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Introduction

In March 2021, the New York City Department of Health and
Mental Hygiene (NYCDOHMH) received a supply of
single-dose Janssen COVID-19 vaccines to vaccinate the city’s
patients who are homebound, but they needed assistance to
identify and reach this population [1,2]. Mount Sinai Visiting
Doctors (MSVD) is a large home-based primary care program
serving more than 1200 patients who are homebound throughout
Manhattan. We partnered with NYCDOHMH to vaccinate
patients in our program. The administrative team generally
schedules routine home visits based on zip codes, using 12
unique catchment areas covering all of Manhattan. This existing
zoning system was inadequate for vaccination purposes for
several reasons, mainly because these zones were too large.
Furthermore, the additional task of manually scheduling patients
by zone would be overwhelming for administrative staff,
especially given the temporal constraints of the Janssen vaccine
(ie, doses expired in 6 hours). In response, we developed a
system to geographically cluster patients to efficiently vaccinate
our homebound patients against COVID-19.

Methods

Ethics Approval
The Icahn School of Medicine at Mount Sinai’s Program for
the Protection of Human Subjects approved and granted a waiver

of consent for this secondary data analysis study (STUDY-
21-00157) which was conducted in accordance with the Helsinki
Declaration.

Overview
We developed a software program that takes a cohort of
unvaccinated patients in the MSVD Program as input and
assigns each patient a cluster number. We used Python 3 (Python
Software Foundation) [3] to process patient addresses, group
them into clusters, and export these clusters into a standard
database format and onto a map. Specifically, we used an
open-source implementation of a modified unsupervised
K-means clustering machine learning algorithm to group patients
[4].

The first step was to convert patient households to spatial
representations. Using the Google Maps Geocoding application
programming interface (API), we obtained latitude/longitude
coordinates of patient residences, which served as the input data
to our algorithm.

These coordinates were then fed to the modified unsupervised
K-means clustering algorithm. The standard K-means clustering
algorithm clusters data points into K groups, while the modified
algorithm allows one to impose constraints on cluster size,
ensuring each group contains a number of data points within a
specified range [4]. This was important for our process to avoid
assigning an excessive number of patients to any one cluster;
although many patients live close to each other, provider routes
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could not exceed 6 hours. Targeting approximately 5 patients
per provider and bearing in mind that not all identified patients
would desire and be available when the vaccine was offered by
the scheduling team, we enforced a minimum of 12 and a
maximum of 15 patients per cluster.

Next, we projected the data points onto a geospatial visualization
for easy interpretability by the scheduling team and providers.
Using the Google Maps API, we generated an HTML page that
contained pins with distinct numbers and colors representing

the cluster to which a patient belonged as well as the patient’s
name.

Our process was iterative: every week after patients were
scheduled and immunized, we updated our census to reflect the
remaining number of patients who were unvaccinated. The team
called patients to confirm appointments and updated the patient
list. We then re-ran our clustering process, integrating any
changes to cluster size preferences, for the next round of
immunizations for patients who are homebound (Figure 1).

Figure 1. An example of a vaccination campaign, using mock patient data, for patients who are homebound in the Mount Sinai Visiting Doctors Program
routing process. It was iterative week-to-week and included the following steps: (1) patients who were unvaccinated were identified and clustered into
groups, (2) patient addresses were pinned on a map with identifying group labels, (3) patients were called for vaccine scheduling according to group
number, and (4) the patient list was updated to reflect who remained unvaccinated.

Results

Table 1 summarizes the demographic information of the patients
and the results of our campaign between March and April 2021,

which involved about 100 vaccination clusters and routes over
6 weeks. On average, we vaccinated 5.6 patients per provider
per day, averaging 22.1 total patients per day [5]. Each provider
accomplished their assigned route within the time constraints
of the Janssen vaccine, and no doses were wasted.
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Table 1. Demographics and statistics from our COVID-19 homebound vaccination campaign of Manhattan-based patients in the Mount Sinai Visiting
Doctors Program.

Value 

Patient demographics

428Patients who are homebound 

83.9Average age (years)  

3.8Average Elixhauser comorbidity score [6]a  

Sex, n (%)  

323 (75.5)Female   

105 (24.5)Male   

Racial/ethnic identity, n (%)  

148 (34.6)White   

63 (14.7)Black or African American   

15 (3.5)Asian   

108 (25.2)Hispanic   

86 (20.1)Other   

8 (1.9)Unknown   

92Patient’s family members and caregivers, n 

Vaccination campaign statistics

3-6Providers vaccinating per day (n), range 

22.1Average number of patients vaccinated per day 

4.6Average duration of provider time spent vaccinating (hours) 

52Average duration of individual vaccination (including transit time, vaccine administration, and 15-minute postvaccination
observation time; minutes)

 

aElixhauser scores were available for 372 of the patients who are homebound.

Discussion

The new tool optimized logistic operations for an acute public
health intervention while minimizing wasted resources. The
model was later used to quickly deploy booster immunizations
during the surge of the Omicron subvariant from December
2021 to January 2022. Future research will consider the ability
to create routes with ordered stops given a provider’s choice of
transportation and more flexibility in the cluster size depending
on the population density of a given region. This feature is

especially important in densely populated cities, where providers
are unlikely to travel by car. Additional future work can include
electronic health record integration for more streamlined access
and allowing scheduling teams to directly recluster patients.

Ultimately, the newly developed approach was instrumental in
maximizing efficiency and minimizing vaccine waste,
suggesting its potential for future use in home-based health care
or other public health interventions. The success of this project
further demonstrates the value of novel technological approaches
in improving the efficiency of clinical operations.
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