which has offered good
opportunities to accurately reflect the clinical context with
higher complexity than possible with rule-based expert systems
[1]. The establishment of a research process for the development,
validation, and reporting of machine-learning algorithms has
made significant contributions to improving quality and
reproducibility in this area [2,3].

Even the best algorithm cannot be expected to achieve its
potential benefit before it is utilized in a clinical setting [4]. The
transition of an algorithm from research to implementation is
hindered by several factors, including social, political, economic,
clinical, and technical issues [5-8]. Among these, the
interoperability problem, which originates from the
heterogeneity of electronic health record (EHR) systems with
varying data types and structures, has been identified as an
important factor that hinders CDSS implementation in a real
clinical setting [9,10]. Moreover, considering that a current
data-driven CDSS utilizes more variables than traditional
statistical models and requires data preprocessing, it is
unrealistic to expect CDSS developers to modify their model
to fit each hospital’s EHR system.

Dozens of standards have been introduced to overcome this
interoperability issue, including the International Statistical
Classification of Diseases and Related Health Problems, 10th
revision; the Logical Observation Identifiers Names and Codes
taxonomy; the RxNorm drug vocabulary; and the SNOMED
(Systematized Nomenclature of Medicine–Clinical Terms)
clinical terminology database for semantic technology
integration [11]. Additionally, Health Level 7 (HL7) V2 and
V3 negotiated frameworks, clinical document architectures, and
HL7 Fast Healthcare Interoperability Resources (FHIR) for data
exchange [12,13] have been used. The Observational Medical
Outcomes Partnership (OMOP) common data model (CDM),
the Sentinel CDM, and the National Patient-Centered Clinical
Outcomes Research Network (PCORnet) CDM for standardized
data structures and types [14,15] are other major standards
developments. However, because hospitals in South Korea
utilize heterogeneous home-grown EHR systems, medical
informaticians face consistent difficulties in adopting
international medical data standards. More recently, Clinical

Quality Language (CQL) and CDS Hooks were introduced
[16,17]. CQL is a language that is used in various clinical
situations, including clinical decision-making, cohort definition,
and clinical quality measurements. CQL can be easily integrated
into HL7 FHIR via sharing functions, which helps domain
experts by enhancing human readability.

The OMOP-CDM and HL7 FHIR standards are good starting
points for developing a platform that can deploy an interoperable
CDSS to multiple organizations [18,19]. Moreover, the
OMOP-CDM has acquired the status of a de facto standard in
South Korea. Over two-thirds of tertiary academic hospitals
have adopted the OMOP-CDM with national research and
development support [20]. Additionally, HL7 FHIR is known
as a prospering standard in the medical informatics field. This
standard provides a simplified data model using the FHIR 80%
rule. That is, the operative guideline informally states that each
resource should contain only those data elements agreed upon
by 80% or more of the participants in the development effort
[13,21]. Because HL7 FHIR employs a web protocol, the
standard is widely used to exchange information in a variety of
medical settings, including those of CDSS deployments
[10,18,19].

The objective of this study was to introduce the CDM-based
intelligent algorithm network environment (CANE) platform
to support the implementation and deployment of a CDSS.

Methods

CANE Research Consortium
The CANE Research Consortium was established in May 2019
to develop a CDSS deployment platform that could extend
CDSS data referencing capabilities across medical institutions.
The Consortium comprised six research groups representing
seven major hospitals in Seoul, Gyeonggi, and Incheon, South
Korea.

CANE Architecture
The CANE platform is built on the Linux (CentOS 7.7 (1906))
operating system with 3.7-GHz octa core CPUs, 64-GB RAM,
and a 2-TB hard disk drive. Microsoft.Net 5.0, MariaDB 10.4.12
(x86_64), Python 3.6.8, and Apache 2.4.6 software systems are
applied. The platform consists of a preprocessing module, a
reasoning engine, and an integration center module. The roles
of each module were described in the CDSS operation process
session (Figure 1).
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Figure 1. Abstract architecture of the common data model–based intelligent algorithm network environment (CANE) platform. EHR: electronic health
record.

Model Development, Deployment, and Operation
Processes

Phase 1: Development and Evaluation of the CDSS
Reasoning Engine
Algorithms distributed in CANE are classified into knowledge-
and nonknowledge-based CDSSs. A knowledge-based CDSS
refers to a traditional expert system that provides informational
representations of medical guidelines. A nonknowledge-based
CDSS uses machine learning, a technology that recognizes
patterns and makes predictions from clinical data.

Figure 2 describes the development process of the
nonknowledge-based CDSS. In principle, data for algorithm
development should be extracted from the OMOP-CDM
database. However, learning from a local clinical data warehouse
is also allowed because it may be necessary to learn from data
that cannot be converted into OMOP-CDM format. There are
various ways to develop a machine-learning algorithm. In this
study, we followed the patient-level prediction framework: (1)
target population identification, (2) predictor extraction, (3)
splitting tidy data into training and test sets, (4) draft model
development using a training data set, (5) iterative process of
evaluating the draft model, and (6) final model confirmation.

Figure 2. Nonknowledge-based clinical decision support system model development process. CDM: common data model; CDW: clinical data warehouse;
OMOP: Observational Medical Outcome Partnership.

Phase 2: CDSS Deployment on the CANE Platform
The developed algorithms usually take the form of R or Python
objects, which are widely used by researchers in the field of

medical informatics. Converting these objects into C# language
is a prerequisite for mounting the reasoning engine module of
the CANE platform (Figure 3). This model conversion process
is performed using the Hl.Fhir.R4 (2.0.0), Newtonsoft.Json
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(12.0.3), and R.NET (1.9.0) packages. Moreover, the model
formed of C# objects is simply deployed without conversion.
By using C#, which is the most representative language of the

.NET framework, programs can be executed on any operating
system following the common language specification.

Figure 3. Model deployment process.

Phase 3: CDSS Operation Process
A user requests decision support from the CANE platform by
clicking the “CANE” button on their EHR user interface (UI).
Subsequently, the EHR data required for the target algorithm
are converted into JavaScript Object Notation (JSON) format
using HL7 FHIRs. They are then transmitted to the CANE
server. Next, the CANE server parses and converts the received
FHIRs to fit the target CDS algorithm. The preprocessed input
data call the deployed model, and the model returns the
calculated score (eg, sepsis risk score) to the integration module.
All information transmissions occur between the CANE and
EHR, where these systems were implemented, without

integration modules. The integration module requests additional
information from other institutions’ CANE systems, which are
interconnected via their own OMOP-CDM. To dispel potential
privacy concerns, the data used for interinstitution transmission
are delivered as a population-level summary rather than raw
data that can be used to identify individuals. This summary data
can assist the physician in possibly promoting patient behavioral
changes in favorable ways. Finally, the integration module
generates a UI based on the calculated score from the model
and supplementary data from other institutions’CANE systems,
which are then presented to the EHR. These operating processes
are described in Figure 4.
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Figure 4. Clinical decision support system operation process with CANE. EHR: electronic health record; FHIR: Fast Healthcare Interoperability
Resource; HL7: Health Level 7; OMOP-CDM: Observational Medical Outcome Partnership-common data model; UI: user interface.

Ethics Approval
The sepsis case study was approved by the Samsung Medical
Center Institutional Review Board (2019-07-034) and the
emergency department (ED) case study was approved by the
Sejong General Hospital Institutional Review Board
(2017-1744).

Results

Overview of the CANE Platform
Currently, eight algorithms are deployed to the CANE platform;
however, the research consortium intends to deploy 11

algorithms by December 2022 (Table 1). When the CANE
system is integrated with an EHR system, the algorithms
mounted on the CANE system can be directly called through
the RESTful application programming interface (API). The
CANE system also provides a web interface (Figure 5). For the
web session, this study focused on the CANE platform and
representative use cases of both knowledge- and
nonknowledge-based CDSSs, rather than discussing all of the
deployed algorithms, which would extend beyond the objectives
of this paper.
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Table 1. Details of the developed algorithms for clinical decision support systems (CDSSs).

Target patientsObjectivesAlgorithm name

Nonknowledge-based CDSSs

Patients prescribed the following medications:

heparin, Humulin, RIa, and potassium

To determine whether the prescription has poten-
tial information errors

Anomaly prescription detection algorithm

Patients visiting the emergency departmentTo recommend a prescription that is expected
to need an examination based on the patient’s
medical record, but omitted

Test order recommendation algorithm for
emergency department clinician

Patients visiting the emergency departmentTo determine the acuity of patients visiting the
emergency department

Triage-level decision support system

Patients visiting the emergency departmentAlgorithm for screening patients with a possibil-
ity of poor prognosis among patients visiting the
emergency department

Emergency department visiting patients’
prognosis prediction algorithm

Patients with traumatic brain injuryAlgorithm for screening patients with a possibil-
ity of poor prognosis among patients visiting the
emergency department

Brain injury patients’ prognosis prediction
algorithm

InpatientsTo improve patient safety by predicting patients
with a high risk of falls

Fall risk prediction algorithm

InpatientsTo calculate the risk of pressure ulcer, allowing
for preventive action and early detection

Pressure ulcer prediction algorithm

Knowledge-based CDSSs

Patients prescribed warfarinTo recommend an appropriate dose of anticoag-
ulant in consideration of individual patient
characteristics and drug response

Warfarin dosage recommendation algorithm

Patients with diabetes mellitusTo recommend an appropriate dose of insulin in
consideration of individual patient characteristics
and response to previous insulin administration

Insulin dosage recommendation algorithm

Outpatients who require treatment for dyslipi-
demia

To integrate and represent knowledge of dyslipi-
demia treatment guidelines

Dyslipidemia treatment decision support
system

Inpatients and patients visiting the emergency
department who require treatment for sepsis

To screen sepsis patients and provide a sepsis
treatment guideline

Sepsis treatment decision support system
(SepsTreat)

aRI: regular insulin.

Figure 5. CANE dashboard of the demo web page. ED: emergency department; PICC: peripherally inserted central catheter.

Use Case 1: Sepsis Treatment Decision Support System
Sepsis is a syndrome caused by infection, which is a significant
public health problem that results in a patient’s death without
appropriate and timely treatment [22]. As the importance of
early recognition and appropriate treatment is well defined,

many researchers have attempted to develop early detection
methods that may predict the outcomes of patients with sepsis.

We developed a sepsis treatment decision support system
(SepsTreat) as one of the knowledge-based CANE algorithms
(Figure 6). This algorithm is rules-based, and it provides
recommended treatment guides when detecting sepsis patients.
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Sepsis knowledge and treatment information are based on
Sepsis-3 Guidelines [23]. Patients who show signs of organ
dysfunction caused by infection are defined as sepsis patients.
For SepsTreat, a sepsis patient is one whose body temperature
is above 37.5°C and has been recommended a blood culture test
or antibiotics. Organ dysfunction is checked using the
Sepsis-related Organ Failure Assessment (SOFA) score, which
cannot be calculated immediately because some score

components require laboratory testing results. However, Quick
SOFA (qSOFA) is a new method that helps physicians quickly
assess patients suspected of infection, and offers investigative
leads concerning suspected organ dysfunction. qSOFA was
recently added to the Sepsis-3 Guidelines to supplement the
complex SOFA score. The qSOFA score monitors only three
components: systolic blood pressure, respiratory rate, and
mentality.

Figure 6. Screenshot of the sepsis treatment decision support system (SepsTreat) algorithm.

A prototype of SepsTreat runs on the web as a separate instance
paired with an EHR system. SepsTreat intakes component values
to determine sepsis by calculating qSOFA and SOFA scores
using the Glasgow Coma Scale score, systolic blood pressure,
diastolic blood pressure, respiratory rate, body temperature,
alveolar oxygen partial pressure, fraction of inspired oxygen,
platelet count, creatinine, total bilirubin, lactic acid, blood
culture order, antibiotics order, and vasopressors or inotropic

medication orders. After patient examination, the physician
enters each component value into SepsTreat. If the patient is in
a septic condition, SepsTreat provides the recommended
treatment. When the recommendation is displayed, practices
that have already been completed are marked to emphasize
treatments that have not yet been processed. Information
retrieved from the OMOP-CDM database is also presented to
help physicians manage patients. This information includes
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statistics of prescribed antibiotics for sepsis patients and the
statistical results of sepsis patient outcomes. Physicians in a
secondary hospital or clinic can easily access tertiary
information when using the CANE system by presenting
statistical results from their CDM database. In the prototype
version, a single center’s practice statistics are presented. The
final version will include patterns of prescribed antibiotics for
sepsis patients from different hospitals and different outcomes.

Use Case 2: ED Patient Triage Algorithm
We incorporated a deep-learning prediction algorithm to extend
CANE’s flexible boundaries. Kwon et al [24] created this
algorithm, which calculates triage and acuity scores for ED
patients. This algorithm also predicts hospital mortality, critical
care, and hospitalization metrics using information from the
triage stage (eg, age, sex, chief complaint, time from symptom
onset to ED visit, arrival mode, trauma, initial vital signs, and
mental status). Physicians can predict patients’outcomes before
the point of examination using this algorithm. From the results,
physicians can deliver appropriate management before the
patient’s deterioration, or they may opt to hospitalize patients
sooner than otherwise expected to stabilize those with severe
conditions.

To integrate this algorithm into the CANE platform, we coded
the algorithm’s variables based on the concept ID of
OMOP-CDM and retrained the algorithm using OMOP-CDM
data. In the prototype of this algorithm, if a user enters input
variables into the CANE platform, it presents each prediction
result with a possibility and predefined risk score. Risk scores
were determined in advance by researchers using statistical
calculations. The resultant ED patient triage algorithm is a good
example of how the CANE platform can integrate
machine-learning algorithms with minimal integration effort.

Discussion

Principal Results
In this paper, we introduced the CANE platform, which supports
the deployment of various types of CDSS models. Our system
was primarily developed to facilitate the deployment of medical
artificial intelligence (AI) algorithms developed by the CANE
Consortium. However, the platform can also be used as a
pipeline that integrates CDSS and hospital developers who need
to collaborate on tools. Furthermore, our platform supports the
transformation of algorithms developed using R and Python
into C#, which was required by the CANE platform. Considering
that R and Python are widely used programming languages [25],
our platform could contribute to overcoming the chasm between
development and deployment of medical AI.

On-Demand Intervention Type
We adopted “on-demand interventions,” which is a form of
noninterruptive intervention, as the approach used by the CANE
system to provide decision support. According to a recent
meta-analysis, interruptive intervention is the dominant form
of a CDSS that has been applied and utilized in clinical practice
[26]. A CDSS applied in an interruptive manner not only distorts
the clinical workflow but also reports unintended consequences
such as alert fatigue, which is a known factor that hinders the

CDSS from achieving its purpose [4]. Hence, interruptive
intervention must be applied carefully in a limited purpose [27].
Therefore, we chose on-demand intervention as the basic
intervention format. By subsequently applying the CDS Hooks
to the CANE system, each CDSS can readily be invoked by
various intervention methods according to the clinical workflow.

Comparison With Prior Work
Despite evidence indicating that medical AI and CDSS can
improve the efficacy and safety of health care delivery systems
[28-30], the present situation still seems to be far from this goal.
Studies have been conducted to address interoperability issues
and overcome the chasm between CDSS model development
and widespread deployment. Khalilia et al [18] provided
convincing answers to account for this gap in terms of web
services based on a service-oriented architecture. They presented
a streamlined architecture that facilitates predictive modeling
using OMOP-CDM structured data sets and deployed the model
into a clinical workflow using HL7 FHIR. More recently,
Gruendner et al [19] introduced a sophisticated and
comprehensive platform that included model development,
deployment, and security with a graphical UI based on
OMOP-CDM and HL7 FHIR standards. Unberath et al [31]
suggested an operational CDSS case to predict relapses in
patients with melanoma using OMOP-CDM and the REST API.

The CANE system is distinguished from these previous works
in that it provides data-driven decision support from other
institutions. Thus, clinicians may refer to summary reports
regarding similar situations using interconnecting integration
modules at the point of care. Considering that clinicians prefer
to make decisions based on peer opinions as well as CDSS
information, this function is gaining importance from a
behavioral science perspective [32]. Because various institutions
participating in this study have constructed OMOP-CDM
databases, all processes, including data queries, data analyses,
and reports generation, are conducted within the hospitals’
firewalls. Only summary reports are transmitted to the requesting
institutions. Raw patient data are avoided via an interconnecting
integration module to minimize security risks.

Model Deployment Determining Pipeline
The CANE Consortium should establish a pipeline that
determines the installation of a nonknowledge-based CDSS in
the CANE system, with the aim of distributing a model to other
institutions. Several studies have reported that performance
indicators evaluated using external data are statistically
significantly lower than those evaluated using data from
institutions where an AI model was developed. This could be
attributed to the “Cloud of Context” issue [33]. Variations in
clinical workflow, available resources, and patient characteristics
among institutions hinder the generalizability of an algorithm.
Hence, external validation using data from a target institution
before applying AI models is an effective way to not only adjust
the expectations on the model but also to prevent potential
patient safety issues due to the algorithm. Therefore, we suggest
that information regarding external validation must be included
in the evaluation pipeline to determine whether a specific
algorithm should be installed into the CANE platform.
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Limitations
This study has the following limitations. The CANE platform
does not embrace the machine-learning algorithms developed
from the ATLAS platform, which is a widely used web-based
service for building machine-learning models within the
OMOP-CDM ecosystem. Second, the Consortium did not
investigate the performance indices of each algorithm using
either internal or external data, or the usability of the CANE
platform. Further evaluation is needed in a subsequent study.
Third, it is common that the performance of machine-learning
algorithms differs when they are applied to other organizations.

Finally, CQL and CDS Hooks, which are standards recently
highlighted in the field of medical informatics, were not
reflected in our system.

Conclusions
We introduced the CANE platform, which adheres to medical
informatics standards (OMOP-CDM and HL7 FHIR). This
system provides summary data on the treatment patterns of other
institutions that could aid physicians’ decision-making.
Moreover, concerns regarding potential privacy issues are
minimized by transmitting summary data rather than individuals’
raw heath data.
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FHIR: Fast Healthcare Interoperability Resource
HL7: Health-Level 7
JSON: JavaScript Object Notation
OMOP: Observational Medical Outcome Partnership
PCORnet: Patient-Centered Clinical Outcomes Research Network
qSOFA: Quick Sepsis-related Organ Failure Assessment
SepsTreat: sepsis treatment decision support system
SNOMED: Systematized Nomenclature of Medicine–Clinical Terms
SOFA: Sepsis-related Organ Failure Assessment
UI: user interface
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